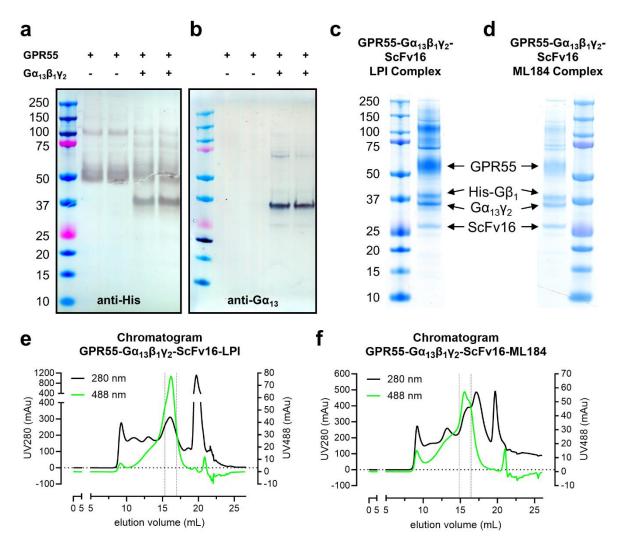
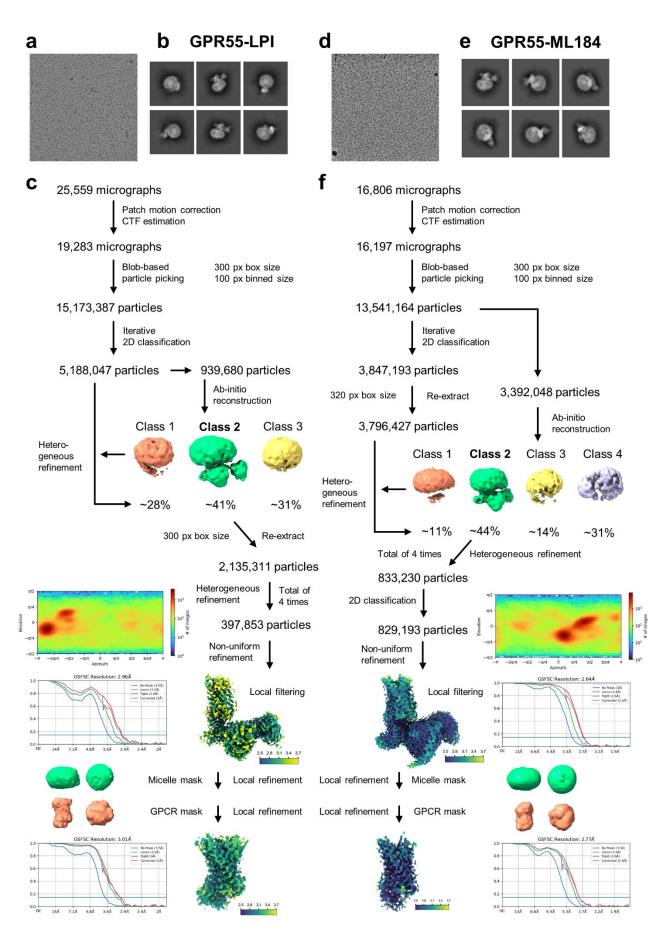
Structural Basis for Lipid-mediated Activation of G Protein-coupled Receptor GPR55

