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Parkinson’s disease (PD) is primarily diagnosed by clinical examinations, such aswalking test, handwriting test, andMRI diagnostic.
In this paper, we propose a machine learning based PD telediagnosis method for smartphone. Classification of PD using speech
records is a challenging task owing to the fact that the classification accuracy is still lower than doctor-level. Here we demonstrate
automatic classification of PD using time frequency features, stacked autoencoders (SAE), and𝐾 nearest neighbor (KNN) classifier.
KNN classifier can produce promising classification results from useful representations which were learned by SAE. Empirical
results show that the proposed method achieves better performance with all tested cases across classification tasks, demonstrating
machine learning capable of classifying PD with a level of competence comparable to doctor. It concludes that a smartphone can
therefore potentially provide low-cost PD diagnostic care. This paper also gives an implementation on browser/server system and
reports the running time cost. Both advantages and disadvantages of the proposed telediagnosis system are discussed.

1. Introduction

Parkinson’s disease (PD) is a disorder of brain nervous system
which can cause partial or full loss in movement, behav-
ior, and mental processing, especially speech function [1].
Generally, PD can be observed in elderly people and causes
disorders in speech [2]. At present, about 1% of the worldwide
population over the age of fifty is suffering from PD [3].
Until now, many effective methods and medicines [4–6] are
invented for relieving the symptoms of PD. Therefore, an
early-diagnosis in time and available treatment can improve
the prognosis of PD [7]. However, many patients diagnosed
with PD are later found which resulted in delays in patient
condition [8]. Moreover, many patients with Parkinson’s
disease in the community still remain undiagnosed andmore
patients get worse because of poor medical conditions in low
income areas [9].

Even though many clinical examinations and diagnostic
to PD have been proposed [10–14], it is important that we
should exert more effort in automated diagnosis and tele-
diagnosis [15] in real world. In the research of Esteva et al.
[16], they deduced that billions of smartphones have the

potential to provide medical care for skin cancer diagnosis.
Inspired by this novel idea, a smartphone also has the
potential to diagnose PD. Many clinical reports reveal that
the dysphonic indicator is an important reference index in
diagnosis [17]. Therefore, our method is based on the study
of vocal impairment symptoms (dysphonia) (90% of people
with PD have such symptom) [18].

The purpose of this research is to design a machine
learning based telediagnosis PD system for patients by using
a smartphone. We found that deep neural network [19] with
𝐾 nearest neighbor (KNN) [20] method can achieve better
performance on available speech datasets than other compar-
ative methods. Not only is the proposed telediagnosis system
compared with other researchers’ methods, but also the
running time cost is tested in browser/server system. To
conclude, the contribution of this paper includes (1) achieving
high performance and (2) proposing a feasible implementa-
tion with empirical test.

This paper is organized as follows: in Section 2, back-
ground and related works are presented. In Section 3, the
proposed method and telediagnosis system are described.
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(a) Waveform of people with PD (b) Waveform of healthy people

Figure 1: Waveform of voice records from Istanbul University [21, 22] (𝑥-axis: time duration, 𝑦-axis: amplitude of the signal).

Section 4 shows the experimental results. Conclusions are
drawn in Section 5.

2. Background and Related Works

2.1. Parkinson’s Disease and SpeechDisorders. Many research-
ers have exerted much effort on PD in their researches. In
2006, Rao et al. [23] discussed diagnosis and treatment for
PD. The author insisted that psychosis is usually drug
induced; further it can be managed initially by reducing
antiparkinsonian medications. Jankovic and Aguilar [24]
reviewed approaches to the treatment of PD and the authors
think that the new treatments are not necessarily better than
the established conventional therapy and that the treatment
options must be individualized and tailored to the needs of
each individual patient. In 2010, Varanese et al. [25] showed
treatment of advanced PD, and the research paper concluded
that supportive care, including physical and rehabilitative
interventions, speech therapy, occupational therapy, and
nursing care, has a key role in the late stage of disease. Yitayeh
andTeshome [26] reviewed the effectiveness of physiotherapy
treatment on balance dysfunction and postural instability
in persons with Parkinson’s disease and the author also
presented meta-analysis results, in 2016.

So far, it has been reported that of the 89% of PD patients
with voice and speech disorders [27, 28], the reduced speech
ability to communicate is considered to be one of the most
important aspects of PD by many patients [29]. The com-
mon perceptual features of reduced loudness (hypophonia),
reduced pitch variation (monotone), breathy and hoarse
voice quality, and imprecise articulation [30], together with
lessened facial expression (masked faces), contribute to limi-
tations in communication in the majority of people with PD
[31].

Figure 1 shows the comparison of waveforms between
people with PD and healthy people. Intuitively, it can be
observed that the waveform of healthy people is smooth and
continuous, but the waveform of people with PD contains
unexpected vibrations. The reason for this phenomenon is
that the people with PD lose the ability of precise muscle
control [32–34]. The vibrations can be detected by time
frequency analysis; moreover machine learning based audio
analysis methods are appropriate for diagnosing PD.

