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Biomarker discovery is at the heart of personalized treatment planning and cancer
precision therapeutics, encompassing disease classification and prognosis, prediction
of treatment response, and therapeutic targeting. However, many biomarkers represent
passenger rather than driver alterations, limiting their utilization as functional units
for therapeutic targeting. We suggest that identification of driver biomarkers through
mechanism-centric approaches, which take into account upstream and downstream
regulatory mechanisms, is fundamental to the discovery of functionally meaningful
markers. Here, we examine computational approaches that identify mechanism-centric
biomarkers elucidated from gene co-expression networks, regulatory networks (e.g.,
transcriptional regulation), protein–protein interaction (PPI) networks, and molecular
pathways. We discuss their objectives, advantages over gene-centric approaches,
and known limitations. Future directions highlight the importance of input and model
interpretability, method and data integration, and the role of recently introduced
technological advantages, such as single-cell sequencing, which are central for effective
biomarker discovery and time-cautious precision therapeutics.

Keywords: biomarkers, treatment response, precision medicine, predictive models, mechanism-centric
approaches

INTRODUCTION

In the past two decades, the advancement of high-throughput technologies has led to the discovery
of genomic, transcriptomic, and epigenomic modalities involved in cancer initiation, progression,
and treatment response. Multiple groups have started to effectively utilize molecular data produced
by high-throughput oncology experiments to identify biomarkers of progression and therapeutic
response in cancer patients (Sorlie et al., 2001; Zhang et al., 2001; van’t Veer et al., 2002; Zhan
et al., 2002, 2006; Sotiriou et al., 2003; Ayers et al., 2004; Allen et al., 2006; Jain et al., 2009; Lim
et al., 2009; Petty et al., 2009; Zhao et al., 2009; Carro et al., 2010; Lefebvre et al., 2010; Shaughnessy
et al., 2011; Bae et al., 2013; Aytes et al., 2014, 2018; Mitrofanova et al., 2015; Robinson et al., 2015;
Wang et al., 2016; Giulietti et al., 2017; Heng et al., 2017; Hoadley et al., 2018; Abida et al., 2019;
Epsi et al., 2019; Arriaga et al., 2020; Panja et al., 2020; Rahem et al., 2020). Yet, our understanding
of the mechanisms involving these modalities, their upstream regulation, and effective therapeutic
targeting remains incomplete.
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A biomarker is an objective measure (e.g., classically a
genomic/transcriptomic/epigenomic alteration, gene, protein,
metabolite, or their groups), typically used to predict the
incidence of disease, its progression, or treatment outcome
(Strimbu and Tavel, 2010; McDermott et al., 2013). In the context
of oncology, biomarkers are classically used for cancer risk
assessment and screening, tumor staging, disease recurrence,
selection of initial therapy, alternative therapy choices, and
monitoring for therapeutic toxicities (Ludwig and Weinstein,
2005). While employed in clinical use, the existing biomarkers
are still sparse and suffer from issues of reproducibility and
heterogeneity, alongside a lack of understanding of their
underlying regulatory mechanisms (Ludwig and Weinstein, 2005;
Boutros, 2015).

One of the reasons for such a knowledge gap is the fact
that the majority of biomarkers are identified from gene-centric
approaches (we will refer to gene/protein/metabolite etc.,-centric
approaches as gene-centric approaches for simplicity), where
either a specific gene is investigated (based on previous biological
assumptions) or a gene(s) is selected based on differential
behavior without connection to the upstream and downstream
molecular mechanisms. Gene-centric findings are often limited in
mechanistic interpretability and connectivity to other molecular
processes, positioning such biomarkers as passengers, rather than
drivers, of the biological process and thus are often dataset
specific (Michiels et al., 2005; Chng et al., 2016).

In classical gene-centric approaches, genes (without their
connections to one another or underlying mechanisms) are
utilized as inputs into white- and black-box statistical and
machine learning models, which have been successfully applied to
identify gene-centric markers in breast cancer (van’t Veer et al.,
2002; Wang et al., 2005; Zhang et al., 2013), lung cancer (Beer
et al., 2002), multiple myeloma (Shaughnessy et al., 2007; Kuiper
et al., 2012), colon cancer (Zhang et al., 2001; Yan et al., 2012),
and prostate cancer (Garzotto et al., 2005; Erho et al., 2013),
among many others. It is important to note that in white-box
models (e.g., linear regression and decision trees) the relationship
between input variables (i.e., genes) and output variables (i.e.,
disease outcomes) is understandable/explainable as they often
identify linear or monotonic relationships (Zhang et al., 2001;
Garzotto et al., 2005; Rosenfeld et al., 2008; Huo et al., 2017;
Panja et al., 2018). On the other hand, black-box models (e.g.,
neural networks, gradient boosting, or ensemble models such as
random forest) are able to capture non-linear/non-monotonic
relationships, yet often suffer from model interpretability and
subsequent limited clinical adoption (Wang et al., 2009; Ayer
et al., 2010; Zhang et al., 2013). Even though both white- and
black-box learning are excellent tools for predictive modeling,
they mostly capture associative relationships when applied as
gene-centric approaches and often miss the complexity of
mechanisms inherent in biological systems, especially in the
context of cancer.