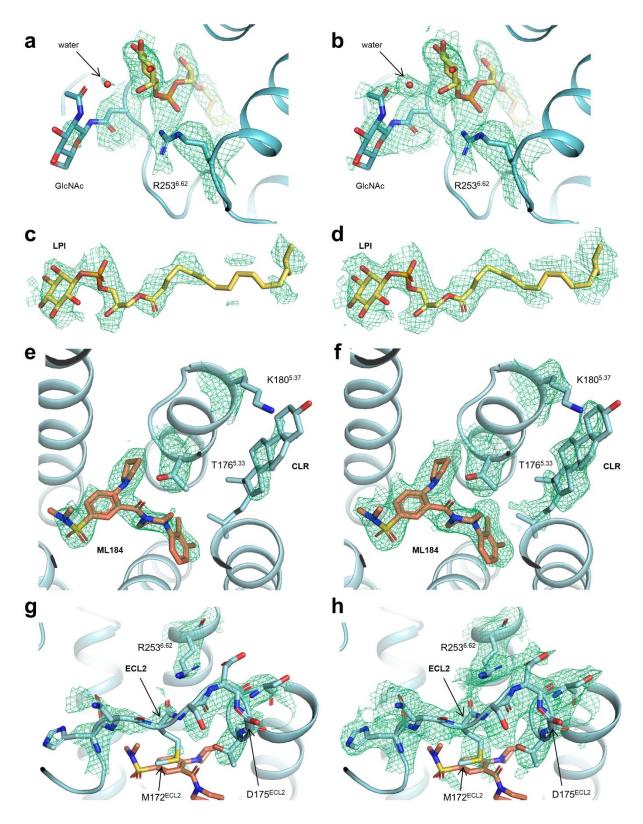
Tobias Claff¹, Rebecca Ebenhoch¹, Jörg T. Kley¹, Aniket Magarkar¹, Herbert Nar¹, Dietmar Weichert¹*

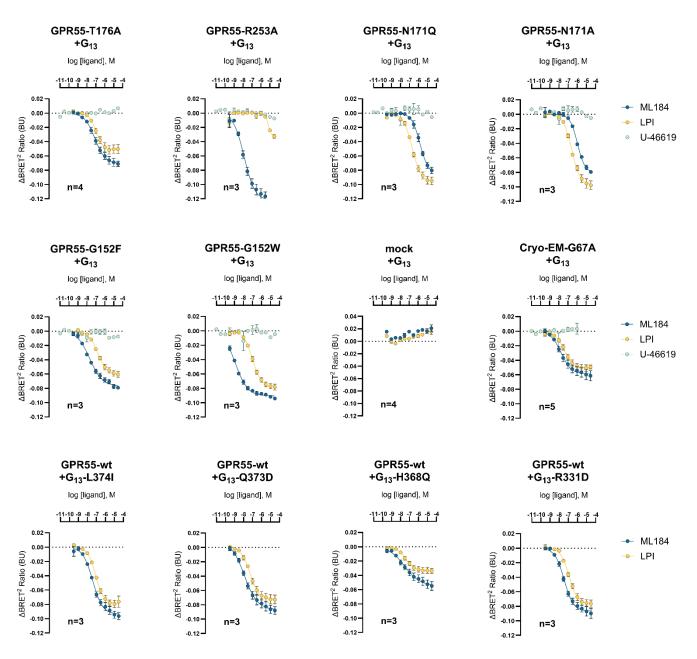

¹Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Birkendorfer Str. 65, 88397 Biberach an der Riß

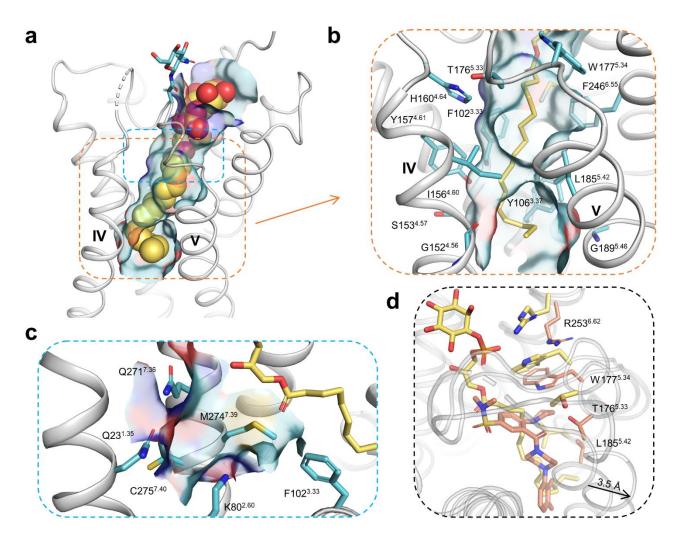
 ${\it *Corresponding author: dietmar.weichert@boehringer-ingelheim.com}\\$

