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An effective malaria vaccine must prevent disease in a range of populations living in
regions with vastly different transmission rates and protect against genetically-diverse
Plasmodium falciparum (Pf) strains. The protective efficacy afforded by the currently
licensed malaria vaccine, Mosquirix™, promotes strong humoral responses to Pf
circumsporozoite protein (CSP) 3D7 but protection is limited in duration and by strain
variation. Helper CD4 T cells are central to development of protective immune responses,
playing roles in B cell activation and maturation processes, cytokine production, and
stimulation of effector T cells. Therefore, we took advantage of recent in silico modeling
advances to predict and analyze human leukocyte antigen (HLA)-restricted class II
epitopes from PfCSP – across the entire PfCSP 3D7 sequence as well as in 539
PfCSP sequence variants – with the goal of improving PfCSP-based malaria vaccines.
Specifically, we developed a systematic workflow to identify peptide sequences capable
of binding HLA-DR in a context relevant to achieving broad human population coverage
utilizing cognate T cell help and with limited T regulatory cell activation triggers. Through
this workflow, we identified seven predicted class II epitope clusters in the N- and C-
terminal regions of PfCSP 3D7 and an additional eight clusters through comparative
analysis of 539 PfCSP sequence variants. A subset of these predicted class II epitope
clusters was synthesized as peptides and assessed for HLA-DR binding in vitro. Further,
we characterized the functional capacity of these peptides to prime and activate human
org June 2021 | Volume 12 | Article 6899201
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peripheral blood mononuclear cells (PBMCs), by monitoring cytokine response profiles
using MIMIC® technology (Modular IMmune In vitro Construct). Utilizing this decision
framework, we found sufficient differential cellular activation and cytokine profiles among
HLA-DR-matched PBMC donors to downselect class II epitope clusters for inclusion in a
vaccine targeting PfCSP. Importantly, the downselected clusters are not highly conserved
across PfCSP variants but rather, they overlap a hypervariable region (TH2R) in the
C-terminus of the protein. We recommend assessing these class II epitope clusters within
the context of a PfCSP vaccine, employing a test system capable of measuring
immunogenicity across a broad set of HLA-DR alleles.
Keywords: malaria, CSP, in silico epitope prediction, HLA-DR, multifunctional cytokine response, cross-strain, TH2R
INTRODUCTION

The Plasmodium falciparum (Pf) circumsporozoite protein
(CSP) is a leading target in ongoing malaria vaccine
development efforts and the antigenic component of the
Mosquirix™ (RTS,S/AS01) vaccine, a recombinant virus-like
protein platform containing large portions of the central repeat
and C-terminal regions of PfCSP 3D7. Vaccination with RTS,S/
AS01 provides moderate protection over a limited amount of
time [reviewed in (1)]. In a seven-year assessment of children
vaccinated with RTS,S/AS01, efficacies between 31% and 58%
were seen in the year post vaccination, with lower efficacy found
in vaccinees with high malaria exposure as compared to those
with low malaria exposure (2). Additionally, significant
reductions in efficacy were found over time, with negative
efficacy seen in vaccinees with high malaria exposure between
years three and four post vaccination. Efficacy of the RTS,S/AS01
vaccine is also dependent on the infection strain; whereby,
efficacy is diminished when vaccinees are infected with a strain
of malaria containing a PfCSP allele heterologous to that in the
3D7 vaccine strain (3). Reflective of these findings, there is clear
need for PfCSP-based vaccine improvement to achieve sustained
and cross-strain protective immune responses.

For PfCSP-based vaccines, both humoral and cellular
immune responses to PfCSP are important and have been
identified as immunological surrogates of protection in a phase
2 clinical trial where malaria naïve individuals vaccinated with
two RTS,S-containing formulations underwent controlled
human malaria infection (CHMI) (4). Specifically, geometric
mean concentrations of PfCSP-specific antibody were
significantly higher in vaccinees protected after CHMI as
compared to unprotected vaccinees. Further, significantly
greater interferon (IFN)-g recall responses to a peptide
including both hypervariable and conserved residues of PfCSP
3D7 (amino acid address 309-352 per the designations used
herein) were seen in protected versus unprotected vaccinees (as
assessed via ex vivo peripheral blood mononuclear cell (PBMC)
ELISpot assay). In this same study, protected vaccinees showed a
significantly higher frequency of multifunctional cytokine CD4 T
cell responses as compared to unprotected vaccinees (as assessed
via ex vivo PBMC intracellular staining assay). Of note is that
presence of T cell response determinants in the C-terminal
org 2
region of PfCSP was found in the late 1980s/early 1990s (5–
10). Around this time, efforts to sequence and characterize the
domains of PfCSP resulted in identification of two highly
conserved and two highly variable regions of the protein. The
conserved regions, termed Region 1 (R1) and Region 2 (R2), are
located slightly N-terminal of the central repeat region (R1) and
in the middle of two hypervariable regions in the C-terminal
domain of the protein (R2). The two hypervariable regions
bracketing R2 were termed TH2R (located N-terminal of R2)
and TH3R (located C-terminal of R2). Interest in the C-terminal
section of PfCSP containing TH2R, R2, and TH3R intensified
when it was determined that these regions contain polymorphic
T cell response determinants in malaria-exposed individuals
(11). Most relevant to our work is the finding that differential
CD4 T cell response profiles were seen with sequence variants of
TH2R/R2 region of PfCSP (synthesized as peptides) when
assessed ex vivo with PBMCs from malaria-exposed
individuals (7–9). While this is the same region of PfCSP to
which Kester et al. (4) found differential IFN-g recall responses in
RTS,S vaccinees, significant progress in the comprehensive
characterization and comparative analysis of CD4 T cell
epitopes within PfCSP has been slow due to the complexities
of human leukocyte antigen (HLA)-restriction and lack of tools
to predict T cell epitopes.