Several groups have addressed this problem by developing
biomarker discovery methods based on mechanism-centric
approaches, which are not focused on single genes and take into
account complex mechanisms implicated in cancer initiation,
progression, and treatment response. In this review, we will

discuss the mechanism-centric approaches based on construction
and mining of co-expression networks (Freeman, 1977; Zhang
and Horvath, 2005; Zhang and Huang, 2014; Han et al.,
2016), regulatory networks (Basso et al., 2005; Lefebvre et al.,
2010; Alvarez et al., 2016; Dhingra et al., 2017), protein–
protein interaction (PPI) networks (Chuang et al., 2007), and
molecular pathways (Epsi et al., 2019; Rahem et al., 2020;
Figure 1). Through an in-depth understanding of upstream and
downstream molecular mechanisms, such techniques open a
door for the discovery of functionally interpretable molecular
drivers (rather than passengers) and potential targets for
precision therapeutics.

MECHANISM-CENTRIC
COMPUTATIONAL APPROACHES FOR
BIOMARKER DISCOVERY

Gene Co-expression Network Analysis
Gene co-expression networks define groups of genes that show
similar/related expression patterns across an entire dataset.
Highly associated genes are clustered together into modules,
with the underlying rationale that co-expressed genes are
likely to be co-regulated. We depict two methods, weighted
gene co-expression network analysis (WGCNA) (Langfelder
and Horvath, 2008) and local maximal Quasi-Clique Merger
(lmQCM) (Zhang and Huang, 2014), for network construction
and module detection. Identified modules are defined as tightly
connected groups of genes (potentially protein/gene complexes),
which are then associated with clinical features to determine
functionally relevant molecular structures. We also describe
methods to mine such co-expression networks that include
condition-specific network mining (Han et al., 2016), eigengene
association (Alter et al., 2000; Zhang and Horvath, 2005), and
network connectivity/hub analysis (Freeman, 1977).

Network Construction: WGCNA and lmQCM
In general, co-expression network construction is based on
a similarity matrix that describes the measure of association
between a gene to all other genes (the simplest of similarity
measures being correlation) (Figure 2A). An undirected network
is constructed from the similarity matrix and is comprised of
nodes denoting genes and edges denoting the associations (e.g.,
correlation) between genes.

One of the most well-known methods for gene co-expression
network reconstruction is WGCNA, which was one of the earliest
methods that proposed using weighted networks (Figure 2B;
Zhang and Horvath, 2005). The advantage of weighted, compared
to unweighted, network construction is the ability to assign
meaningful weights to relationships/edges, which eliminates a
need for threshold assignment and prevents information loss.
WGCNA calculates correlation between pairs of genes and
transforms the correlation measure into a topological overlap
measure in order to minimize effects of noise and spurious
associations. The resulting matrix is subjected to hierarchical
clustering to determine groups of co-expressed genes, also
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FIGURE 1 | Mechanism-centric approaches in biomarker discovery and precision therapeutics. A variety of data, including single- and multi-omic sources,
knowledge bases, and phenotype/clinical information, can be used as inputs to mechanism-centric approaches to identify functional biomarkers of disease and
therapeutic response. We describe mechanism-centric methods that are based on co-expression networks, regulatory networks, PPI networks, and molecular
pathways.

referred to as gene modules. An R package for WGCNA is freely
available (Langfelder and Horvath, 2008).

Because WGCNA module identification is based on
hierarchical clustering, genes cannot be assigned to multiple
modules, exposing WGCNA’s limitation since many genes
participate in multiple biological processes and often perform
multiple functions. An alternative weighted co-expression
method which allows genes to have multiple co-memberships
in different modules is lmQCM (Figure 2C; Zhang and Huang,
2014). The lmQCM algorithm identifies densely connected
subnetworks (i.e., quasi-cliques) using a greedy search algorithm
which allows module overlaps (Ou and Zhang, 2007). In addition
to allowing genes to be assigned to multiple modules, lmQCM
can also identify smaller modules, which can highlight more
specific and interpretable biological connections as compared to
much larger modules of WGCNA that frequently contain over a
thousand genes (Zhang and Huang, 2014; Yu et al., 2019). This
algorithm is freely available as an R package1 and a web-tool
(Huang et al., 2021).

Network Mining: Centered Concordance Index,
Eigengenes, and Hubs
Co-expression networks can be mined to determine the
functional significance of their modules or identify functionally
relevant genes. Here, we discuss two techniques for module
mining [Centered Concordance Index (CCI) (Han et al.,
2016) and eigengenes (Alter et al., 2000; Horvath and Dong,
2008)] and two techniques to identify hub genes [intramodular
connectivity (Zhang and Horvath, 2005) and betweenness
centrality (Freeman, 1977)].

Centered Concordance Index has been developed to identify
modules specific to each condition/phenotype. In particular,

1https://cran.r-project.org/package=lmQCM

the CCI evaluates the concordance of gene expression profiles
within a module based on singular value decomposition and
is used to identify modules that are highly co-expressed in
one condition over another (Han et al., 2016). Han et al.
(2016) and Yu et al. (2019), respectively, identified several gene
modules specific to lung adenocarcinoma and multiple myeloma
precursors compared to non-cancer controls. The CCI is useful
in identifying modules specific to phenotype conditions but has
yet to be used to associate modules with continuous outcomes.

The eigengene approach transforms modules into weighted
vectors, which mathematically correspond to their contribution
to the first principal component in principal component analysis
(Alter et al., 2000; Horvath and Dong, 2008). Eigengenes are
then able to be associated with clinical features (including
continuous outcomes) using correlation/association measures.
For instance, Liu et al. (2015a) used the eigengene approach to
identify two modules significantly associated with poor outcome
in ER + breast cancer patients treated with tamoxifen. Liu et al.
(2015b) and Zhang J. et al. (2020) associated module eigengenes
derived from breast cancer patient data with clinical features
such as survival status, tumor metastasis, and chemotherapy
response. Han et al. (2019) identified module eigengenes strongly
associated with patient survival in neuroblastoma.