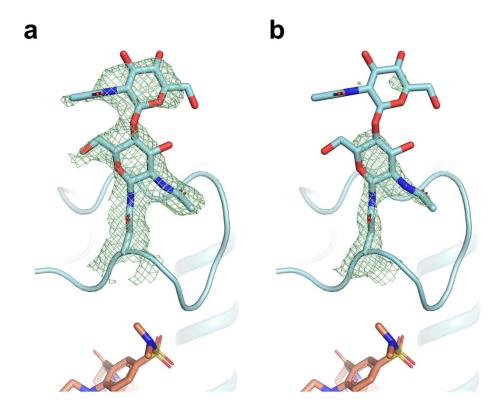

Table of contents

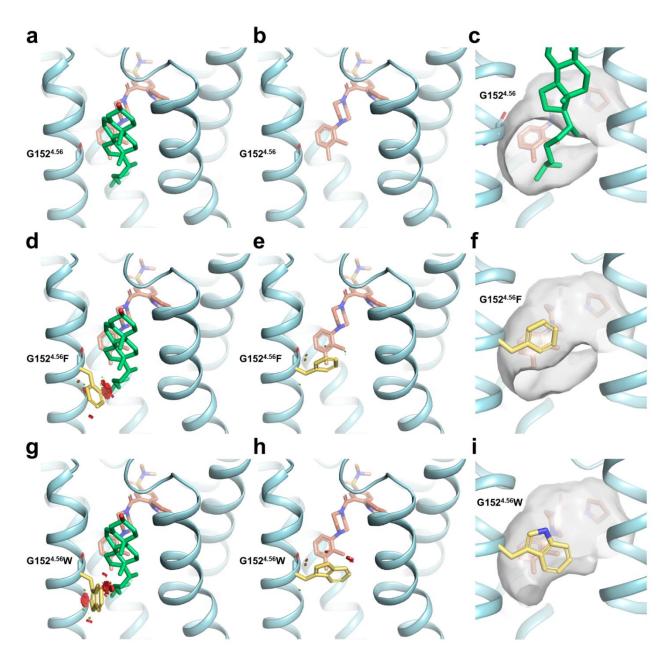
Supplementary Figures

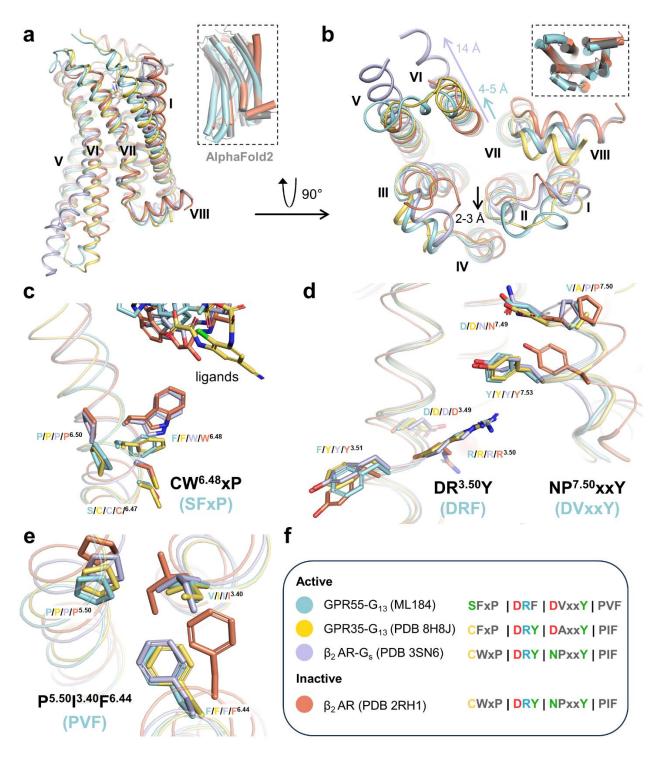

Figure S1	Expression and purification of the GPR55-G $\alpha_{13}\beta_1\gamma_2$ -ScFv16 complex with LPI and ML184					
Figure S2	Cryo-EM data processing workflow					
Figure S3	Cryo-EM Map of ligand binding pockets and ECL2 residues					
Figure S4	Dose-response curves of G protein dissociation assays					
Figure S5	Location of LPI and the palmitoyl-tail in the ligand binding pocket					
Figure S6	N-linked glycosylation in the GPR55-ML184-structure with two initial GlcNAc units					
Figure S7	Models of G152 single point mutations in the membrane opening					
Figure S8	Comparison of conserved activation microswitches					
Figure S9	Ligand recognition of selected different lipid receptors through their negatively charged moieties					
Figure S10	Equilibration status of molecular dynamics (MD) simulations					
Supplementary Tables						
Table S1	List of GPCR structures determined in complex with G α 12 or G α 13 proteins as of May 2024.					
Table S2	Cryo-EM data collection, refinement and validation statistics					