The advent of computational vaccinology and increasing
availability of tools (12, 13) has resulted in an influx of
publications utilizing in silico CD4 T cell epitope analysis to
rationally design vaccines (14), including those targeting malaria
(15–18). Complimentary to this is the curation and compilation
of published in vitro, ex vivo, and in vivo experimental data on T
cell epitopes, as part of the Immune Epitope Database and
Analysis Resource (IEDB) both for animal models and clinical
assessments (19). Further, through recent advances in the overall
understanding of humoral immune response development, the
central role of follicular helper T cells (Tfh) has emerged with
regard to affinity maturation and isotype switching of antigen-
specific B cells within germinal centers as well as for the
development of protective humoral responses and memory B
cells (20). Importantly, recent studies have shown that it is the
interplay between Tfh and T follicular regulatory cells (Tfr) that
determines the robustness and longevity of the humoral
responses (21, 22) and that too strong a T regulatory (Treg)
June 2021 | Volume 12 | Article 689920
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cell response upon vaccination may suppress development of
robust long-lived immune responses (23, 24). Additionally,
mounting data suggest that induction of Treg responses during
malaria infection negatively impacts development of effective
immune responses and, along with compromised dendritic cell
(DC) function and interference in regulation of immune
checkpoint proteins, can lead to chronic disease [reviewed in
(24–26)].

It is with this understanding of the gaps in PfCSP-based
vaccines, the value of rational vaccine design, and potential
immune response inhibition from Treg responses that we
undertook an effort to systematically identify and characterize
PfCSP CD4 T cell epitopes with the primary goal of identifying
class II epitope clusters both present in a large number of PfCSP
sequence variants and capable of binding a broad array of HLA-
DR alleles. Specifically, we developed an epitope identification
and analysis workflow utilizing both the PfCSP 3D7 vaccine
strain sequence and 539 publicly-available PfCSP sequence
variants (isolated from diverse geographical locations) as
sequence inputs. The workflow began with in silico analysis to
identify clusters of HLA-DR-restricted epitopes predicted to
bind promiscuously across a broad panel of HLA-DR alleles.
This was followed by laboratory assessments to validate our HLA
binding predictions against in vitro HLA-DR allele binding and
the subsequent use of these results to curate class II clusters of
interest. Lastly, we assessed the ability of the predicted epitope
clusters, synthesized as peptides, to prime human DCs and
T cells as well as to elicit multifunctional cytokine responses.
MATERIALS AND METHODS