The translational applicability of modules can be hampered by
their relatively large size and might benefit from identification of
hub genes within modules. Several measures have been developed
to identify hubs, including intramodular connectivity and
betweenness centrality. In particular, intramodular connectivity
for gene i is defined as the sum of edge weights between gene
i and the other genes in the module (Zhang and Horvath,
2005). Genes with the highest connectivity are considered hub
genes and have been shown to play key roles in maintaining
essential cellular functions (Jeong et al., 2001) and significantly
associated with patient survival in breast cancer (Liu et al., 2015a;
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FIGURE 2 | Co-expression network methods: WGNCA and lmQCM. (A) Pairwise gene correlations are calculated from gene expression (microarray or RNA-seq)
data. (B) The co-expression matrix is transformed into a topological overlap matrix and subjected to hierarchical clustering for module identification. A cluster
dendrogram is shown, with different gene modules identified by the color bar on the bottom. (C) The co-expression matrix is used to construct a network, with
genes as nodes and the correlation co-efficient between any two genes as the edge weight. Module identification is achieved through a greedy search for highly
correlated subnetworks.

Tang et al., 2018; Jia et al., 2020; Tian et al., 2020; Zhang J.
et al., 2020), glioblastoma (Horvath et al., 2006; Yang et al.,
2018; Tang et al., 2019), hepatocellular carcinoma (Hu et al.,
2020; Song et al., 2020), and pancreatic ductal adenocarcinoma
(Giulietti et al., 2016), among others. Some of these findings have
been experimentally validated, such as the ASPM hub gene in
glioblastoma (Horvath et al., 2006) and FAM171A1, NDFIP1,
SKP1, and REEP5 hub genes in breast cancer (Tian et al., 2020).

An alternative measure to identify hub genes is betweenness
centrality, which is a network topology metric used to identify

central nodes in a graph based on a shortest paths algorithm
(Freeman, 1977). The betweenness centrality of gene i is a
measure of the number of shortest paths connecting any two
genes which pass through i. Genes with the highest betweenness
scores are considered hubs and are believed to play an important
role in information transfer within the network. For instance,
Wang et al. analyzed modules with the betweenness centrality
measure to identify eight hub genes that were significantly
associated with overall survival in breast cancer patients (Wang
C. C. N. et al., 2019).
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Regulatory Network Analysis
In recent years, molecular regulatory networks have received
much attention from the scientific community due to their
ability to capture complexity of molecular interactions present
in cancer context-specific tissues (Butte and Kohane, 2000;
Butte et al., 2000; Friedman et al., 2000; Basso et al., 2005;
Margolin et al., 2006a,b; Werhli and Husmeier, 2007; Huynh-Thu
et al., 2010; Lefebvre et al., 2010; Aytes et al., 2014). Regulatory
networks define regulatory relationships between regulators (e.g.,
transcriptional regulators, splicing regulators, post-translational
regulators, etc.), and their potential targets (e.g., genes, proteins,
etc.). Such regulatory relationships provide key information
about upstream and downstream regulations to infer cellular
mechanisms for creating potential causal models of disease and
outperform co-expression networks in their interpretability and
functionally relevant determinants. Several methods have tackled
reconstruction of regulatory networks using mutual information
(Butte and Kohane, 2000; Basso et al., 2005; Margolin et al.,
2006a), Bayesian networks (Friedman et al., 2000; Werhli and
Husmeier, 2007), and regression trees (Huynh-Thu et al.,
2010), to name a few. Readers are encouraged to consult the
following reviews for a comprehensive overview of the different
computational underpinnings employed in regulatory network
analysis (Markowetz and Spang, 2007; Karlebach and Shamir,
2008; Hecker et al., 2009; Lee and Tzou, 2009; Emmert-Streib
et al., 2014). Here, we focus on transcriptional [Algorithm for
the Reconstruction of Gene Regulatory Networks (ARACNe)
(Margolin et al., 2006a)] and multi-omic [RegNetDriver (Dhingra
et al., 2017)] regulatory networks and their mining [i.e., Master
Regulator Inference Algorithm (MARINa) (Lefebvre et al.,
2010), Virtual Inference of Protein-activity by Enriched Regulon
analysis (VIPER) (Alvarez et al., 2016), etc.] in the context of
cancer biomarker studies.

Transcriptional Regulatory Networks
The role of transcriptional regulation has been widely studied in
cancer, including discovery of MYC (Gabay et al., 2014), Sox2
(Boumahdi et al., 2014), and the FOXO family (Jiramongkol
and Lam, 2020) as important players in cancer initiation
and progression. Transcriptional regulatory networks depict
interactions between transcription factors (TFs)/co-factors (co-
TFs) and their transcriptional targets, allowing the study of
differential behavior in transcriptional machinery that govern
oncogenic process.

Network construction: ARACNe
One of the most known and widely experimentally validated
methods for transcriptional network reconstruction is ARACNe
(Margolin et al., 2006a,b). This information-theoretic algorithm
utilizes tissue-specific gene expression profiles to estimate
pairwise mutual information between expression levels of
TFs/co-TFs and expression levels of their potential (activated or
repressed) targets. The advantage of using mutual information
to measure such relationships lies in its ability to measure
not only linear (which would be captured for example by the
Pearson correlation) or monotonic (which would be captured for

example by Spearman correlation) relationships, but also non-
linear associations. Another novelty in transcriptional network
reconstruction is introduced by the data processing inequality,
which eliminates any “indirect” regulatory relationship through
the principle that mutual information on the indirect path cannot
exceed mutual information on any part of the direct path. Data
processing inequality results in a regulatory network that includes
primarily direct TF/co-TF-target interactions. ARACNe has been
widely applied to several normal physiological and pathological
conditions, including B-cell interactome (Basso et al., 2005),
breast cancer (Lim et al., 2009; Remo et al., 2015; Walsh et al.,
2017), prostate cancer (Aytes et al., 2014), colorectal cancer (Bae
et al., 2013; Cordero et al., 2014; Sanz-Pamplona et al., 2014;
Eskandari et al., 2018), glioma (Carro et al., 2010), T-cell acute
lymphoblastic leukemia (Palomero et al., 2006), and multiple
myeloma (Agnelli et al., 2011), among others. Software for
ARACNe is freely available for download.2