Table S3	G protein dissociation assay results					
Table S4	GPCR structures with resolved N- or O-linked glycosylation in the PDB as of December 2023.					

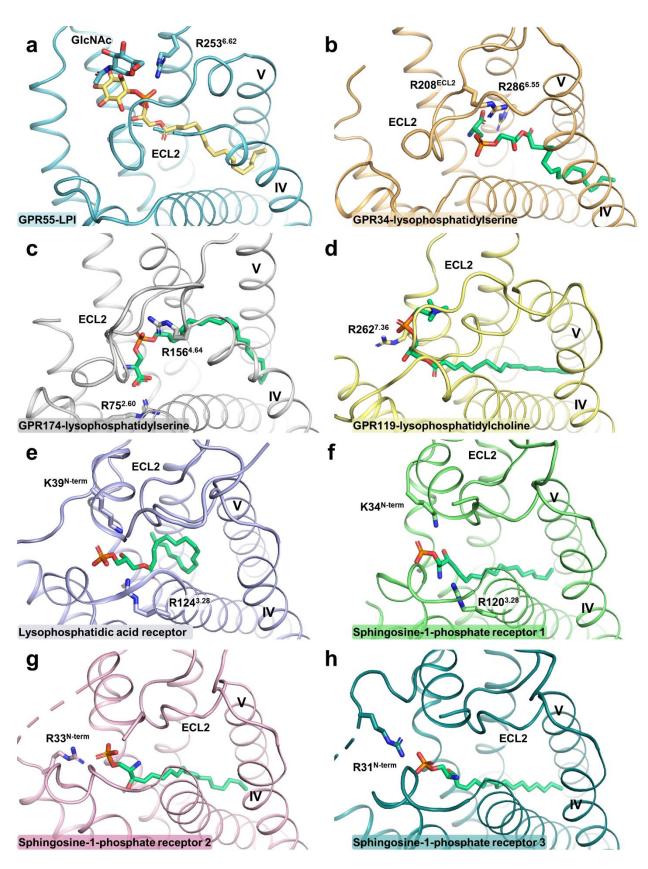

Supplementary Fig. S1. Expression and purification of the GPR55-G $\alpha_{13}\beta_1\gamma_2$ -ScFv16 complex with LPI and ML184. a and b Western blot of Hi5 insect cell lysates expressing GPR55 alone or together with heterotrimeric G protein using a anti-His antibody or b anti-G α_{13} antibody. c and d SDS-PAGE analysis of the final protein used for cryo-EM grid preparation for the c GPR55-G $\alpha_{13}\beta_1\gamma_2$ -ScFv16-LPI complex or d GPR55-G $\alpha_{13}\beta_1\gamma_2$ -ScFv16-ML184 complex. e and f Chromatogram of the e GPR55-G $\alpha_{13}\beta_1\gamma_2$ -ScFv16-LPI complex or f GPR55-G $\alpha_{13}\beta_1\gamma_2$ -ScFv16-ML184 during purification using a SuperoseTM 6 Increase 10/300 GL column on an ÄKTA pureTM chromatography system (Cytiva) equipped with a 10 mm flow cell. Peak fractions for each complex were pooled according to the GFP absorption peak at 488 nm as indicated by vertical dotted lines.