PfCSP Custom Sequence Database
Publicly-available PfCSP sequences were collected from UniProt on
June 22, 2016, and compiled in a database including metadata
associated with geographic origin and genotypic space. A total of
540 sequences were retrieved; however, one sequence was excluded
due to the lack of a geographical tag. The final database comprised
539 amino acid sequences of variable lengths (PfCSP sequence
variants). Due to incomplete representation of portions of the CSP
protein preceding the repeat domain (Figure S1), the database was
subdivided into two reference sets reflecting the most complete set
of N-terminal and C-terminal sequences, respectively. The N-
terminal reference set contained 329 sequences, while the C-
terminal reference set contained 525 sequences. Information
regarding the geographic origin and distribution of the 539 PfCSP
sequence variants is shown in Figure S2.
In Silico T Cell Epitope Prediction
and Analyses
The in silico analysis was conducted by EpiVax utilizing several
tools from their iVAX toolkit (12, 27). Using the EpiMatrix tool,
input amino acid sequences were parsed into overlapping 9-mer
frames and each frame evaluated for predicted binding to a panel
of nine class II HLA-DRB1 alleles (*0101, *0301, *0401, *0701,
*0801, *0901, *1101, *1301, and *1501). EpiVax utilizes these
Frontiers in Immunology | www.frontiersin.org 3
alleles for their binding prediction algorithms as they represent
functional allele supertypes (i.e., HLA alleles clustered into
families based on the ability to bind peptides with related
amino acid sequences) capable of evaluating predictive
immunity to over 95% of the global human population
regarding HLA supertypes (28, 29). EpiVax normalizes these
HLA binding predictions as EpiMatrix Z-scores (the output of
this tool) to enable comparisons across alleles, and identifies
significant frame “hits” by applying a Z-score cutoff of 1.64 (the
top 5% of binding frames from a dataset of 10,000 random
sequences) to signify a high probability of HLA allele binding.
EpiVax also designates Z-scores in the top 1% of binding frames
(Z-scores >2.32) as hits with the highest probability of binding.
The ClustiMer tool utilizes the EpiMatrix output to identify
regions of high epitope density in the input sequences and
defines class II HLA epitope clusters, which consist of a
binding core (containing a high density of predicted epitopes
across the set of HLA-DR alleles evaluated) and flanking amino
acids (30). In addition, the resulting predicted epitope sequences
were evaluated for homology to the human genome (i.e., extent
of “human-ness”) as an indicator of the potential to generate
immunosuppressive responses including autoimmune or Treg
responses. This homology analysis is performed using the
JanusMatrix tool, which examines human sequence similarity
with respect to the HLA and T cell receptor (TCR) faces of an
epitope to flag sequences that could potentially elicit undesired
immunosuppressive responses due to homology with sequences
encoded by the human genome (31). The JanusMatrix (human
homology) score of a given amino acid sequence indicates the
number of potential immunosuppressive response triggers or
flags, with higher JanusMatrix scores indicating a bias towards
immune tolerance (32). Ninety-five percent of randomly
generated predicted ligands to HLA-DRB1 supertype alleles
have JanusMatrix (human homology) scores between zero and
two. Therefore, JanusMatrix scores greater than two are the
established threshold for flagging the extent of human-ness in a
sequence. Note that additional information concerning the role
of the Treg repertoire in maintenance of self-tolerance can be
found in Feng et al. (33). Additional tools utilized for this
analysis include those to interrogate PfCSP sequence variants
within the custom sequence database developed for this project.
These tools included Conservatrix, which identifies predicted
epitopes that are conserved across a set of sequence variants, and
the EpiAssembler tool, which works to identify class II HLA
epitope clusters across a set of sequence variants by assembling
overlapping predicted epitopes into immunogenic consensus
sequences (ICS) (34). EpiVax provided detailed EpiMatrix
outputs listing Z-scores for each frame across the complete set
of HLA-DR alleles evaluated. We summarized these data as the
highest Z-score and total number of predicted epitopes
(EpiMatrix hit count) by HLA allele and PfCSP class II cluster
(Table S1).

Peptide Synthesis
Predicted class II HLA epitope clusters were synthesized as peptides
using solid phase chemistry, 9-fluoronylmethoxycarbonyl synthesis,
by 21st Century Biochemicals (Marlborough, MA). Peptides were
June 2021 | Volume 12 | Article 689920
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delivered >85% pure for in vitro assays and >95% pure for ex vivo
assays, as ascertained by HPLC, mass spectrometry and UV scan to
verify purity, mass, and spectrum, respectively. In all cases, the
amino acid content of each peptide was determined to enable
reconstitution at highly accurate molarity; therefore, in some
cases, peptides were synthesized without an N-terminal acetyl
group (all peptides were synthesized with C-terminal amino
group caps), with the addition of flanking lysine residues to add
charge, and/or trimmed from the ClustiMer output to facilitate
peptide synthesis/purification and/or adhere to the established
solubility parameters. Two peptides were synthesized without an
N-terminal acetyl group to facilitate synthesis and purification. In
order to establish a net charge for two of the peptides, lysine
flanking residues were added. In addition, for three peptides, the
sequence was trimmed from the ClustiMer output as shown in
Table S2 (further see Table S5 for peptide sequences).

In Vitro HLA Binding Assays
EpiVax conducted in vitro quantification of peptide-HLA
binding affinity utilizing a competition assay format per the
methodology described in (35). Briefly, a fluorescent-labeled,
high-binding reference peptide and titrating concentrations of
test peptide were incubated in a 96-well plate format with
limiting concentrations of class II HLA monomers in aqueous
buffer for 24-hours. Post incubation, the mixtures were moved to
a 96-well plate coated with anti-HLA-DR antibody to capture
HLA-peptide complexes. Time-resolved fluorescence
measurement of the bound labeled reference peptide complex
present in each mixture were detected with a europium-linked
probe via fluorescent spectrophotometry using a SpectraMax M5
system. HLA binding affinity of each test peptide was expressed
as the percent inhibition of reference peptide binding. Percent
inhibition values (across the test peptide titration range) were
used to calculate the half maximal inhibitory concentration
(IC50) of each test peptide. For these studies, test peptides were
assessed using a range of final concentrations from 100,000 nM
to 100 nM and all peptides were reconstituted in dimethyl
sulfoxide (DMSO). The panel of commercially-available HLA-
DRB1 allele monomers used included: *0101, *0301, *0401,
*0701, *0801, *1101, *1301 and *1501.