Network mining: MARINa and VIPER
The ARACNe network can be effectively interrogated (i.e.,
mined) using MARINa (Lefebvre et al., 2010) and VIPER
(Alvarez et al., 2016), two algorithms that identify TFs/co-
TFs as driver biomarkers associated with specific phenotypes
(e.g., cancer initiation, cancer progression, metastasis, treatment
response, etc.). Specifically, MARINa (Lim et al., 2009; Lefebvre
et al., 2010) requires a differentially expressed signature, defined
as a ranked list of genes between any two phenotypes of interest.
Then, the activated and repressed targets for each TF/co-TF
(as inferred by ARACNe) are assessed for their enrichment in
the over- and under-expressed parts of this signature (Lefebvre
et al., 2010; Figure 3). Such enrichment is referred to as TF/co-
TF transcriptional activity, and if it is statistically significant,
the TF/co-TF is referred to as a Master Regulator (MR). As a
result of this analysis, a TF/co-TF is considered an “activated”
MR if its activated targets are significantly enriched in the
over-expressed part of the signature and/or its repressed targets
are significantly enriched in the under-expressed part of the
signature. Conversely, a “repressed” MR exhibits the opposite
behavior. It is important to note that TF/co-TF transcriptional
activity is not defined based on the differential expression of
TFs/co-TFs themselves but instead on the differential expression
of their transcriptional targets. This allows the identification of
TFs/co-TFs that are not necessarily differentially expressed but
are modified on the post-translational level and would otherwise
be missed by traditional association methods.

Master Regulator Inference Algorithm has successfully
identified MRs in various cancers, including prostate cancer
(Aytes et al., 2014, 2018; Mitrofanova et al., 2015; Talos et al.,
2017), breast cancer (Lim et al., 2009; Fletcher et al., 2013; Remo
et al., 2015), pancreatic cancer (Sartor et al., 2014), ovarian
cancer (Zhang et al., 2015), glioma (Carro et al., 2010; Sonabend
et al., 2014), T cell acute lymphoblastic leukemia (Della Gatta
et al., 2012), and diffuse large B cell lymphoma (Ying et al.,
2013; Bisikirska et al., 2016). These biomarkers also serve as
valuable therapeutic targets and their silencing could potentially

2http://califano.c2b2.columbia.edu/aracne
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FIGURE 3 | Interrogation of transcriptional regulatory networks: Master Regulator Inference Algorithm (MARINa) and Virtual Inference of Protein-activity by Enriched
Regulon analysis (VIPER). (A) A differential signature is defined between two phenotypes of interest (left) as input to MARINa; or on a single-sample level (right) as
input to VIPER. (B) The transcriptional regulon is identified from Algorithm for the Reconstruction of Gene Regulatory Networks (ARACNe) tissue-specific
transcriptional regulatory network, which includes a transcriptional regulator (TR) and its activated and repressed targets. (C) The activated and repressed targets of
the regulon are mapped onto the corresponding signature and used to determine the TR’s transcriptional activity.

have a significant effect on inhibition of malignant phenotype.
To this extent, Mitrofanova et al. developed a computational
algorithm to predict drug combinations that inhibit activity levels
of FOXM1 and CENPF (MRs in malignant prostate cancer)
and demonstrated that their therapeutic inhibition significantly
improved cancer course (Mitrofanova et al., 2015). MARINa is
freely available for download.3

At the same time, VIPER estimates TF/co-TF transcriptional
activity on an individual sample-based level, as opposed to
a two-phenotype signature-based level required by MARINa
(Alvarez et al., 2016; Figure 3). In fact, while MARINa requires
carefully selected multiple samples of the same phenotype to
construct a differential expression signature, VIPER is able
to utilize single-sample analysis by scaling the overall patient
cohort (to its average expression for each gene). Furthermore,
several advantages of VIPER include estimation of TF/co-
TF activity through a so-called mode of regulation (taking
into account whether targets are activated, repressed, or their
direction cannot be determined), inference of regulator-target
interaction confidence, and accounting for target overlap between
different regulators (Alvarez et al., 2016). VIPER was shown to
accurately infer aberrant oncoprotein activity induced by somatic
mutations, across multiple cancer types (Alvarez et al., 2016). An
R package is freely available.4

3http://califano.c2b2.columbia.edu/marina
4http://doi.org/10.18129/B9.bioc.viper

Multi-Omic Regulatory Network
Multi-omic data integration is another avenue to improve
interpretability and discovery of functionally relevant
biomarkers. Integration of different data modalities can increase
the confidence of the overall findings since gene regulation is
a complex process affected by multiple factors, such as gene
mutations, structural variants, epigenomics, and more.