Supplementary Fig. S2. Cryo-EM data processing workflow.


Supplementary Fig. S3. Cryo-EM Map of ligand binding pockets and ECL2 residues. a, b Cryo-EM map of the extracellular ends of LPI, GlcNAc, N171, and R253 at two different contour levels. **c, d** Cryo-EM map of LPI at two different contour levels. **e, f** Cryo-EM map of ML184, T176, CLR, and K180 at two different contour levels. **g, h** Cryo-EM map of ECL2 residues between S178 and H170 and R253 of the ML184 structure at two different contour levels.


Supplementary Fig. S4. Dose-response curves of G protein dissociation assays. Data points represent means \pm SEM from 3-7 independent experiments as indicated in Supplementary Table S3. Data of the negative control ligand U-46619 at GPR55 mutants represent means \pm SEM from only two independent experiments.


Supplementary Fig. S5. Location of LPI and the palmitoyl-tail in the ligand binding pocket. a Overview of the binding position of LPI (yellow spheres) in GPR55. b Magnified image of the binding pocket of the lipophilic palmitoyl-tail of LPI (yellow sticks) in the binding channel highlights the contacting amino acids. The binding pocket surface of LPI is shown in cyan in both panels. c Magnified image of the receptor cavity facing the glycerol hydroxy group. d Structural comparison of the binding pockets of LPI (yellow sticks) and ML184 (salmon sticks) shows rearrangements of several residues and an outward movement of the extracellular end of helix V to accommodate ML184.


Supplementary Figure S6. N-linked glycosylation in the GPR55-ML184-structure with two initial GlcNAc units. a and b Cryo-EM map of N171^{ECL2} and the adjacent two glycan units are displayed with green mesh at different contour levels.

Supplementary Fig. S7. Models of G152 single point mutations in the membrane opening. The figure shows the membrane opening between helices IV and V $\bf a$, $\bf d$, $\bf g$ with CLR (green sticks) present and clashes displayed, $\bf b$, $\bf e$, $\bf h$ with CLR removed and clashes displayed, and $\bf c$, $\bf f$, $\bf i$ wt receptor or final models with ML184 (salmon sticks) surface displayed in gray. $\bf a - c$ shows the native receptor without mutation, $\bf d - f$ shows the receptor with G152^{4.56}F mutation, and $\bf g - i$ shows the receptor with G152^{4.56}W mutation (side chains shown as yellow sticks). Red disks indicate steric clashes. Point mutations of G152^{4.56} to either F or W were introduced using PyMOL.

Supplementary Fig. S8. Comparison of conserved activation microswitches. Superimposition of GPR55- G_{13} (active structure, blue), GPR35- G_{13} (active structures, yellow, PDB 8H8J), β_2 adrenergic receptor (active structure, violet, PDB 3SN6), β_2 AR (inactive structure, orange, PDB 2RH1). An inactive state AlphaFold model from GPCRdb (gray) is superimposed separately (rectangle box) with GPR55 and the inactive β_2 AR using a cylindrical helix representation. **a** Alignment focused on the transmembrane helices. **b** Intracellular view of the helix bundle highlights minor outward helix IV outward movement of GPR55 in comparison to the inactive state structure. Different activation microswitches were compared focused on **c** CWxP motif, **d** DRY and NPxxY motif, and **e** PIF motif. **f** Color coding and sequence alignment of compared microswitches between all four receptors.

