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ABSTRACT
Transformation of astrocytes into reactive states is considered one of the major pathological 
hallmarks of prion and other neurodegenerative diseases. Recent years witnessed a growing 
appreciation of the view that reactive astrocytes are intimately involved in chronic neurodegen-
eration; however, little is known about their role in disease pathogenesis. The current article 
reviews the progress of the last few years and critically discusses controversial questions of 
whether reactive astrocytes associated with prion diseases are neurotoxic or neuroprotective 
and whether bidirectional A1–A2 model is applicable for describing polarization of astrocytes. 
Moreover, other important topics, including reversibility of a transition to a reactive state, along 
with the role of microglia and other stimuli in triggering astrocyte activation are reviewed. 
Defining the role of reactive astrocytes in pathogenesis of neurodegenerative diseases will open 
unrealized opportunities for developing new therapeutic approaches against prion and other 
neurodegenerative diseases.
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Unsettled questions of astrocyte biology

Astrocytes are responsible for a number of homoeo-
static functions required for proper functioning of CNS 
[1–3]. Under chronic neurodegeneration associated 
with prion and other neurodegenerative diseases, astro-
cytes undergo significant transcriptional, morphologi-
cal and functional transformation resulting in reactive 
phenotypes [4,5]. Recent years witnessed a growing 
appreciation of the view that reactive astrocytes are 
intimately involved in chronic neurodegeneration [6– 
9]. However, the precise role of reactive astrocytes in 
disease pathogenesis remains highly controversial 
(reviewed in [6,10]). A number of important questions 
remain unsettled. The extent to which normal homo-
eostatic functions are altered in the reactive states is 
unknown. It is not clear whether polarization into 
reactive state produces the net neurotoxic or neuropro-
tective outcome [6–8]. Another controversial topic is 
whether microglia trigger astrocyte activation and dic-
tate their reactive phenotype. However, among the 
most important questions is whether the polarization 
of astrocytes into reactive states represents 
a downstream response to altered brain homoeostasis 
or, on the contrary, drives prion pathogenesis. Finally, 
it is also unclear whether the transformation of astro-
cytes into reactive states is fully reversible.

Is A1–A2 polarization model applicable to prion 
diseases?

According to the hypothesis introduced by Barres and co- 
authors, astrocytes can polarize into well-defined neuro-
toxic (A1) or neuroprotective (A2) reactive states, which 
exhibit distinct transcriptional profile and opposing effects 
on neuronal survival [11,12]. The hypothesis proposing 
alternative A1 and A2 reactive states was developed using 
animals treated with LPS or subjected to ischaemic stroke 
[11], conditions that do not induce long-term chronic 
effects (Figure 1). The question whether bidirectional 
polarization model is applicable to chronic neurodegen-
erative illnesses is highly controversial [10]. Moreover, 
assessing polarization phenotypes based on animal models 
is tricky, because most neurodegenerative diseases rely on 
genetically modified animals that might not faithfully 
reproduce all aspects of chronic neuroinflammation or 
neurodegeneration of human diseases [13–15]. Wild type 
on inbreed animals infected with prions of natural or 
synthetic origin develops bona fide prion disease [16– 
20]. As judged from several independent transcriptome 
studies, in prion-infected animals, astrocytes do not follow 
the A1–A2 polarization model [21–26]. Instead, upregula-
tion of a mixture of A1-, A2- and pan-reactive markers 
was observed [21–26]. At present, it is not clear, whether 
the mixed A1/A2 profile, which was observed in bulk 
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tissues, arise as a result of the actual mixture of A1 and A2 
astrocytes, existence of multiple activation states, co- 
expression A1- and A2-specific markers within individual 
cells, or all of the above. Application of single cell tran-
scriptome approach should answer the questions regard-
ing diversity of the reactive phenotypes associated with 
prion diseases along with identifying molecular sub-types 
not distinguishable from the analyses of bulk tissues. Up to 
date, very similar profiles of A1-, A2- and pan-reactive 
markers were found regardless of a brain region or prion 
strain [21,26], suggesting that in prion diseases, astrocyte 
adopt relatively uniform reactive state, which might be 
different from the reactive states in other chronic illnesses. 
Moreover, the reactive phenotype of astrocytes associated 
with prion disease was universal across strains with differ-
ent cell tropism, that is, regardless of whether prion strains 
prefer to propagate in neurons or astrocytes [26]. Notably, 
echoing findings in the prion field, a panel of experts in 
astrocyte biology, recommended moving beyond the A1– 
A2 labels in describing phenotypes of astrocytes in acute 
injuries and chronic illnesses of CNS [10].