Network construction: RegNetDriver, step I
RegNetDriver is an algorithm for multi-omic tissue-specific
regulatory network construction and analysis (Dhingra et al.,
2017; Figure 4). The regulatory network reconstructed by
RegNetDriver represents a two-layered relationship: (i)
connecting TFs to promoter/enhancer regions; and (ii)
further connecting promoter/enhancer regions to their
corresponding target genes. To reconstruct relationships
between TFs and promoters/enhancers of potential targets,
Dhingra et al. utilize tissue-specific (i.e., prostate epithelium)
DNase I hypersensitive sites to define accessible regulatory DNA
regions and integrate this information with promoter/enhancer
annotations from ENCODE (Encode Project Consortium,
2012) and GENCODE (Harrow et al., 2012). TFs are then
connected to promoters/enhancers based on the enrichment
of their binding motifs. Promoters/enhancers are further
connected to their target genes through significant correlation
of promoter/enhancer region activity signals (estimated using
bisulfite sequencing and ChIP-seq data) with target gene
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FIGURE 4 | RegNetDriver. (A) DNase-seq of DNase I hypermutation sites from a specific tissue type, information to identify TFs from binding motifs, and information
of known regulatory gene pairs as used as input to reconstruct (B) a tissue-specific regulatory network. TF hubs are determined from nodes with the top 25%
out-degree centrality. (C) Significantly perturbed TF hubs are identified using SNV, SV, and DNA methylation data.

expression profiles (estimated using RNA-seq data). Note
that this is a directed two-layered network that estimates
relationships between TFs and their transcriptional targets
through their corresponding promoter/enhancer associations.

Network mining: RegNetDriver, step II
This network is then utilized to identify TF hubs with genomic
and epigenomic alterations that can potentially cause large
perturbations in this tissue-specific network. Specifically, TFs
are first mined on degree centrality, such that the top 25% of
TFs with the greatest number of outgoing edges are defined as
hubs. Next, to identify TF hubs significantly affected on genomic
and epigenomic levels in prostate cancer, they are evaluated
for the presence of prostate-cancer specific genomic alterations
(single nucleotide variants and structural variants) and DNA
methylation changes in their coding and non-coding regulatory
regions. In Dhingra et al., RegNetDriver nominated three TFs as
regulatory drivers in prostate cancer, with functional validation
conducted on ERF (Dhingra et al., 2017). RegNetDriver is freely
available for download.5

Protein–Protein Interaction
Network-Based Analysis
Another important avenue in mechanism-centric biomarker
discovery is PPIs. Such interactions elucidate putative protein
complexes, which are known to perform critical functions within
the cell and include for example the pre-initiation complex for
RNA transcription (Greber and Nogales, 2019), the spliceosome
for pre-mRNA splicing (Chen et al., 2007), and the ribosome
for translation of mRNA to protein (Wilson and Doudna Cate,
2012), among others. Cancer cells in particular have been shown
to deregulate protein complexes for their sustained proliferation,
survival, and metastasis (Robichaud et al., 2019). In recent years,

5https://khuranalab.med.cornell.edu/RegNetDriver.html

numerous public databases have cataloged networks of known
and predicted PPIs, such as STRING (Szklarczyk et al., 2019),
IntAct (Orchard et al., 2014), CellCircuits (Mak et al., 2007),
and PINA (Cowley et al., 2012) [more comprehensive lists are
described by Huang et al. (2018) and Miryala et al. (2018)].
Here, we describe the method from Chuang et al. (2007), which
effectively combines PPI networks with gene expression data
and evaluates these hybrid subnetworks as mechanism-centric
biomarkers of breast cancer metastasis (Figure 5).

Network Construction: Chuang et al., Step I
Chuang et al. introduce a hybrid approach to combine a PPI
network with tissue-specific gene expression profiles across
patient samples. The PPI network is comprised of nodes
representing proteins and edges representing a characterized
PPI, utilizing subnetworks from CellCircuits. Tissue-specific gene
expression data are then overlaid onto all PPI subnetworks. For
each subnetwork, its activity in each sample/patient is defined as
a combination of z-scores for the subnetwork genes. This defines
patient-specific vectors of subnetwork activities, which are then
mined for phenotype associations.

Network Mining: Chuang et al., Step II
Activities of subnetworks are evaluated for their association
with specific phenotypes (e.g., metastatic and non-metastatic),
where associations can be calculated by mutual information,
t-score, or Wilcoxon score and is referred to as the subnetwork
discriminative potential/score. Next, the method selects
subnetworks with a locally maximal discriminative score and
performs significance testing to ensure subnetworks are non-
random and robust. In classification performance on a test
cohort, the authors found that the subnetwork markers identified
using this PPI network-based approach showed higher AUC in
classifying metastatic versus non-metastatic samples compared
to single-gene markers, random subnetworks, and gene sets
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FIGURE 5 | Illustration of the PPI network-based approach by Chuang et al. Gene expression microarray data with phenotype information is overlaid onto a PPI
network that is constructed from existing knowledge. Subnetwork activities are calculated per sample based on z-transformed gene expression values, with
subnetworks defined by the PPI network. Discriminative potential for each subnetwork is determined by mutual information (or alternatively, t-score or Wilcoxon
score) that measures the association between sample activities and phenotypes. Subnetworks with discriminative potential between phenotypes are identified by a
greedy search for locally maximal discriminative potential scores. Discriminative subnetworks are further assessed in significance testing to identify statistically
significant discriminative subnetworks.

from other annotation databases such as GO and MSigDB.
Importantly, the method by Chuang et al. showed better
biomarker reproducibility (i.e., higher overlap between markers)
between two different breast cancer studies, outperforming
gene-centric methods (Chuang et al., 2007).

Pathway-Based Analysis: pathCHEMO
and pathER
Recently, pathway-based biomarker algorithms, such as
pathCHEMO (Epsi et al., 2019) and pathER (Rahem et al.,
2020), have demonstrated that discovery approaches that
encompass information from biological pathways significantly
outperform gene-centric methods which do not take into account
pathway membership.