Ex Vivo CD4 T Cell Simulation Assays
Using the MIMIC® Platform
For MIMIC (Modular IMmune In vitro Construct) platform
studies, PBMCs from healthy donors enrolled in a Sanofi
Pasteur-VaxDesign campus apheresis program were used. All
blood samples obtained and used for this effort were collected
from consenting participants in compliance with an institutional
review board (IRB)-approved protocol (CRRI 0906009). Within
hours following harvest from the donor, the enriched leukocytes
were centrifuged over a ficoll-plaque PLUS (GE Healthcare,
Piscataway, NJ) density gradient. PBMCs at the interface were
collected, washed, cryopreserved in IMDM media (Lonza,
Walkersville, MD) containing autologous serum and DMSO
(Sigma–Aldrich, St. Louis, MO) and stored in vapor phase
liquid nitrogen until needed.
Frontiers in Immunology | www.frontiersin.org 4
Monocytes were purified from total PBMCs by anti-CD14
antibody-conjugated magnetic beads (Stemcell Technologies,
Cambridge, MA), and cultured at 1 million cells per mL for 6
days in serum-free CellGro DC Medium (CellGenix,
Portsmouth, NH) supplemented with 100 ng/mL GM-CSF
(R&D Systems, Minneapolis, MN) and 25 ng/mL interleukin
(IL)-4 (R&D Systems). DCs were matured using 10ng/mL of LPS
(Sigma-Aldrich) and 100IU/mL of IFN-g (PeproTech, Rocky
Hill, NJ). The matured DCs were then harvested for assay use in
the CD4 T cell stimulation assay within 16 hours of maturation.

The CD4 T cell stimulation assays were performed using
protocols established at Sanofi Pasteur–VaxDesign Campus (36,
37). Autologous CD4 T cells were enriched from frozen PBMCs
by negative magnetic bead selection (Stemcell Technologies) and
then co-cultured at 2 million T cells per well with autologous
DCs at a ratio of 60:1 in X-VIVO 15 media (Lonza). Prior to use,
DCs were pre-pulsed for at least 2 hours with pooled peptides
(two peptides per pool used at a concentration of 5 µg/mL for
each peptide).

After a 14-day incubation period, lymphocytes were
harvested and evaluated for effector activity using intracellular
cytokine staining (ICCS). For the ICCS assay, autologous pre-
pulsed DCs were co-cultured with the harvested primed T cells
for 7 hours. 1µg/mL brefeldin A (Sigma–Aldrich) was added for
the final 5 hours of culture to prevent protein egress from the
Golgi apparatus. Following the incubation period, cells were
labeled with the Live/Dead Fixable Stain Kit (Invitrogen,
Carlsbad, CA), treated with cytofix/cytoperm and permwash
reagents from BD Biosciences (San Jose, CA), and then labeled
with Bioscience (San Diego, CA) antibodies specific for human
IFN-g, tumor necrosis factor (TNF)-a, IL-2, IL-4, IL-10, and
CD154. The samples were then acquired on an LSRII flow
cytometer (BD Biosciences) and analyzed using FlowJo
software (TreeStar, Ashland, OR). The CEF-MHC class II
control peptide pool “plus” (Cellular Technology, Ltd.) was
used as a positive control for the assay at the manufactures
suggested concentration of 8 mg/mL. This positive control
peptide pool contains 23 known MHC class II epitopes derived
from human Cytomegalovirus, Epstein Barr virus, influenza
virus, and tetanus toxin. Stimulation Index was calculated as
the response obtained in pre-pulsed cells stimulated with peptide
divided by the response seen in pre-pulsed cells with no peptide
added during the stimulation phase.
RESULTS