2.2.Machine Learning for Parkinson’s Disease Diagnostic Care.
Many researchers had proposed effective methods based
on machine learning in automated diagnosis research. In
2014, Shahbakhi et al. [43] proposed a method using genetic

algorithm and support vector machine for analysis of speech
for diagnosis of PD. Little et al. [44] used support vec-
tor machine (SVM) with Gaussian radical basis kernel to
diagnose PD. Shahbaba and Neal [35] showed a nonlinear
model for the PD classification which is based on Dirichlet
mixtures. Sakar and Kursun [45] applied mutual information
measure to combine with SVM.Those methods achieve high
classification accuracy but telediagnosis PD needs a better
method with higher classification performance.

Recently, deep neural networks have shown potentials
in speech recognition tasks; the classification and recogni-
tion accuracy is superior to conventional machine learning
method. We proposed a method using deep neural network
(stacked autoencoders, SAE) to reduce dimensions and 𝐾
nearest neighbor classifier to diagnose PD. We also im-
plemented a telediagnosis system based on the proposed
method. Results of empirical test on smartphone are pre-
sented in Section 4.

3. Methodology

3.1. Structure of PD Telediagnosis Method and System Struc-
ture. Theproposed structure of the PD telediagnosis method
is as shown in Figure 2. A patient provides personal infor-
mation and speech records by following instructions of
smartphone. The personal information includes gender, age,
and a brief health history. Patient is also asked to read a given
text; then the speech records of the patient are parsed to be
time frequency based features which are extracted from the
voice samples. After the processing of SAE and KNN, patient
can receive the diagnosis result.

Figure 3 shows the workflow of the proposed method
in the view of machine learning, an appropriate set of time
frequency features, SAE, and classifier dictated diagnostic
accuracy.Therefore, the most important work is how to build
a high accuracy diagnostic method.

Figure 4 briefly illustrates the architecture of the pro-
posed method on B/S (browser/server) structure and details
are shown in Section 4.4. The server should be installed on
an operation system. In next step, an appropriate version
of web service software should be deployed on this server.
Usually a smartphone embedded Internet browser software
(such asGoogle ChromeApp).Therefore the smartphone can
send/receive data (text and voice records) to server by Inter-
net browser.The connection between smartphone and server
can be 2/3/4G mobile network or WIFI. The server receives
and processes audio files as Figures 1 and 2 present. Result of
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Figure 4: B/S (browser/server) structure.

PD diagnosis will be displayed on patient’s smartphone. This
B/S structure is not limited to smartphone, but it is suitable
for other electronic devices too, such as iPad, notebook, and
even a smart watch. Moreover, the automated voice service
system (such as banks’ telephone services) should fulfill the
same task as B/S structure theoretically.

3.2. Speech Features. Dysphonia [17] is a typical speech prob-
lem of people with PD. Dysphonia is a human vocal
problem which includes five major clinical features: loud-
ness, decrease, breathiness, roughness, and exaggerated vocal
tremor in voice. All those indications can be detected by ana-
lyzing time frequency in speech records. A set of 26 features
is listed with the considering of the previous works held on
this field of study [21, 46].

In Table 1, 6 types of parameters are listed; they are fre-
quency parameters, pulse parameters, amplitude parame-
ters, voicing parameters, pitch parameters, and harmonicity
parameters. 26 features are also presented in Table 1.

Input
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Reconstruction
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...

......

Figure 5: Autoencoder.

3.3. Stacked Autoencoders. Autoencoder [47] has been wildly
used in unsupervised feature learning and speech recognition
tasks. It can be built as a special three-layer neural network:
the input layer, the hidden layer, and the reconstruction layer
(as shown in Figure 5).

An autoencoder has two parts: (1) The encoder receives
an input 𝑥0 ∈ 𝑅𝑑0 to the hidden layer (latent representation
feature) 𝑥1 ∈ 𝑅𝑑1 via a mapping 𝑓encoder:

𝑥1 = 𝑓encoder (𝑥0) = 𝑠encoder (𝑊𝑇1 𝑥0 + 𝑏1) , (1)
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Table 1: Time frequency features.

Parameter type Features
Frequency Jitter (local)
Parameters Jitter (rap)

(Number of features: 5) Jitter (local, absolute)
Jitter (ppq5)
Jitter (ddp)

Harmonicity Autocorrelation
Parameters Noise-to-harmonic
(Number of features: 3) Harmonic-to-noise
Pulse Number of pulses
Parameters Mean period

(Number of features: 4) Number of periods
Standard dev. of period

Amplitude Shimmer (local)
Parameters Shimmer (apq3)

(Number of features: 6)

Shimmer (local, dB)
Shimmer (apq5)
Shimmer (dda)
Shimmer (apq11)

Pitch Median pitch
Parameters Mean pitch

(Number of features: 5)
Minimum pitch
Maximum pitch

Standard deviations
Voicing Fraction of locally
Parameters unvoiced frames

(Number of features: 4) Number of voice breaks
Degree of voice breaks

Types: 6 Total features: 26

where 𝑠encoder is the activation function, whose input is
called the activation of the hidden layer, and {𝑊1, 𝑏1} is the
parameter set with a weight matrix𝑊1 ∈ 𝑅𝑑0∗𝑑1 and a bias
value vector 𝑏1 ∈ 𝑅𝑑1.