Pathways represent a group of biochemical entities (e.g.,
genes, proteins, etc.), connected by interactions, relations, and
reactions (including physical interactions, complex formation,
transcriptional regulation, etc.), that lead to a certain product
or changes in a cell. Molecular pathways have long been
known to play a crucial role in cancer initiation, progression,
dissemination, and therapeutic response. Some notable examples
are: the role of RAS and PI3K pathways in prostate and
breast cancers and their therapeutic responses (Yue et al.,
2002; Haagenson and Wu, 2010), the Wnt signaling pathway
in colorectal and other cancers (Zhan et al., 2017), the Hippo

pathway in melanoma (Zhang X. et al., 2020), and the MYC
pathway in prostate cancer progression and treatment response
(Arriaga et al., 2020).

Both pathCHEMO and pathER assume that interrogation
of molecular pathways, such as those present in Biocarta
(Nishimura, 2001), KEGG (Kanehisa et al., 2021), and Reactome
(Jassal et al., 2020), can reveal functional, biologically meaningful
biomarkers that govern carcinogenesis and therapeutic response.
pathCHEMO was specifically developed to compare poor versus
good therapeutic response (as categorical outcomes) in cancer. In
general, it evaluates differential behavior of biological pathways
on both transcriptomic (RNA expression) and epigenomic
(DNA methylation) levels between any two phenotypes of
interest (Epsi et al., 2019). First, an RNA expression treatment
response signature is defined as a list of genes ranked by
their differential expression between poor and good treatment
response. Then, genes in each pathway are evaluated for
their enrichment in either over-expressed, under-expressed, or
differentially expressed (which includes both over- and under-
expressed) part of this signature. Enrichment in the over-
and under-expressed parts separately allows identification of
pathways where the majority of genes exhibit a similar behavior
(i.e., are either over- or under-expressed), while enrichment in the
differentially expressed part of the signature allows identification
of pathways where some genes are over-expressed and some are
under-expressed (which depicts a complex interplay of activation
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and repression relationships inside a molecular pathway). This
enrichment is referred to as the RNA expression-based activity
level of a molecular pathway. DNA methylation-based activity
for each pathway is estimated in the same manner using a
DNA methylation treatment response signature. Pathways that
are enriched in the RNA expression treatment response signature
and the DNA methylation treatment response signature are then
integrated to select those that are significantly affected on both
expression and methylation levels (Figure 6). Activity levels
of the candidate pathways are further evaluated as biomarkers
of therapeutic response in independent patient cohorts. Epsi
et al. showed that pathCHEMO could successfully identify
molecular pathways as biomarkers of response to commonly
used chemotherapy in lung adenocarcinoma, lung squamous
carcinoma, and colorectal adenocarcinoma (Epsi et al., 2019).
Yet, a large number of genes that participate in these pathways
could potentially preclude their adoption to clinic. To overcome
this limitation, “read-out” genes for each pathway were identified
for which expression levels (i) correlate with pathway activity
and (ii) are associated with therapeutic response. Such read-out
genes were shown to produce the same predictive accuracy as
the pathways themselves and constitute feasible biomarkers for
clinical use (Epsi et al., 2019). pathCHEMO is freely available at
http://license.rutgers.edu/technologies/2019-121_pathchemo.

As opposed to pathCHEMO, pathER applies a pathway-
based approach on a single-patient level, which allows the
association of pathway activity across a patient cohort to a
wide range of therapeutic responses (Rahem et al., 2020).
Specifically, this approach utilizes a multivariable regression
Cox proportional hazards model to associate pathway activity
levels with time-to-therapeutic failure, thus capturing poor, good,
and medium therapeutic responses. Rahem et al. successfully
applied this approach to identify both pathways and their
read-out genes for tamoxifen resistance in ER-positive breast
cancer (Rahem et al., 2020). pathCHEMO and pathER were
compared to other approaches, including black-box machine
learning techniques (such as random forest and support vector
machines) and differential gene expression alone, and were
shown to outperform these approaches in identifying more
accurate biomarkers of therapeutic response (Epsi et al., 2019;
Rahem et al., 2020).

CHALLENGES AND LIMITATIONS OF
MECHANISM-CENTRIC APPROACHES

Mechanism-centric approaches provide a powerful solution for
informed biomarker discovery, yet common challenges that these
methods need to account for include sufficient cohort sizes, data
variability and scaling, comprehension of existing knowledge
bases, and tissue-specificity (Table 1).

As many of these methods utilize association-based analyses
(i.e., correlation, mutual information, regression, etc.), a sufficient
cohort size is required to be able to accurately estimate
relationships between variables. One of the direct solutions to
this problem includes combining analyses in multiple datasets;
however, batch effects among different acquisition methods,

profiling platforms, and even institutions where datasets were
collected might hamper such implementation.

In addition to a sufficient cohort size, substantial variability of
expression profiles is also required to be able to accurately predict
associations between variables. This task is feasible, yet it requires
careful consideration, meticulous initial experimental design,
and in-depth investigation of the amount of final variability
necessary for successful analysis. Another challenge is the need
for well-defined phenotypes, as they often require a substantially
large number of samples inside each phenotype group while
also demanding intra-sample homogeneity, as in the eigengene
approach, MARINa, PPI network-based method by Chuang
et al., pathCHEMO, etc.

At the same time, methods that rely on single-patient/sample
mining (e.g., VIPER, the PPI network-based method by Chuang
et al., and pathER) rely on dataset scaling to define its single-
sample signatures (defined by comparing each gene to the average
of its expression in the dataset of interest) making interpretation
of any findings from such analyses dataset-specific.