Identifying Input Sequences for Analysis
and Developing the Experimental
Workflow
Identification and assessment of the human T cell epitopes
within PfCSP 3D7 and PfCSP variants were performed to
better understand vaccine candidate sequences that impact
cell-mediated immunity across different HLA alleles with the
goal of improving PfCSP-based malaria vaccines. The PfCSP
3D7 sequence was selected for single protein analysis because
June 2021 | Volume 12 | Article 689920
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this is the vaccine strain. A reference database of 539 PfCSP
sequence variants was developed in order to assess coverage of
putative class II T cell epitopes in PfCSP 3D7 across the
geographic and genotypic space represented by the custom
sequence database, as well as to identify additional putative
epitopes among PfCSP variants. The PfCSP 3D7 sequence
(PF3D7_0304600) and the 539 PfCSP sequence variants served
as input sequences for the experimental workflow (Figure 1) that
started with in silico analyses, moved to in vitro and ex vivo
laboratory assessments, and then to an epitope conservation
analysis to facilitate final downselection. Specifically, the
experimental workflow was as follows (1): in silico analysis of
the PfCSP 3D7 protein sequence using EpiMatrix to identify
predicted class II T cell epitopes, ClustiMer to define class II HLA
clusters by identifying regions of high epitope density, and
JanusMatrix to assess extent of human-ness as a flag for
potential immunosuppressive responses; (2) in silico analysis of
the 539 variant PfCSP protein sequences using EpiMatrix to
identify predicted class II T cell epitopes, Conservatrix to identify
conservation across the predicted epitopes, EpiAssembler to
identify class II HLA-DR epitope clusters across the set
putative epitopes by assembling overlapping predicted epitopes
into ICS, and JanusMatrix to assess the extent of human-ness; (3)
in vitro HLA-DR binding assays of the putative class II epitope
clusters (as peptides); (4) ex vivo multifunctional cytokine T cell
Frontiers in Immunology | www.frontiersin.org 5
simulation of human PBMCs with the putative class II epitope
clusters (as peptides); and (5) epitope conservation analysis to
evaluate the PfCSP sequence variants, in consideration of epitope
coverage and geographical region, to aid in final downselection.

In Silico T Cell Epitope Analysis of the
PfCSP 3D7 Protein Sequence
Promiscuous class II T cell epitopes predicted to bind across a
broad set of HLA-DR alleles (DR1, DR3, DR4, DR8, DR9,
DR11, DR13, and DR15) were identified using the EpiMatrix
and ClustiMer algorithms. These specific alleles were selected
because they are the most common HLA alleles within each of
the HLA supertypes (38, 39) and are representative of >95% of
human populations worldwide without the need to test each
individual haplotype (28, 29). EpiMatrix algorithm output
provided Z-scores indicating the predicted binding of each
overlapping 9-mer in the PF3D7_0304600 amino sequence to
each of the HLA alleles in the panel. The Z-scores equal to or
greater than 1.64 represent the top 5% of predicted binding
frames and signify a 9-mer with a high probability HLA allele
binding. A composite representation of the predicted class II
epitopes in PfCSP 3D7 (i.e., 9-mers with EpiMatrix Z-scores ≥
1.64) across all nine class II HLA alleles is shown in Figure 2.
Although class II HLA-DR molecules bind a 9-mer sequence
(i.e., the binding core), clustering of binding cores within
FIGURE 1 | Experimental Workflow.
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antigens is typical and sequences flanking the binding core can
impact HLA binding (40). Within PfCSP 3D7, the ClustiMer
algorithm identified a total of six class II epitope clusters, two
in the signal sequence (SS1 and SS2), two in the N-terminal
region of CSP (C1 and C2), and two in the C-terminal region
of CSP (C3 and C4). In addition, a pseudo-cluster overlapping
the R1 domain of CSP was also defined and designated as C’.
Except C1, which did not contain any predicted epitopes for
two of the HLA-DRB1 alleles, and the pseudo-cluster (C’),
which did not contain any predicted epitopes for four of the
HLA-DRB1 alleles, all of the designated clusters contained at
least one predicted epitope for each of the nine HLA-DRB1
alleles (Table S1). The sequences for all six clusters and the
pseudo-cluster along with their respective EpiMatrix (EPX) and
JanusMatrix (JMX) cluster scores are shown in Table 1. The
EpiMatrix cluster score represents predicted immunogenic
potential of an epitope cluster sequence, based on the
Frontiers in Immunology | www.frontiersin.org 6
number of predicted epitopes within the sequence and their
relative Z-scores. EpiMatrix cluster scores above ten are
comparable to those of known promiscuous HLA-DRB1
epitopes (Figure S3) and all six PfCSP 3D7 clusters, but not
the pseudo-cluster, reached this threshold (Table 1). The
JanusMatrix cluster score represents the extent of human-ness
in the epitope cluster sequence (i.e., predicted synonymous
HLA-DRB1 binding frames with TCR-binding face residues
that match the human proteome). JanusMatrix cluster scores
greater than 2.0 suggest increased potential for an
immunosuppressive response (e.g., a Treg response). Two of
the PfCSP 3D7 clusters (SS1 and C2) and the pseudo-cluster
(C’) exceeded this threshold (Table 1). Importantly, an over
threshold JanusMatrix cluster score is intended to make the
researcher aware of the human proteome overlap; however, the
actual elicitation of Treg responses must be determined
empirically. Additional information regarding the JanusMatrix
TABLE 1 | Clusters of Predicted Class II Epitopes within PfCSP Associated with EpiMatrix (EPX) and JanusMatrix (JMX) Cluster Scores.