(2) The decoder maps the hidden representation 𝑥1 back
to reconstruction 𝑥2 ∈ 𝑅𝑑0 via mapping function 𝑓decoder:

𝑥2 = 𝑓decoder (𝑥1) = 𝑠decoder (𝑊𝑇2 𝑥1 + 𝑏2) . (2)

𝑠decoder is the activation function of the decoder with
parameters {𝑊2, 𝑏2}, 𝑊2 ∈ 𝑅𝑑1∗𝑑0, 𝑏2 ∈ 𝑅𝑑0. The input
of 𝑠decoder is defined as the activation of the reconstruction
layer. Parameters are learned through backpropagation by
minimizing the loss 𝐿(𝑥0, 𝑥2):

𝐿 (𝑥0, 𝑥2) = 𝐿𝑟 (𝑥0, 𝑥2) + 0.5𝜀 (󵄩󵄩󵄩󵄩𝑊1
󵄩󵄩󵄩󵄩
2

2 +
󵄩󵄩󵄩󵄩𝑊2
󵄩󵄩󵄩󵄩
2

2) (3)

In (3), 𝐿(𝑥0, 𝑥2) consists of the reconstruction error 𝐿𝑟
and the 𝐿2 regularization of𝑊1 and𝑊2. By minimizing the
reconstruction error 𝐿𝑟, the hidden feature should be able to
reconstruct the original input 𝑥0 as much as possible.
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Figure 6: Stacked autoencoders.

The stacked autoencoders (SAE) [48] are multiple layers
of autoencoders. They are a deep learning approach for
dimensionality reduction and feature learning. As Figure 6
shows, there are n autoencoders which are trained one by
one. The input vectors are fed to the first autoencoder.
After finishing training the first autoencoder, the output
hidden representation is propagated to the second auto layer.
A typical activation function is sigmoid function which is
used for activation functions 𝑠encoder and 𝑠decoder. After this
pretraining stage, the whole SAE is fine-tuned [48] based on a
predefined objective.The last hidden layer of the SAE encoder
can further cooperate with other applications, such as SVM
for classification task.

3.4. KNN Classifier. The KNN [49] classifier is quite simple:
given a speech record of undiagnosed patient 𝑠, the system
finds the 𝐾 nearest neighbors to give diagnosis result.
Formally, the decision rule can be written as

score (𝑠, 𝑐𝑖) = ∑
𝑆𝑗∈KNN(𝑆)

Sum (𝑆, 𝑆𝑗) 𝛿 (𝑆𝑗, 𝑐𝑖) . (4)

Above, KNN(𝑆) indicates the set of𝐾nearest neighbors of
speech records 𝑆. 𝛿(𝑆, 𝑐𝑖) is the classification for undiagnosed
patient 𝑠 with respect to class 𝑐𝑖, and

𝛿 (𝑠, 𝑐𝑖) =
{
{
{

1 𝑠 ∈ 𝑐𝑖
−1 𝑠 ∉ 𝑐𝑖.

(5)

For undiagnosed patient, the patient could be given
diagnosis result. 𝐾 of KNN is 1 in this paper.

4. Experimental Results

4.1. Speech Datasets, Evaluation Criteria, and Classifiers. For
comparison,we chose two research papers [21, 50] and the PD
speech datasets they had used. We use Matlab as program-
ming tool and all classification algorithms are determined by
grid search method.

In the first paper, Sakar et al. [21] collected a speech
dataset of diagnosis of PD and donated this speech dataset
to UCI machine learning group for other researchers. This
speech dataset contains a training set file, a testing set file,
and a ZIP package of WMA files. Betul Erdogdu Sakar et al.
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Table 2: Confusion matrix.

Prediction as people
with PD

Prediction as healthy
people

Actual people
with PD True positive (TP) False negative (FN)

Actual healthy
people False positive (FP) True negative (TN)

designed a novel speech test; PD patients were asked to say
only the sustained vowels “a” and “o” three times. Their
work of speech dataset collection was finished at Istanbul
University and we call the dataset “Istanbul Dataset” in the
following experiments.

In the second paper, Ma et al. [50] proposed a kernel
extreme learning machine with subtractive clustering fea-
tures weighting approach. Their method compared with 15
researches’ methods. Total 16 methods are compared in their
research paper, and the method of Ma et al. gained top
position. The dataset of their research was created by Little
et al. [44] of the University of Oxford, in collaboration with
the National Centre for Voice and Speech, Denver, Colorado,
who recorded the speech signals. We call the dataset “Oxford
Dataset” in the following experiments.