Another known challenge is tissue-specificity, commonly
faced in PPI network-based and pathway-based approaches,
though some tissue- and cell-specific interaction databases are
now available such as TissueNet (Basha et al., 2017), the
Integrated Interactions Database (Kotlyar et al., 2019), and
HumanBase (Greene et al., 2015). Tissue-specificity in these
methods is usually achieved by overlaying gene expression data
onto the PPI networks or molecular pathways, such as in Chuang
et al., pathCHEMO, and pathER.

Furthermore, limitations of mechanism-centric approaches
that utilize knowledge bases (e.g., RegNetDriver, PPI network-
based approach, pathCHEMO, and pathER) lie in their
reliance on known biological relationships among groups
of genes/proteins/other functional units contained within a
database. Various annotation, pathway, and PPI databases
depend on existing information and do not include functional
units that have not been previously studied, thus limiting de
novo discoveries.

DISCUSSION

The wide availability of large-scale data produced by high-
throughput technologies has created a wealth of information
for biomarker discovery. A vast majority of these biomarkers
have been identified using gene-centric methods, yet their
interpretability and clinical utility have been limited as they
do not account for the relationships among genes. Utilizing
methods that consider biological underpinnings of the data (i.e.,
mechanism-centric methods) can vastly improve interpretable
biomarker discovery, clinical applicability and targeting, and
reproducibility of results.

In particular, advantages of mechanism-centric over gene-
centric approaches can be illustrated through their ability to (i)
identify a tightly connected, cooperative group of genes unified
by the same function, as opposed to individual genes (which
might not be related); (ii) provide a mechanism-level view,
which enhances the understanding of the biological mechanisms
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FIGURE 6 | Pathway-based modeling: pathCHEMO and pathER. (A) Therapeutic response distribution is defined based on time to therapeutic failure. Tails of this
distribution are utilized in pathCHEMO and a full spectrum of therapeutic responses is utilized in pathER. (B) Molecular pathways are utilized as a knowledge base in
pathway-based modeling. Genes in such pathways can be affected on multiple levels, such as differential expression (i.e., orange square) and DNA methylation (i.e.,
green satellite). (C) Molecular pathways are assessed for their integrated enrichment and association with therapeutic response.

implicated in a phenotype (e.g., therapeutic resistance, cancer
metastasis); (iii) look at alterations in biological structures,
which enhances the likelihood of identifying functionally relevant
targets; (iv) identify driver as opposed to passenger markers,
which allows for their effective therapeutic targeting; (v) focus
on molecular structures, rather than individual genes, which
decreases the chance of detecting results due to experimental
noise present in biological experiments (i.e., robustness of
results); and finally (vi) identify biomarkers that are more
accurate and more reproducible between different cohorts.

From a computational point of view, mechanism-centric
approaches can be used for interpretable feature engineering and
selection (i.e., reduction), subsequently reducing the number of
hypotheses to be tested. This is clearly demonstrated by gene
co-expression networks, regulatory networks, PPI networks, and
pathway-based methods, where cooperative groups of genes,
instead of a long list of singular genes, are assessed for their
association with clinical outcomes.

Mechanism-centric methods can both (i) provide
interpretable inputs to white- or black-box approaches or
(ii) contribute to inner model interpretability (i.e., such as in
visible machine learning). First, results from mechanism-centric

methods can be utilized as inputs into learning models to
significantly improve predictive performance (over gene-centric
inputs). One such example was demonstrated in Rahem et al.,
where pathway-based markers were utilized as inputs into Cox
proportional hazards regression modeling and outperformed
gene-centric markers for tamoxifen resistance in ER-positive
breast cancer (Rahem et al., 2020). Similarly, Chuang et al.
showed that markers identified by their PPI network-based
method could be effectively used as inputs into a regression
model and outperformed gene-centric markers in classification
of metastatic breast cancer (Chuang et al., 2007). Though not in
cancer, several methods have also suggested utilizing hierarchical
structures (such as those inherent in Gene Ontology) as inputs
for predictive models (Carvunis and Ideker, 2014; Yu et al.,
2016). Second, mechanism-centric methods can potentially be
incorporated into model building, such as in “visible learning,”
where the relationships between inputs and outputs can be
interpreted (Yu et al., 2018). One such (outside of cancer) neural
network method, DCell, was proposed by Ma et al., where the
hierarchy of molecular relationships determined from prior
knowledge (Gene Ontology and CliXO) was built into the
model itself (i.e., hierarchies were utilized by nodes of the neural
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TABLE 1 | Summary of mechanism-centric methods discussed in this review.

Method Data modality Utilize knowledge base?

Gene co-expression network-based Identify modules of highly correlated genes
+Increased interpretability at the mechanistic level
+Associate genes with previously uncharacterized biological functions
–Directionality of gene-gene interactions is unknown

Centered Concordance Index (CCI)
(Han et al., 2016)

Condition-specific module identification

Single-omic No

Eigengenes (Alter et al., 2000; Zhang
and Horvath, 2005)

Identify modules associated with clinical features of interest

Single-omic No

Hubs (Freeman, 1977; Horvath and
Dong, 2008)

Hub gene identification
+Identify potential mechanism-centric target

Single-omic No

Regulatory network-based Identify regulatory relationships between a TF/co-TF and its target genes
+Increased interpretability at the mechanistic level
+Identify potential drivers of disease
+Can identify non-linear relationships
+Tissue specific network

MARINa (Lefebvre et al., 2010) Identify MRs from a set of samples containing two phenotypes
-Need phenotype signature