Is reactive phenotype associated with prion 
disease neurotoxic or neuroprotective?

Do reactive astrocytes contribute to diseases pathogen-
esis? Considering that a mixture of A1- and A2-reactive 

markers were upregulated in prion diseases, while 
neither markers being liked to homoeostatic or toxic 
functions of astrocytes, the bidirectional A1-A2 concept 
does not provide a cue whether reactive astrocytes are 
expected to produce neuroprotective or neurotoxic 
effects. PrPSc strains that target astrocytes often have 
shorter incubation times to the disease in comparison 
with the strains that colocalize with neurons [22,27]. 
Moreover, transmissible PrP states that are character-
ized by very mild reactive astrogliosis were shown to 
propagate in CNS silently, without causing clinical 
signs of the diseases despite substantial synaptic immu-
noreactivity [28]. These results brings up a possibility 
that a causative link between astrocyte response to 
transmissible PrP states and disease pathogenesis exists.

Several possible mechanisms, including upregulation 
of functions involved in synapse maintenance and neu-
ronal survival, phagocytic clearance of PrPSc and cell 
debris or, in opposite, spread of PrPSc, elimination of 
synapses along with viable neurons, loss of homoeo-
static functions, gain of toxic functions, inflammatory 
signalling that stimulates microglia-mediated synapse 
elimination, recruitment of immune cells and others 
mechanisms, should be examined to determine the 
net impact of reactive astrocytes (Figure 2).

Recent studies suggested that reactive astrocytes 
associated with prion diseases are neurotoxic [29,30]. 

A1
neurotoxic
phenotype

A2
neuroprotective
phenotype

acute conditions

disease specific reactive states

chronic conditions

homeostatic
state

Figure 1. The diagram illustrating that in neurodegenerative diseases, instead of polarization according to the bidirectional A1-A2 or 
neurotoxic-neuroprotective model, reactive astrocytes adopt multiple, disease-specific states dictated in part by a nature of an insult. 
Within individual diseases, reactive states might vary across brain regions at any given time point of the disease (represented by dark 
and light grey arrows).
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Using primary astrocyte cultures isolated from prion- 
infected animals, our recent work revealed that in the 
reactive states, astrocytes exbibit profound neurotoxic 
effects mediated via astrocyte-conditioned media and 
also manifested directly in co-cultures with primary 
neurons [29]. As tested in co-cultures with neurons, 
homoeostatic functions responsible for neuronal 
growth, spine development and synapse maturation 
were impaired in reactive astrocytes isolated from the 
prion-infected animals [29]. The media conditioned by 
the reactive astrocytes too had deleterious effects on 
primary neurons, including reduction in density and 
size of the dendritic spines, disintegration of synapses, 
reduced expression of pre- and post-synaptic proteins 
along with a decrease in viability of neurons [29]. 
Genes involved in formation, maturation and stability 
of synapses and dendritic spine were downregulated in 
astrocytes derived from prion-infected animals [29]. 
These results argue that in the reactive state associated 
with prion disease, the net effect of astrocyte is neuro-
toxic, which manifest itself as loss of homoeostatic 
functions responsible for synapse maintenance. In 
other study, selective astrocyte-specific targeting of 
unfolded protein response, which is exuberated in reac-
tive astrocytes, was found to extend the incubation time 
to the terminal disease in mice [30]. This also suggests 
that reactive astrocytes are neurotoxic [30].

Among possible neuroprotective effects of the reactive 
state is phagocytosis of PrPSc. Indeed, primary astrocyte 
cultures and astrocyte cell line were found capable of 
phagocytic uptake or internalization of PrPSc in vitro 
[31,32]. Moreover, PrPSc aggregates were found in reac-
tive astrocytes in animals infected with prions [22,27,33]. 
However, whether phagocytic clearance is up- or down-
regulated in reactive state versus homoeostatic astrocytes 
has never been tested. It is also not clear whether reactive 
astrocytes can selectively upregulate phagocytosis of 
PrPSc but not synapses or viable neurons.

The net neurotoxic phenotype does not exclude upre-
gulation of neuroprotective functions in parallel with the 
loss of homoeostatic functions and/or to activation of 
neurotoxic mechanisms (Figure 2). Moreover, consider-
ing significant region-specific heterogeneity in astrocyte 
homoeostatic phenotypes [4,9,34–36], asynchronous pro-
gression of the disease in different brain regions along 
with selective tropism of prion strains to different regions 
[37,38], it cannot be excluded that distinct reactive states 
with opposite net effects on neuronal survival are present 
in different brain regions during diseases time course.