Supplementary Fig. S9. Ligand recognition of selected different lipid receptors through their negatively charged moieties. GPCR-lipid interactions of a GPR55-LPI (this study), b GPR34-LPS (PDB 8SAI), c GPR174-LPS (PDB 7XV3), d GPR119-LPC (PDB 7XZ5), e LPAR₁-LPA (PDB 7TD0), f – h and S1P₁₋₃-S1P (PDB 7VIE, 7T6B, and 7EW3). The same perspective was used for all binding pockets.

Supplementary Fig. S10. Equilibration status of molecular dynamics (MD) simulations.

The equilibration of the MD systems is illustrated by a plot showing the area per lipid over time for the all-atom $\bf a$, and martini simulations $\bf b$. The naming conventions for the systems align with those detailed in the Methods section. The area per lipid is calculated as simulation box dimension $\bf x$, multiplied by simulation box dimension $\bf y$ and divided by the number of DOPC and Cholesterol molecules in a single leaflet of lipid bilayer. $\bf a$ The all-atom simulations were conducted over a period of 1 microsecond (μ s), with the initial 100 nanoseconds ($\bf n$ s) serving as the equilibration phase. The subsequent 900 ns were used for analysis. A dotted vertical line marks the transition from equilibration to analysis. $\bf b$ In case of the martini simulations, the first 1 μ s was dedicated to equilibration, followed by a 9 μ s period for analysis. The transition from equilibration to analysis is indicated by a dotted vertical line.

Supplementary Table S1. List of GPCR structures determined in complex with $G\alpha_{12}$ or $G\alpha_{13}$ proteins as of July 2024.

Receptor	Abbreviation	Family	G protein subtype	Ligand	PDB ID	FSC Resolution
Adhesion G protein- coupled receptor L3	AGRL3	Adhesion	Ga ₁₃	аро	7SF7	2.90 Å
Adhesion G protein- coupled receptor G1	AGRG1	Adhesion	Ga ₁₃	аро	7SF8	2.70 Å
Sphingosine-1- phosphate receptor 2	S1P ₂ R	Rhodopsin	Ga ₁₃	S1P	7T6B	3.19 Å
Adhesion G protein- coupled receptor F1	AGRF1	Adhesion	Ga ₁₃	аро	7WY0	2.83 Å
Adhesion G protein- coupled receptor F1	AGRF1	Adhesion	Gα ₁₂	аро	7WZ7	2.83 Å
Adhesion G protein- coupled receptor L3	AGRL3	Adhesion	Gα ₁₂	аро	7X10	2.93 Å
Adhesion G protein- coupled receptor E5	AGRE5	Adhesion	Gα ₁₃	аро	7YDH	3.10 Å
Adhesion G protein- coupled receptor E5	AGRE5	Adhesion	Gα ₁₂	аро	7YDJ	3.03 Å
GPR35	GPR35	Rhodopsin	Ga ₁₃	lodox- amide	8H8J	3.20 Å
GPR55 (this publication)	GPR55	Rhodopsin	G α ₁₃	LPI	9GE3	2.96 Å
GPR55 (this publication)	GPR55	Rhodopsin	Gα ₁₃	ML184	9GE2	2.64 Å

Supplementary Table S2. Cryo-EM data collection, refinement and validation statistics.