Single-omic No

VIPER (Alvarez et al., 2016) Single-sample MR identification from a cohort
–Dataset scaling

Single-omic No

RegNetDriver (Dhingra et al., 2017) Identify TF hubs that are significantly affected by single nucleotide variants, structural
variants, or DNA methylation
+Increase interpretability of TF hub activity through multi-omic integration
–Limited by information in knowledge base

Multi-omic Yes

PPI network-based Use PPI subnetworks as a functional unit
+Increased interpretability at the mechanistic level
+Connect results to the protein complex level
–Limited by information in knowledge base

Chuang et al., 2007 Identify subnetworks with differential activity in metastatic breast cancer
+Tissue-specificity from overlaying gene expression data
+Improved biomarker classification accuracy and reproducibility
–Dataset scaling

Multi-omic Yes

Pathway-based Use molecular pathways as a functional unit
+Increased interpretability at the mechanistic level
–Limited by information in knowledge base

pathCHEMO (Epsi et al., 2019) Identify significantly altered pathways (at transcript and DNA methylation levels) in response
to chemotherapy in lung and colorectal cancer
+Improved biomarker classification accuracy and reproducibility
–Need phenotype signature

Multi-omic Yes

pathER (Rahem et al., 2020) Identify pathways as markers of tamoxifen resistance in ER + breast cancer
+Improved biomarker classification accuracy and reproducibility
–Dataset scaling

Single-omic Yes

The objective of each method is detailed in italics, followed by their respective pros (+) and cons (–). Overall pros and cons for each method type are listed in a
non-redundant manner. Information on data modality and if a method utilized a knowledge base is detailed as well.

network) (Ma et al., 2018). Recently, Kuenzi et al. developed
an extension of DCell, called DrugCell, which utilized chemical
drug structures as a part of the neural network learning model
to predict drug response in cancer cells (Kuenzi et al., 2020).
This interpretable deep learning model was shown to be able to

predict cell sensitivity/resistance to specific drugs, synergistic
drug mechanisms, and effective drug combinations for treatment.

Further improvements in the interpretability of biological
processes that inform discovery of mechanism-centric
biomarkers can be made through multi-level data and method
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integration. For example, several groups have combined co-
expression WGCNA modules with PPI networks to uncover hubs
with functional connections as biomarkers in endometrial cancer
(Liu et al., 2019) and bladder cancer (Wang Y. et al., 2019).
Wang et al. constructed an Active Protein-Gene network model
using transcriptional regulatory and PPI networks to quantify TF
activity and elucidate both upstream and downstream regulations
(Wang et al., 2013). Even though this study was done in diabetes,
it could be applicable to mechanism-centric biomarker discovery
in cancer. Ahsen et al. embedded VIPER within a new framework
(NeTFactor) to identify TFs that most likely regulate a gene-
centric biomarker signature (Ahsen et al., 2019). While this
method was applied to asthma and peanut allergy, it could
easily be extended to cancer studies. At the same time, multi-
omic integration in RegNetDriver improved the interpretability
of the proposed model to explain the impact of mutations,
structural variants, and DNA methylation on TF activity in
prostate cancer (Dhingra et al., 2017). A recent study by Broyde
et al. constructed a multi-omic lung adenocarcinoma tissue-
specific oncoprotein interaction network using information
obtained from ARACNe, CINDy (an algorithm identifying post-
translational modulators), VIPER, and PPI predictions (Broyde
et al., 2021), which depicted a complex network of interactions
for KRAS and could potentially be utilized for mechanism-centric
biomarker discovery. Such multi-level approaches in conjunction
with mechanism-centric methods promise to uncover a deeper
understanding of mechanisms involved in gene regulation and
post-translational modifications in biomarker discovery.

Finally, recent technological advances, such as those seen
in single-cell studies, promise to improve our understanding
of intra-tumor heterogeneity, clonal evolution, and the role
of microenvironment in cancer progression and therapeutic
response. Single-cell gene expression offers a granular view of
active pathways in a cell type-specific manner and potentially
allows for the construction of cell type-specific networks. In
fact, the rapid advances of single-cell sequencing technology
have already allowed network analysis methods to be applied
directly to data from single-cell RNA-sequencing (scRNA-
seq) (Crow et al., 2016; Aibar et al., 2017; Chan et al.,
2017; Fiers et al., 2018; Papili Gao et al., 2018; van Dijk
et al., 2018; Lamere and Li, 2019; Jackson et al., 2020;

Sekula et al., 2020; Ye et al., 2020) with integration of
other data modalities for improved network inference (Aibar
et al., 2017; Chan et al., 2017; Papili Gao et al., 2018; van
Dijk et al., 2018; Jackson et al., 2020; Pratapa et al., 2020).
Furthermore, matching single-cell and bulk patient samples
could provide an invaluable resource for single-cell driven
network investigations that can be compared to and related
back to bulk tissues. As more single-cell data become available
(e.g., RNA sequencing, targeted DNA sequencing, ATAC-
seq, etc.), we foresee advances in single-cell technologies and
data analysis to be central to understanding precise, clone-
specific biomarkers, unveiling trajectories of tumor evolution
and providing accurate ground for informed time-cautious
precision therapeutics.

In summary, mechanism-centric approaches (based on gene
co-expression networks, regulatory networks, PPI networks, and
molecular pathways) identify biomarkers that are biologically
meaningful, interpretable, reproducible, have higher translational
potential, and provide greater predictive power over biomarkers
identified by gene-centric methods. Thus, mechanism-centric
approaches are the future of clinically relevant rational biomarker
discovery, personalized treatment planning, and precision
therapeutics in cancer.
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