Cluster ID Address/Straina Cluster Sequenceb EPX Cluster Score JMX Cluster Score Conserved (Y/N)

SS1 1 – 18 (3D7) MMRKLAILSVSSFLFVEA 40.70 3.57 Y
SS2 10 – 24 (3D7) VSSFLFVEALFQEYQ 19.64 0.90 Y
C1 20 – 37 (3D7) FQEYQCYGSSSNTRVLNE 12.03 0.13 Y
C2 53 – 76 (3D7) MNYYGKQENWYSLKKNSRSLGEND 40.05 2.59 Y
C’ 80 – 103 (3D7) NEDNEKLRKPKHKKLKQPADGNPD 6.26 3.88 Y
C3 313 – 334 (3D7) DKHIKEYLNKIQNSLSTEWSPC 41.17 2.00 N
C4 374 – 397 (3D7) CSSVFNVVNSSIGLIMVLSFLFLN 65.95 1.22 Y
ICS1c 374 – 397 (3D7) CSSVFNVVNSSIGLIMVLSFLFLN 65.95 1.22 Y
ICS2 TH2R/R2 Variant ITDYLKKIQNSLSTEWSPCS 45.19 4.00 N
ICS3 TH2R/R2 Variant DQHIEQYLKKIQNSISTEWS 35.01 2.24 N
ICS4 TH2R/R2 Variant DQHIEQYLKTIQNSLSTEWS 27.15 2.39 N
ICS5 TH2R/R2 Variant DQHIEKYLKIIQNSLSTEWSP 47.79 1.89 N
ICS6 TH2R/R2 Variant IKKYLKKIKNSISTEWSPCS 41.12 2.93 N
ICS7 TH2R/R2 Variant IEQYLKKIQYSLSTEWSPC 27.04 2.10 N
ICS8d 313 – 334 (3D7) DKHIKEYLNKIQNSLSTEWSPC 41.17 2.00 N
ICS9 TH2R/R2 Variant DKHIEKYLKRIQNSLSTEWS 41.67 2.79 N
ICS10 TH2R/R2 Variant DQHIEKYLKTIKNSLSTEWS 36.14 2.35 N
June 2021 | Volume 1
aAmino acid address for the 3D7 strain or TH2R/R2 variant is indicated.
bAmino acid sequences for the HLA binding cores (bold) and flanks are shown.
cICS1 sequence output from the EpiAssembler analysis matched the C4 sequence (3D7).
dICS8 sequence output from the EpiAssembler analysis matched the C3 sequence (3D7).
FIGURE 2 | EpiMatrix predicted class II T cell epitope coverage for PfCSP 3D7. Major regions of PfCSP (top) are shown aligned with predicted class II T cell epitope
clusters (bottom). Areas of darker blue indicate higher numbers of predicted epitopes while white areas indicate a lack of predicted epitopes. ClustiMer outputs are
shown as black and grey lines where C1-C4 represent the four identified epitope clusters, non-inclusive of the two predicted clusters overlapping the signal
sequence (SS). C’ represents a pseudo-cluster containing only a few predicted epitopes. The repeat region, highly conserved regions (R1 and R2), and highly
variable regions (TH2R and TH3R) of CSP are depicted.
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output is provided in Table S2. With regard to clusters SS1 and
SS2, as CSP is already on the surface of sporozoites within the
mosquito salivary glands, the predicted clusters overlapping the
signal sequence were not selected for further analysis. In
addition, given that the goal of the in silico analysis was
identification of promiscuous class II T cell epitopes, the
pseudo-cluster was not selected for further analysis as it
contained a limited number of predicted epitopes. Thus,
based on these in silico assessments, clusters C1-C4 were
selected for further analysis.