Accuracy, sensitivity, and other performance indexes are
compared among those classifiers and these performance
indexes are defined as follows:

Accuracy = TP + TN
TP + FP + TN + FN . (6)

Sensitivity:

Sensitivity = TP
P
= TP
TP + FN . (7)

Specificity:

specificity = TN
N
= TN
FP + TN . (8)

𝐹-score:

𝐹-score = 2TP
2TP + FP + FN . (9)

MCC:
MCC

= TP ∗ TN − FP ∗ FN
√(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)

,
(10)

where TP, FP, TN, and FN are the true and false positive and
true and false negative classifications of a classifier and they
are defined as shown in Table 2.

Involved classifiers are kernel extreme learning machine
(KELM), Linear SupportVectorMachine (LSVM),Multilayer
perceptrons Support Vector Machine (MSVM), Radial basis
function Support Vector Machine (RSVM), Classification
and Regression Tree (CART), KNN, Linear Discriminant
Analysis (LDA), and Naive Bayesian (NB) method.

Table 3: Results of comparative classifiers without SAE on Oxford
Dataset.

Classifier Classification
accuracy (%) Max Mean Min

KELM ACC 83.23 71.32 68.49
LSVM ACC 81.05 64.21 44.21
MSVM ACC 84.21 61.98 43.16
RSVM ACC 85.26 74.34 69.47
CART ACC 89.47 73.95 58.95
KNN ACC 90.53 82.76 76.84
LDA ACC 87.37 69.61 53.68
NB ACC 75.79 69.74 61.05

4.2. Experiment Results: Oxford Dataset and Algorithm
Parameters. The Oxford Dataset [22, 46] consisted of voice
measurements from 31 people and 23 of themwere diagnosed
with PD. There are total 195 samples comparing 147 PD and
48 healthy samples in the dataset.There are nomissing values
in the Oxford Dataset and each feature is real type value. The
whole 22 features are contained in Table 1.

The SAE of the proposed method has two hidden layer:
layer 1 and layer 2.The size of layer 1 is set as 10, 9, or 8 neurons
and the size of layer 2 is set as 8, 7, or 6 neurons.The batch size
of SAE is 20 in training and fine tuning step. All comparative
classifiers are optimized by grid search method. We use 50-
50% training-testingmethod as Polat [40] andDaliri [39] did.
This experiment method tests comparative approaches with
much less training data than 10-fold cross validation. Each
classifier was tested 10 times and the results are presented in
tables.

4.2.1. Classifiers without Deep Neural Network on Oxford
Dataset. Table 3 summarized the detailed results of classifi-
cation accuracy after 10 runs. From this table, it can be found
that the classification performance of KNN is apparently
differential. We can see that the KNN outperforms that with
other 7 classifiers with a max, mean, and min accuracy of
90.53%, 82.76%, and 76.84%. All comparative classifiers give
low classification results because the input samples are 22-
dimensional data.

4.2.2. Classifiers withDeepNeural Network onOxfordDataset.
Tables 4 and 5 presented the comparison result of the classifi-
cation accuracy and other performance indexes. Table 4 lists
details of accuracy. For SAE, the influence of two layers in
dimension reduction has been investigated. In this study, two
hidden layers are tested as a subgrid search. As seen from
Table 4, 1NN classifier gives more correct diagnosis results
than other methods.

Comparing Tables 3 and 4, other 7 classifiers gave more
correct classification result with the using of SAE (hidden
layer 1 contains 9 neurons; hidden layer 2 contains 7 neu-
trons). KELM has obtained max classification accuracy as
98.81%; it is 16% higher than 82.23% in Table 3. LSVM gives
96.71% classification accuracy after dimensional reduction by
SAE 8-7. In SAE 10-7 row, MSVM increased 11% in terms
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Table 4: Results of comparative classifiers with SAE on Oxford Dataset.

Classification accuracy (%) Classifiers
KELM LSVM MSVM RSVM CART KNN LDA NB

SAE 10-8
Max 93.45 99.99 99.90 99.90 99.90 100.00 99.69 99.19
Mean 77.74 95.89 94.47 96.32 96.04 97.81 95.17 94.29
Min 66.67 93.66 89.23 93.43 93.81 93.23 92.85 93.73

SAE 10-7
Max 96.43 100.00 98.46 100.00 100.00 100.00 99.60 99.58
Mean 80.18 96.20 95.76 96.58 96.82 97.63 96.16 95.22
Min 63.69 94.13 93.46 93.52 94.53 94.52 93.01 93.61

SAE 10-6
Max 89.29 100.00 99.81 99.99 100.00 100.00 99.73 99.15
Mean 71.73 96.26 94.74 96.51 96.43 96.97 94.59 95.18
Min 45.83 93.74 89.13 93.51 94.64 93.22 91.37 93.62

SAE 9-8
Max 90.48 100.00 97.40 100.00 99.99 100.00 99.70 99.71
Mean 78.27 95.87 95.04 96.87 96.87 97.89 96.08 95.12
Min 56.55 92.36 89.04 93.99 94.24 92.70 92.71 93.54