Recent studies on transcriptome analysis of astro-
cyte-specific genes revealed that the manifestation of 
the reactive states associated with prion diseases was 
not in dysfunction of any specific pathway, but a global 
transformation of the physiological state of astrocytes, 
characterized by disturbance in multiple functions [26]. 
While both sets of genes, those involved in neuropro-
tection and neurotoxic functions, were disturbed, the 
net result of disturbances produced a neurotoxic phe-
notype [26]. Remarkably, the degree of astrocyte acti-
vation along with disturbance in functional pathways 
showed strong reverse correlation with the incubation 
time to disease [26]. The most rapid disease progres-
sion was found in the animal groups with the most 
severe astrocyte response. Analysis of astrocyte-specific 
genes raised the possibility that the degree of astrocyte 
activation contribute to the faster progression of the 
disease and perhaps even drive prion pathogenesis [26].

Does microglia trigger astrocyte activation?

Because microglia and astrocytes often become reactive 
in parallel and both contribute to neuroinflammation, 
it is difficult to pinpoint the contribution of each cell 
type. According to the Barres hypothesis that gained 
popularity in neurodegeneration field, reactive micro-
glia drives the polarization of astrocytes into neurotoxic 

neurotoxic phenotypeneuroprotective phenotype

upregulation of functions involved in
synapse maintenance & neuron survival

phagocytotic clearance of PrPSc

phagocytotic clearance of cell debris

immune cell recruitment

loss of homeostatic functions

gain of toxic functions

phagocytotic clearance of synapses & viable
neurons

inflammatory signaling that stimulates microglia
mediated synapse elimination

immune cell recruitment

replication and spread of PrPSc

Figure 2. Schematic diagram illustrating that dysregulation of multiple neuroprotective and neurotoxic mechanisms might con-
tribute to defining a net outcome of reactive astrocyte phenotype.
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A1 state via the upregulation of three secreted factors 
TNF-α, IL-1α and C1qa [39]. In conflict with this 
hypothesis, the ablation of these three factors in triple 
TNF−/-/IL1a−/-/C1qa−/- knockout mice was found to 
accelerate the progression of prion diseases resulting 
in only modest suppression in A1-specific markers in 
prion-infected animals [23]. Moreover, contrary to this 
hypothesis, the partial ablation of microglia by 
PLX5622 exacerbated the reactive phenotype of astro-
cyte and, again, accelerated disease progression [40]. 
These studies argued that in prion diseases, instead of 
driving neurotoxic phenotype in astrocytes, reactive 
microglia seem to attenuate it. Moreover, it appears 
that the reactive phenotype of astrocyte is not dictated 
entirely by reactive microglia, and independent 
mechanisms of activation exist. Indeed, the analysis of 
transcriptome revealed that astrocytes respond to prion 
infection prior to clinical signs and, perhaps, even prior 
to microglia [21]. Astrocytes are sensitive to neuronal 
activity and respond to abnormalities in synaptic trans-
mission [41]. Furthermore, studies that employed cell 
cultures showed that astrocytes can detect PrPSc and, in 
response, upregulate chemokine gene expression releas-
ing signals that trigger microglia migration [42]. 
Reactive astrocytes isolated from prion-infected mice 
upregulate the expression of pro-inflammatory genes 
(IL6, IL12b, IL33, Ccl4) along with the secretion of IL- 
6, suggesting that the reactive phenotype is relatively 
stable and can be maintained in vitro in the absence of 
pro-inflammatory CNS environment [29]. IL-33 
secreted by astrocytes is known to drive microglia- 
dependent synapse engulfment and elimination [43], 
while elevated levels of IL-6 triggers pathways are 
linked to neurodegeneration [44]. In mouse models of 
Alzheimer’s and Huntington’s disease, suppressing 
astrocyte reactivity by inhibiting activation of transcrip-
tion factor STAT3 selectively in astrocytes reduced 
neuroinflammation and activation of microglia [45]. 
To summarize, the reactivity phenotypes of microglia 
and astrocytes appear to be closely coordinated and rely 
on multiple feedback loops. Both cell types are capable 
of serving as the first responders to CNS insults and 
drive neuroinflammation.

Is reactive state of astrocyte reversable?