	GPR55-Gα ₁₃ β ₁ γ ₂ -ScFv16-	GPR55-Gα ₁₃ β ₁ γ ₂ -ScFv16-		
	LPI	ML184		
	(PDB 9GE3)	(PDB 9GE2)		
Data collection and processing				
Magnification	130,000	105,000		
Voltage (kV)	300	300		
Detector	Falcon IV	Gatan K3		
Electron exposure (e ⁻ /Å ²)	40	45		
Defocus range (µm)	-2.54 to -0.40	-3.56 to -0.88		
Pixel size (Å)	0.951	0.829		
Symmetry imposed	C1	C1		
Initial particle images (no.)	5,188,047	13,541,164		
Final particle images (no.)	397,853	829,193		
Map resolution (Å)*	2.87 (composite map)	2.51 (composite map)		
FSC threshold 0.143	2.96 (consensus map)	2.64 (consensus map)		
	3.01 (focused map GPCR)	2.77 (focused map GPCR)		
	2.88 (focused map G protein)	2.51 (focused map G protein)		
Refinement				
Initial model used (PDB code)	ML184 structure	AlphaFold (GPR55) & 7YDH		
Map sharpening <i>B</i> factor (Ų)	109.2 (consensus map)	98.6 (consensus map)		
	115.6 (focused map GPCR)	102.5 (focused map GPCR)		
	96.4 (focused map G protein)	87.5 (focused map G protein)		
Model composition				
Non-hydrogen atoms	8,563	9,082		
Protein residues	1,078	1,137		
Ligands (lipids)	1 (0)	1 (1)		
Waters	6	15		
B factors (Å ²)				
Protein	49.3	37.5		
Ligand	29.6	17.2		
RMSD				
Bond lengths (Å)	0.002	0.003		
Bond angles (°)	0.474	0.535		
Validation				
MolProbity score	1.95	1.70		
Clashscore	8.86	5.11		
Poor rotamers (%)	3.07	2.82		
Ramachandran plot				
Favored (%)	97.46	97.60		
Allowed (%)	2.54	2.40		
Disallowed (%)	0	0		

Supplementary Table S3. G protein dissociation assay results.*

Receptor/ Mutant	G protein	Basal activation ± SEM (%)	Ligand	pEC ₅₀ ± SEM	Adjusted P value vs. wt [†]	Efficacy ± SEM (%)	No. of independent experiments
wt	Gα ₁₃	00 - 0	ML184	7.35 ± 0.07	n.a.	100 ± 2	7
GPR55		66 ± 2	LPI	7.45 ± 0.08	n.a.	86 ± 2	7
wt		13 ± 5	ML184	n.d.	n.a.	n.d.	4
GPR55	$G\alpha_{12}$		LPI	n.d.	n.a.	n.d.	4
Cryo-EM	•	49 ± 6	ML184	7.74 ± 0.03	0.0010	86 ± 2	5
construct	$G\alpha_{13}$		LPI	7.40 ± 0.06	0.9968	82 ± 4	5
T176 A	Gα ₁₃	50 ± 1	ML184	7.11 ± 0.08	0.0377	100 ± 1	4
T176A			LPI	6.96 ± 0.02	0.0001	87 ± 2	4
R253A		13 ± 3	ML184	7.84 ± 0.08	0.0005	103 ± 3	3
	$G\alpha_{13}$		LPI	5.17 ± 0.09	<0.0001	37 ± 2	3
N171Q	0	19 ± 2	ML184	5.85 ± 0.07	<0.0001	76 ± 2	3
	$G\alpha_{13}$		LPI	6.72 ± 0.08	<0.0001	85 ± 3	3
N171 A	Ca	16 ± 3	ML184	5.98 ± 0.04	<0.0001	73 ± 3	3
N171A	Gα ₁₃		LPI	6.61 ± 0.06	<0.0001	85 ± 3	3
G152F	Gα ₁₃	52 ± 3	ML184	7.66 ± 0.06	0.0375	108 ± 3	3
			LPI	6.79 ± 0.02	<0.0001	94 ± 3	3
G152W	Gα ₁₃	41 ± 2	ML184	$8.87 \pm 0.01^{\ddagger}$	<0.0001	107 ± 1	3
			LPI	7.00 ± 0.03	0.0009	96 ± 5	3
ТВХА2	Gα ₁₃	-15 ± 14	U-46619	9.03 ± 0.11	n.a.	100 ± 2	3
		-6 ± 15	U-46619	7.62 ± 0.15	n.a.	100 ± 8	3
wt	Gα ₁₃ -	17 ± 3	ML184	7.44 ± 0.05	0.8504	84 ± 1	3
	L374I		LPI	7.09 ± 0.07	0.0121	71 ± 3	3
	Gα ₁₃ -	33 ± 11	ML184	7.77 ± 0.04	0.0058	94 ± 7	3
	Q373D		LPI	7.28 ± 0.01	0.3500	84 ± 8	3
GPR55	Gα ₁₃ -	64 . 9	ML184	7.53 ± 0.09	0.3466	101 ± 4	3
	H368Q	64 ± 8	LPI	7.45 ± 0.03	>0.9999	88 ± 6	3
	Gα ₁₃ -	27 ± 7	ML184	7.47 ± 0.10	0.6846	89 ± 3	3
	R331D		LPI	6.92 ± 0.01	0.0005	80 ± 4	3