SAE 9-7
Max 93.45 100.00 98.17 100.00 100.00 100.00 99.74 98.74
Mean 80.77 96.23 93.88 97.75 96.82 97.13 97.01 95.82
Min 65.48 94.22 89.04 93.59 94.49 93.14 93.28 93.93

SAE 9-6
Max 98.81 100.00 99.71 100.00 100.00 100.00 99.66 99.36
Mean 84.59 96.22 95.63 96.46 96.01 98.01 94.03 95.51
Min 70.83 93.31 90.58 94.16 94.30 93.26 93.55 93.94

SAE 8-8
Max 93.45 100.00 99.52 99.99 100.00 100.00 99.58 99.51
Mean 76.61 96.02 95.39 95.64 96.22 96.98 95.45 94.32
Min 55.95 94.19 92.21 93.37 94.36 92.75 93.75 92.25

SAE 8-7
Max 98.81 100.00 99.62 100.00 100.00 100.00 99.76 99.79
Mean 84.23 96.71 95.48 96.82 96.23 96.63 95.69 97.07
Min 70.83 94.40 92.21 93.92 94.57 94.10 92.99 94.14

SAE 8-6
Max 91.07 100.00 99.42 99.99 99.99 100.00 99.78 99.37
Mean 78.22 96.01 94.52 96.21 95.91 96.92 95.57 95.98
Min 57.74 93.37 90.87 93.59 92.53 93.42 93.44 92.49

of classification accuracy. RSVM gives 97.75% classification
accuracy in the row of SAE 9-7. Similarly, CART produced
average classification accuracy as 96% when applying SAE.
LDA and NB also have got better performance than without
using SAE; the classification accuracy of those 7 classifiers are
improved by 10–15% with the using of SAE.

4.3. Experiment Results: Istanbul Dataset and Parameters
Settings. The Istanbul University built a PD database. This
database consists of training and test files. The training data
belongs to 20 people with PD (6 females, 14 males) and 20
healthy individuals (10 females, 10 males) who participate in
the PD database project at the Department of Neurology in
Cerrahpasa Faculty of Medicine, Istanbul University. From
all subjects, multiple types of sound recordings (26 voice
samples including sustained vowels, numbers, words, and
short sentences) are taken. A group of 26 linear and time
frequency based features are extracted from each voice
sample.Those features are presented in Section 3.2, as Table 2
shows.

28 PD patients are asked to say only the sustained vowels
“a” and “o” three times, respectively, which makes a total
of 168 recordings. The same 26 features are extracted from

voice samples of this dataset. The researchers of the Istanbul
University declared that [22] the PD dataset can be used as
an independent test set to validate the results obtained on
training set.The training file contains 1040 recordings and the
testing file contains 168 files. Therefore, we used the training
file and testing file to compare the proposed method with
other methods.

The SAE of the proposed method has two hidden layer:
layer 1 and layer 2. Layer 1 is set as 10, 9, or 8 neurons and
layer 2 is set as 8, 7, or 6 neurons. The batch size of SAE is 20
in training and fine tuning step.

4.3.1. Classifiers without Deep Neural Network on Istanbul
Dataset. Table 6 summarized the results of classification
accuracy. According to the declaration of Istanbul University,
fixed training set and testing set are given. Only one run will
obtain final result. From this table, it can be found that the
classification performance of RSVM is apparently differential.
We can see that the RSVM outperforms that with other 7
classifiers with a classification accuracy of 76.41%. All com-
parative classifiers give low classification results because the
input samples are 26-dimensional data. The Naive Bayesian
method gives worst result among all classifiers.
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Table 5: Performance indexes of comparative classifiers with SAE on Oxford Dataset (average of 10 runs).

Performance indexes Classifiers
KELM LSVM MSVM RSVM CART KNN LDA NB

SAE 10-8

Specificity 0.2083 0.0889 0.0816 0.8148 0.7302 0.9565 0.4872 0.0286
Sensitivity 0.0423 0.7 0.2174 0.3824 0.0625 0.9306 0.1429 0.2
𝐹-score 0.0645 0.5556 0.198 0.5253 0.0784 0.9571 0.1905 0.102
MCC −0.7719 −0.2635 −0.7095 0.1897 −0.245 0.8425 −0.3992 −0.8053

SAE 10-7

Specificity 0.3455 0.2794 0.3421 0.3256 0.7273 0.9710 0.6667 0.8571
Sensitivity 0.775 0.7407 0.7193 0.7692 0.5616 0.9231 0.5581 0.7778
𝐹-score 0.5794 0.4167 0.6667 0.6612 0.6833 0.9231 0.7007 0.6512
MCC 0.1304 0.0204 0.0653 0.1058 0.2438 0.8941 0.132 0.565

SAE 10-6

Specificity 0.5714 0.3387 0.7273 0.2581 0.8621 0.7432 0.0556 0.8806
Sensitivity 0.5672 0.9091 0.7581 0.9375 0.3939 0.9048 0.0779 0.9286
𝐹-score 0.6496 0.5769 0.7966 0.8163 0.5417 0.6441 0.1200 0.8387
MCC 0.1266 0.2715 0.4698 0.276 0.2536 0.5489 −0.7927 0.7696