In Silico T Cell Epitope Analysis of PfCSP
Sequence Variants
In addition to the class II clusters within PfCSP 3D7,
identification of additional predicted T cell epitopes within the
reference database sequences (539 PfCSP variants) was
performed utilizing the EpiMatrix, JanusMatrix, Conservatrix,
and EpiAssembler algorithms. For this analysis, the level of
PfCSP variant sequence cross-conservation was assessed with
these tools to identify predicted epitopes that are conserved
across the set of sequence variants. Output from this analysis,
when comparing the database of PfCSP sequence variants to the
PfCSP 3D7 sequence, showed three clusters of predicted class II
epitopes with particularly well conserved TCR contours, one
cluster with moderately conserved TCR contours, and one
cluster with poorly conserved TCR contours (Table S3). The
three highly-conserved clusters (which overlap the positions 20 –
37, 53 – 76, and 80 – 103 of PfCSP 3D7, or C1, C2, and C’,
respectively) are identical at all TCR-facing positions and
conserved at the HLA binding positions with respect to >80%
of the PfCSP sequence variants. Thus, we anticipate that T cell
responses targeting these sequences may also target homologous
sequences from many PfCSP variants. The one moderately
conserved cluster (which overlaps the position 374 – 397 of
PfCSP 3D7 or C4) contains TCR- and HLA-facing residues
conserved with respect to 62% of the PfCSP sequence variants.
Lastly, the cluster with poorly conserved TCR contours overlaps
the position 313-334 of PfCSP 3D7 (or C3) and is quite variable,
as these residues intersect the CSP TH2R domain. The TCR- and
HLA-facing residues of the PfCSP 3D7 C3 sequence are only
conserved with respect to 19% of PfCSP sequence variants.
Therefore, we anticipate T cell responses targeting this
sequence may stimulate T cells that only react to a limited
number of other PfCSP variants. Given the lower cross-
conservation in the C-terminal region of the PfCSP sequence
variants, we anticipated that additional predicted class II epitopes
might be found in this region of the protein. Therefore,
Conservatrix outputs were applied for the EpiAssembler
analysis to identify class II HLA epitope clusters across the set
of PfCSP sequence variants by assembling overlapping predicted
epitopes into ICS representing the class II epitope clusters with
the highest predicted immune potential from 539 PfCSP
sequence variants (with 329 variants including residues in the
N-terminal region of the protein and 525 variants include
residues in the C-terminal region of the protein). Output from
the EpiAssembler analysis yielded a total of three ICS from the
N-terminal region of PfCSP – these were identical to the
Frontiers in Immunology | www.frontiersin.org 7
predicted PfCSP 3D7 clusters (i.e., C1, C2, and ‘C) – and ten
ICS from the C-terminal region of PfCSP, two of which were
identical to the predicted PfCSP 3D7 clusters (i.e., ICS1 = C4 and
ICS8 = C3) and eight of which were novel clusters that contained
variants of the TH2R domain sequence (Table 1). Regarding the
eight novel clusters, all eight had EpiMatrix cluster scores above
ten, suggesting good immune potential, and seven of these had
JanusMatrix cluster scores above the 2.0 threshold (i.e., human-
ness flags suggesting increased potential for a Treg response).
Additional information regarding the JanusMatrix output is
provided in Table S2.

In Vitro HLA-Peptide Binding Analysis
In order to validate the in silico HLA binding predictions, a
subset of the predicted class II T cell epitope clusters were
synthesized as peptides and evaluated for HLA-DRB1 allele
binding using an in vitro competition assay whereby test
peptides compete for binding with a fluorescently-labeled
positive control peptide known to strongly bind the subject
HLA-DRB1 allele (Table S4). The subset of clusters selected
for this analysis included the four PfCSP 3D7 clusters of interest
(C1-C4) and three ICS (ICS2, ICS5, and ICS7). As ICS2-ICS10
(the TH2R/R2 variants) have some sequence overlap, the three
ICS were selected based on variation in the HLA-facing residues
as compared to C3. The seven clusters (synthesized as peptides)
were assessed for binding using a panel of eight HLA-DRB1
alleles that included: *0101, *0301, *0401, *0701, *0801, *1101,
*1301 and *1501. Note that HLA-DRB1*0901 was not included
in the panel due to the lack of a suitable commercially-available
reagent. For each test peptide, the concentration that inhibited
50% of the specific HLA binding by the control peptide was
calculated as IC50. These IC50 values were used to gauge affinity
of the test peptide, with lower IC50 values indicating greater
affinity (Table S5). To better understand the level of concordance
between in vitro HLA binding and in silico HLA binding
prediction, IC50 was plotted against the significant EpiMatrix Z
score count (i.e. number of predicted epitopes) for each cluster
by HLA-DR. We found that increased binding affinity for an
HLA-DR allele trended with increased numbers of significant Z
score counts for the associated HLA-DR allele (Figure 3).
Overall, an accuracy of 79% was found between the in silico
HLA-DR binding predictions and the in vitro HLA-DR allele
binding for the peptides tested (Table S6). Given the relatively
low significant Z score counts for C1 (Table S1) and overall lack
of high affinity HLA binding with this sequence (Table S5), the
C1 cluster was dropped from further study.