^{*}The degree of activation in % was calculated by normalization of BRET² ratios (BRET² ratio of 30 μ M ligand for efficacy or basal BRET² ratios of 1.5% DMSO) to the respective BRET² ratios for the wt GPR55 plus G₁₃-biosensor at 30 μ M ML184 (100% activation) and for a mock-transfection plus G₁₃-biosensor (0% activation). The same normalization approach was used for the Gα₁₃ mutants.

 $^{\dagger}P$ values were calculated by one-way ANOVA with Dunnett's post-hoc test for all mutants versus wt GPR55 separately for each ligand (seven comparisons each). The ANOVA P values equal <0.0001 for both ligand comparisons. The G α_{13} mutants were tested independently versus wt GPR55 plus wt G α_{13} . Here, the ANOVA P value equals 0.0237 for the ML184 comparison and 0.0008 for the LPI comparison, respectively.

[‡]The pEC₅₀ value of ML184 at GPR55 mutant G152W was calculated by extrapolating ΔBRET² ratios for concentrations <0.3 nM. n.d.: not determined. n.a. not applicable

Supplementary Table S4. GPCR structures with resolved N- or O-linked glycosylation in the PDB as of July 2024.

PDB ID Receptor		Ligand distance within 5 Å	Residue(s)	Location	Glycan units
Class A GPCRs					
9GE2, 9GE3 (this publication)	GPR55	Yes	N171	ECL2	1-2
2J4Y, 3C9M, 3PQR, 6FKB, 6FUF, 7ZBC, 7ZBE	Rhodopsin	no	N2 N15	<i>N</i> -term	0-1 1-4
3V2W, 3V2Y, 7EVY, 7TD3, 7TD4	S1PR ₁	no	N30	<i>N</i> -term	1
7YXA	S1PR ₅	no	N20	<i>N</i> -term	1
7SRQ, 7SRS	Serotonin 5-HT _{2B} receptor	no	N204	ECL2	1
6DO1, 6OS2	Angiotensin II receptor type 1	no	N176	ECL2	1
6MEO	Chemokine receptor type 5		S7	<i>N</i> -term	1
7RKF	US28		N9	<i>N</i> -term	1
Class B GPCRs					
5NX2, 6LN2	Glucagon-like peptide 1	no	N63 N82	<i>N</i> -term	0-1 2
5XEZ, 5XF1	Glucagon receptor	no	N46 N59 N74 N78	<i>N</i> -term	1 2-3 2 2
7TYF, 7TYI, 7TYN, 7TYO, 7TYX, 7TYW, 7TZF, 8F0J, 8F0K, 8F2A, 8F2B, 9AUC	X, 7TYW, 7TZF, 8F0J, Amylin 1-3 receptors		N73 N125 N130	<i>N</i> -term	0-1 0-1 1
Class C GPCRs					
6N51, 6N52, 7FD8, 7FD9 Metabotropic glutamate receptor 5		no	N210 N445	<i>N</i> -term	1 0-1
Class F GPCRs					
5L7D, 5L7I, 5V56, 7ZI0	Smoothened receptor	no	N188 N493	<i>N</i> -term 6.74	0-1 0-1