SAE 9-8

Specificity 0.4462 0.2000 0.0274 0.1207 0.4615 0.6066 0.2500 0.6316
Sensitivity 0.8333 0.9091 0.3182 0.3243 0.1829 0.8235 0.2069 0.7368
𝐹-score 0.5495 0.7299 0.1400 0.2400 0.2885 0.6512 0.3243 0.6437
MCC 0.271 0.1567 −0.7202 −0.5726 −0.2897 0.4142 −0.3471 0.3612

SAE 9-7

Specificity 0.2597 0.125 0.0455 0.3667 0.4000 0.9492 0.4792 0.2917
Sensitivity 0.0556 0.4366 0.2192 0.2857 0.6222 0.5000 0.2766 0.7447
𝐹-score 0.0263 0.5041 0.2909 0.2410 0.7517 0.6316 0.3059 0.6034
MCC −0.5503 −0.3827 −0.6362 −0.3354 0.0102 0.5251 −0.2493 0.0408

SAE 9-6

Specificity 0.8929 0.8462 0.0606 0.7857 0.3404 0.9500 0.0879 0.9241
Sensitivity 0.7612 0.2558 0.0484 0.0256 0.7500 0.8182 0.2500 0.5000
𝐹-score 0.8430 0.3548 0.0625 0.0385 0.6261 0.8824 0.0227 0.5333
MCC 0.6021 0.1269 −0.8850 −0.2700 0.0992 0.7586 −0.4156 0.4477

SAE 8-8

Specificity 0.1522 1.0000 0.9286 0.2683 0.8409 0.9889 0.6111 0.3542
Sensitivity 0.1429 0.7647 0.5373 0.6111 0.5490 0.6000 0.9870 0.234
𝐹-score 0.1474 0.8667 0.6857 0.5641 0.6512 0.6667 0.9500 0.2472
MCC −0.705 0.8529 0.4336 −0.1264 0.4031 0.6548 0.7056 −0.4146

SAE 8-7

Specificity 0.7222 0.7500 0.3529 0.7500 0.1600 0.9808 0.2188 0.4118
Sensitivity 0.7805 0.1205 0.0769 0.011 0.3143 0.7442 0.1290 0.4103
𝐹-score 0.7273 0.2083 0.1263 0.0215 0.3894 0.8421 0.0941 0.5333
MCC 0.4980 −0.1252 −0.5701 −0.3344 −0.4651 0.7579 −0.6174 −0.1374

SAE 8-6

Specificity 0.8462 0.1333 0.375 0.125 0.2414 0.0308 0.9231 0.557
Sensitivity 0.3415 0.6000 0.5057 0.7419 0.3333 0.1667 0.7857 0.6875
𝐹-score 0.5000 0.6809 0.6471 0.4182 0.4000 0.1020 0.8544 0.3548
MCC 0.1387 −0.2028 −0.0663 −0.1667 −0.3928 −0.8271 0.6974 0.1831

Table 6: Results of comparative classifiers without SAE on Istanbul
Dataset.

Classifier Classification accuracy (%) Value
KELM ACC 57.83
L-SVM ACC 39.88
M-SVM ACC 75.60
R-SVM ACC 76.41
CART ACC 50.00
KNN ACC 55.95
LDA ACC 57.28
NB ACC 30.95

4.3.2. Classifiers with Deep Neural Network on Istanbul
Dataset. Tables 7 and 8 presented the comparison result of
the classification accuracy and other 4 performance indexes.
Table 7 lists details of classification accuracy. To SAE, two
hidden layers are set as Oxford Dataset experiment. As seen
from Table 6, KNN classifier gives more correct diagnosis
results than other methods.Themax, mean, and min classifi-
cation accuracy of KNN classifier are not affected by network
structure of SAE.

Comparing Tables 6 and 5, the other 7 classifiers gave
more correct classification result with the using of SAE.
And LSVM, RSVM, and CART show much more stability
in classification accuracy. But KELM still did not obtain
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Table 7: Results of comparative classifiers with SAE on Istanbul Dataset.

Classification accuracy (%) Classifiers
KELM LSVM MSVM RSVM CART KNN LDA NB

SAE 10-8
Max 93.45 100.00 99.90 100.00 100.00 100.00 100.00 100.00
Mean 77.74 67.83 88.03 79.90 91.58 93.45 83.93 81.97
Min 66.67 57.08 77.20 74.24 71.74 89.23 75.95 80.31

SAE 10-7
Max 96.43 100.00 98.46 100.00 100.00 100.00 100.00 100.00
Mean 80.18 67.73 88.24 80.48 91.25 93.99 83.88 82.59
Min 63.69 56.34 76.80 74.47 72.31 89.59 76.37 79.80

SAE 10-6
Max 89.29 100.00 99.81 100.00 100.00 100.00 100.00 99.90
Mean 71.73 67.36 88.18 80.65 91.73 93.72 84.70 82.09
Min 45.83 56.79 77.01 73.72 72.45 90.06 76.60 79.70