Is presence of a stimulus that triggers reactive states 
important for maintaining the reactive phenotype? 
Studies of optic nerve subjected to mild injury 
introduced by a brief ocular pressure showed that 
astrocyte reactivity could be fully resolved if the 
insult is removed [46]. In more severe insults such 
as spinal cord injury that lead to the formation of 

glial scares consisting of reactive astrocytes, pheno-
typic changes have long been considered irreversi-
ble. However, recent studies showed that reactive 
astrocytes isolated from injured spinal cord reverted 
their phenotype upon transplantation into a naïve 
spinal cord and vice versa [47], suggesting that pre-
servation of reactive phenotypes relies on the per-
sistent stimulus or the presence of environmental 
factors. In our study on isolation of astrocytes 
from prion-infected animals, the reactive pheno-
types were preserved, at least in part, for three 
weeks post-isolation [29].

Is it possible to reverse reactive states in the presence 
of persistent stimulus? Activation of STAT3 transcrip-
tion factor was identified as universal feature of astro-
cyte reactivity in neurodegenerative diseases shared 
between different species, brain regions and different 
types of illnesses (reviewed in [6,48]. Selective inhibi-
tion of STAT3 pathway in astrocytes was found to 
suppress astrocyte activation or reverse their reactive 
phenotype, and improved the disease outcomes in sev-
eral animal models of neurodegenerative diseases 
[45,49,50]. Activation of STAT3 was observed in ani-
mals infected with prions [51]; however, its role in 
driving astrocyte reactive states associated with prion 
diseases has not yet been examined.

What stimuli trigger astrocyte activation?

In prion diseases, astrocytes respond to prion infection 
prior to clinical symptoms or neuronal damage [21]. In 
mice infected with prions, the onset of GFAP upregu-
lation appeared to be triggered by the accumulation of 
PrPSc over a certain threshold, while the kinetics in 
GFAP overexpression followed very closely the 
kinetics of PrPSc accumulation [52]. Phagocytosis of 
PrPSc in vitro by cultured astrocytes [31,32] along with 
intracellular localization of PrPSc aggregates in reactive 
astrocytes in animals [22,27,53] suggests that astro-
cytes have the ability to recognize PrPSc directly. 
Indeed, in response to scrapie brain homogenate, cul-
tured astrocytes upregulated the expression of cytokine 
genes [42]. It is not clear what receptors are respon-
sible for recognition of PrPSc  in astrocytes and neu-
rons share the expression of lipoprotein receptor- 
related protein 1 (LR1P), which in neurons was 
found to be involved in endocytosis of PrPSc [54]. 
Astrocytes and microglia share a wide range or recep-
tors that might participate in PrPSc phagocytosis, 
including toll-like receptors (TLRs), which are 
involved in the recognition of pathogens and extracel-
lular protein aggregates; Axl receptor activates JAK/ 
STAT pathway; a heterogeneous family of scavenger 

90 I. V. BASKAKOV



receptors is capable of recognition of danger- and 
pathogen-associated molecular patterns along with 
extracellular protein aggregates [55]; and MEGF10, 
an important receptor, is involved in phagocytosis on 
synapses and apoptotic cells [56]. Cultured microglia 
react to purified PrPSc by upregulating proinflamma-
tory signalling [57]. Notably, the degree of response in 
microglia was found to be dictated by the sialylation 
status of N-linked glycans on the surface of PrPSc [57], 
with a stronger response caused by a PrPSc with desia-
lylated glycans [57]. Like normal form of the prion 
protein or PrPC, PrPSc is sialylated [58]; however, the 
level and density of sialylation of PrPSc particles are 
variable among prion strains and dictated by a strain 
identity [59–62]. It is not known whether the same 
signalling pathways that respond in microglia to asia-
loglycans are also active in astrocytes. Remarkably, 
significant reduction in PrPSc sialylation levels that 
accompanied cross-species adaptation of a strain to 
a new host produced a new strain characterized by 
a very profound neuroinflammation and the shortest 
incubation time to the diseases [22]. These results 
suggested that a causative link between sialylation sta-
tus of PrPSc, the degree of glia activation and the rate 
of disease progression exists [22].

Concluding remarks

With the development of new tools and gaining 
more knowledge regarding the role of reactive astro-
cyte in neurodegenerative disease, new questions 
have to be answered. To what extent the heteroge-
neity in homoeostatic state dictates reactive state of 
astrocytes? Do reactive phenotypes drive diseases 
pathogenesis? Is it possible to fully and selectively 
reverse reactive states of astrocytes in the presence 
of persistent proinflammatory stimulus? Does rever-
sing of the reactive states represent an effective 
therapeutic approach? Answering these question 
brings a new opportunity for developing unexplored 
therapeutic approaches.
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