SAE 9-8
Max 90.48 100.00 97.40 100.00 100.00 100.00 99.81 100.00
Mean 78.27 67.90 88.63 80.57 91.55 93.98 84.39 82.29
Min 56.55 56.87 77.10 73.92 72.23 89.82 76.32 80.27

SAE 9-7
Max 93.45 100.00 98.17 100.00 100.00 100.00 99.90 99.71
Mean 80.77 67.85 88.67 79.76 91.19 94.17 84.35 81.88
Min 65.48 56.45 76.98 74.04 72.07 90.21 76.11 79.73

SAE 9-6
Max 98.81 100.00 99.71 100.00 100.00 100.00 100.00 100.00
Mean 84.59 67.67 88.50 80.36 91.17 93.78 84.69 82.02
Min 70.83 57.01 77.62 74.04 71.94 90.13 75.89 79.68

SAE 8-8
Max 93.45 100.00 99.52 100.00 100.00 100.00 99.81 100.00
Mean 76.61 67.96 88.47 80.08 91.14 94.10 84.23 81.89
Min 55.95 57.24 76.72 74.21 72.29 89.31 75.76 80.40

SAE 8-7
Max 98.81 100.00 99.62 100.00 100.00 100.00 100.00 100.00
Mean 84.23 68.27 87.92 80.34 91.56 94.35 84.55 82.08
Min 70.83 57.12 77.17 73.95 72.61 89.87 76.26 79.74

SAE 8-6
Max 91.07 100.00 99.42 100.00 100.00 100.00 100.00 100.00
Mean 78.22 67.49 87.85 79.89 91.01 93.81 84.24 81.75
Min 57.74 56.62 76.69 73.82 71.88 90.05 75.80 80.05

Internet

Android operation system
Google Chrome web browser

4G WLAN

Windows operation system
Internet Information Services
Matlab C# Html5

Figure 7: Implementation of the proposed system.

100.00% classification accuracy, Table 6. LSVM gives 92.00%
classification accuracy after dimensional reduction by SAE
9-7. In SAE 10-7, SAE10-6, and SAE 9-6 row, LSVM did not
give perfect performance. MSVM, LDA, and NB increased
classification accuracy but still lack stability. In conclusion,
every classifier has got better performance thanwithout using
SAE.

4.4. Implementation on B/S System. As Figure 7 shows, our
smartphone is running Android system and it was installed
fromGoogle Chrome web browser.The server installedWin-
dows operation system and Internet Information Services.

We also installed Matlab 2016a and Visual Studio 2013 on
this server. Programming techniques containMatlab, C#, and
HTML5.

We used Chrome to connect server via 4G mobile
network in the street; we send 28 test speech records (WMA
files) of Istanbul Dataset; a transmission of 12.1MB data took
less than 5 seconds to our laboratory. The server received
speech records and ran the empirical experiments as Sections
4.2 and 4.3 present. No more than 2 minutes, results of all
comparative classifiers were displayed on our smartphone.
We also recorded our speech (as healthy samples) and send
it to server for testing, but it should be noticed that a
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Table 8: Performance indexes of comparative classifiers without SAE on Istanbul Dataset (average values of 10 runs).

Performance indexes Classifiers
KELM LSVM MSVM RSVM CART KNN LDA NB

SAE 10-8

Specificity 0.4474 0.7445 0.6667 0.8429 0.3684 0.8000 0.8904 0.8807
Sensitivity 0.8692 0.3548 0.9149 0.5714 0.9799 0.9412 0.8000 0.6949
𝐹-score 0.8561 0.2857 0.9247 0.4848 0.9511 0.9600 0.8492 0.7257
MCC 0.3297 0.0864 0.5577 0.369 0.4662 0.6391 0.6845 0.5884

SAE 10-7

Specificity 0.9551 0.9259 0.8046 0.5263 0.9231 0.9537 0.886 0.8193
Sensitivity 0.6203 0.4368 0.963 0.8389 0.9052 0.9000 0.7222 0.8235
𝐹-score 0.7424 0.5802 0.8864 0.8834 0.9333 0.9076 0.7358 0.8235
MCC 0.6179 0.4122 0.7737 0.2879 0.8021 0.8569 0.6144 0.6428

SAE 10-6

Specificity 0.7958 0.2545 0.9714 0.8397 0.9593 0.9275 0.8875 0.8293
Sensitivity 0.2692 0.8761 0.7302 0.3333 0.800 0.9394 0.8068 0.7778
𝐹-score 0.2258 0.7826 0.8214 0.1951 0.8372 0.9442 0.8452 0.6931
MCC 0.0573 0.1645 0.7473 0.1179 0.7829 0.8651 0.6943 0.5703

SAE 9-8

Specificity 0.9848 0.6842 0.9107 0.0909 0.9595 0.9375 0.9778 0.9067
Sensitivity 0.0278 0.6712 0.8661 0.9110 0.5500 0.9318 0.7886 0.1111
𝐹-score 0.0513 0.6447 0.9065 0.8896 0.5946 0.9371 0.8778 0.1176
MCC 0.0391 0.3530 0.7498 0.0022 0.5471 0.8689 0.6884 0.0187

SAE 9-7

Specificity 0.8874 0.5326 0.9063 0.8584 0.9478 0.9263 0.783 0.4706
Sensitivity 0.0588 0.8421 0.8750 0.6545 0.7647 0.9589 0.9355 0.8543
𝐹-score 0.0571 0.6995 0.9225 0.6729 0.7761 0.9333 0.8112 0.8927
MCC −0.0524 0.3878 0.688 0.5207 0.7205 0.8807 0.6939 0.2558

SAE 9-6

Specificity 0.2778 0.7050 0.9764 0.7265 0.9833 0.9469 0.8257 1
Sensitivity 0.9133 0.5172 0.5854 0.9804 0.8704 0.9091 0.8814 0.6517
𝐹-score 0.9133 0.3529 0.7059 0.7519 0.9261 0.9009 0.8000 0.7891
MCC 0.1911 0.1782 0.657 0.6502 0.8252 0.8521 0.6832 0.6841

SAE 8-8

Specificity 0.7956 0.6964 0.8909 0.8500 0.65 0.9845 0.5714 0.7538
Sensitivity 0.6129 0.6429 0.3333 0.7813 0.9459 0.7949 0.9098 0.8544
𝐹-score 0.4872 0.5714 0.0909 0.8547 0.9492 0.8611 0.8996 0.8502
MCC 0.3530 0.3244 0.0938 0.5572 0.5836 0.8282 0.4977 0.6100

SAE 8-7

Specificity 0.7830 0.8455 0.7273 0.947 0.9292 0.9130 0.6792 0.9766
Sensitivity 0.9355 0.2222 0.9111 0.2500 0.8727 0.9508 0.9217 0.3000
𝐹-score 0.8112 0.2703 0.9213 0.3462 0.8649 0.9587 0.8908 0.4364
MCC 0.6939 0.0794 0.6181 0.2753 0.7983 0.8527 0.6307 0.4131

SAE 8-6

Specificity 0.9813 0.4468 0.9894 0.8165 0.9826 0.9048 0.8397 0.7300
Sensitivity 0.4262 0.7603 0.7297 0.7627 0.7358 0.9841 0.8333 0.9412
𝐹-score 0.5843 0.7699 0.8372 0.7258 0.8298 0.9185 0.4255 0.8050
MCC 0.5259 0.2034 0.7608 0.5677 0.7773 0.8696 0.4268 0.6612

quite environment is necessary. It is hard to achieve satisfied
classification accuracy in a noisy circumstance.

4.5. Discussions and Future Work. Table 9 summarized the
comparative results achieved from related researches. It can
be seen that the proposedmethod achieves better results than
othermethods and ourmethod shows a relatively fewer train-
ing samples.The reduced training dataset ismeaningful when
applying the proposed method in reality. The performance
of SAE and KNN is robust to number of hidden neutrons of
deep neural network.

We focus on classification accuracy, sensitivity, and other
performance indexes to evaluate machine learning based PD

diagnosis method; then we choose a B/S structure to test
the proposed architecture. Advantages contain time saving,
being convenient, and low cost. But we did not achieve 100%
correct classification accuracy on smartphone. We deduced
that there are still potential problems: (1) a good enough
microphone should be taken into consideration. (2) Speech
denoising may be fulfilled by multiple microphones. (3) An
evolutionary system can overcome big testing data in real
world.The future investigation will pay much attention on an
evolutionary telediagnosis PD system and solve above issues.
Moreover, we also noticed that two public datasets cannot
guarantee that amachine learning based telediagnosis system
can be trained very well and it is hard to satisfy hospitals,
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Table 9: Comparative experiment results.

Related researches Test method Classification accuracy (%) Training set
Shahbaba and Neal [35] 5-fold CV 87.70 80%
Psorakis et al. [36] 10-fold CV 89.47 90%
Guo et al. [37] 10-fold CV 93.10 90%
Ozcift and Gulten [38] 10-fold CV 87.10 90%

Daliri [39] 50-50%
training-testing 91.20 50%

Polat [40] 50-50%
training-testing 97.93 50%

Chen et al. [41] 10-fold CV 96.07 90%
Zuo et al. [42] 10-fold CV 97.47 90%
Rao et al. [23] 10-fold CV 99.49 90%

This study 50-50%
training-testing 94.00–98.00 50%

clinics, and other medical institutions. And the stability and
robustness of a telediagnosis system still need to be built
urgently.

5. Conclusion

For building a convenient and feasible telediagnosis PD
service via smartphone, we proposed a machine learning
based method on browser/server architecture. In this paper,
the proposed method contains stacked autoencoders and
KNN classifier which is used to process speech records. The
proposed method can remap time frequency features in low
dimensional space. Results show that the proposed method
with KNN classifier can give doctor-level classification results
on public PD speech records. An experimental system is also
built for testing; it is projected that telediagnosis of PD on a
smartphone will be in the future.
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