Ex Vivo Human PBMC Immunogenicity
Assessments
The eleven class II epitope clusters of interest (C2, C3/ICS8, C4/
ICS1, ICS2-ICS7, ICS9, and ICS10) were assessed for the ability
to elicit recall responses using the MIMIC® platform. This
platform simulates immune responses from a diverse human
population using the PBMCs of individual donors to recapitulate
each individual’s human immune response (37). Autonomy of
each donor is maintained resulting in an ex vivo test system that
is functionally equivalent to the donor’s own immune system and
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designed to respond in a similar manner as that seen in vivo. One key
aspect of this platform is that the lymphoid tissue equivalent (LTE)
module simulates adaptive immune responses through DC priming
and production of activated T cells and cytokines, to mirror cellular
immune response within a human lymph node. In other words, the
cells of PfCSP naïve donors can be used in this platform, as the LTE
module provides the mechanism for DC antigen presentation and T
cell priming to the peptides of interest. Further, assessment of recall
multifunctional cytokine responses (to the peptides) is then possible
utilizing the primed DC/T cell co-cultures. For each peptide, the
number and magnitude of CD4 cytokine-producing T cells was
evaluated across a panel of five cytokines, IFN-g, TNF-a, IL-2, IL-4,
Frontiers in Immunology | www.frontiersin.org 8
and IL-10. This panel included T helper cell type 1 (Th1) response
markers (IFN-g, TNF-a, and IL-2), a T helper cell type 2 (Th2)
response marker (IL-4), and a marker for Treg response (IL-10).
Overall, the most prevalent Th1 responses were IFN-g, followed by
TNF-a and then IL-2. The percentage of donors with IFN-g recall
responses to each peptide is shown for each HLA allele in Table 2.
Positive responses were calculated based on a stimulation index (SI)
of 1.5-fold above the baseline. For IFN-g recall responses the median
SI was the lowest for ICS4 (0.74) and the highest for ICS7 (1.75),
while the SI range across all donor/peptide combinations was 0.17 to
24.05. For reference, a representative set of flow cytometry CD4
+CD154+IFN-g+ cytokine responses is provided in Figure S4. With
TABLE 2 | Percentage of Donors by HLA Type Demonstrating IFN-g Responses to Peptides Comprised of PfCSP Predicted Epitope Clusters.

Cluster
ID

HLA Allele

DR1 DR3 DR4 DR7 DR8 DR9 DR11 DR13 DR15

C2 20% 33% 0% 0% 0% 25% 0% 0% 29%

C3/ICS8 20% 33% 50% 50% 75% 50% 25% 0% 29%

C4 20% 17% 30% 0% 25% 0% 50% 29% 0%

ICS2 40% 33% 40% 50% 50% 0% 25% 57% 43%

ICS3 80% 33% 30% 75% 0% 0% 25% 0% 14%

ICS4 0% 0% 30% 0% 0% 0% 0% 0% 29%

ICS5 80% 33% 60% 75% 25% 50% 100% 43% 43%

ICS6 20% 50% 40% 50% 25% 50% 50% 43% 43%

ICS7 60% 67% 70% 75% 75% 50% 25% 86% 43%

ICS9 40% 50% 70% 75% 50% 50% 75% 43% 57%

ICS10 20% 33% 40% 75% 0% 25% 50% 29% 57%

N 5 6 10 4 4 4 4 7 7
June 202
1 | Volume 12 |
A Stimulation Index greater or equal to 1.5-fold above baseline is used to specify a positive donor response. The percentage of responding donors, by HLA allele for each predicted 3D7
and ICS cluster, is shown numerically along with color-coding to indicate higher percentages of responders with darker blues. The number of HLA-matched donors (N) for each allele is
shown in the bottom row. A total of 30 donors were included in this study.
FIGURE 3 | Increasing HLA-DR Allele Binding Affinity Trends with Increasing EpiMatrix Significant Z Score Count. For the class II clusters C1-C4, ICS2, ICS5, and
ICS7, in vitro HLA binding affinity to DR1, DR3, DR4, DR8, DR11, DR13, and DR15 alleles was plotted against the number of in silico predicted epitopes for the
subject HLA-DR. In general, higher in vitro HLA-DR affinity was seen for those alleles with higher numbers of in silico predicted epitopes within a cluster.
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one exception (ICS4), the highest percentage of donors with IFN-g
responses across the HLA-DR allele set were seen with the TH2R/R2
variants (i.e., C3/ICS8, ICS2, ICS3, ICS5-ICS7, ICS9, and ICS10).
Similar results were found for TNF-a and IL-2 (Tables S7 and S8,
respectively). With regard to Th2 responses, a relatively low
percentage of IL-4 recall responses were seen (Table S9). This was
also the case for the Treg response marker, in that a relatively low
percentage of donors showed IL-10 recall responses (Table S10). Of
note is that C2 and ICS6 had the highest percentage of IL-10 recall
responses across the donor set. Further, the JanusMatrix cluster
scores for these two sequences were elevated, 2.59 and 2.93,
respectively. While ICS2 and ICS10 also had elevated JanusMatrix
cluster scores, the percentage of IL-10 recall responses seen to these
peptides was not as high. In addition to evaluating donor responses
to individual cytokines, we also looked at multifunctional T helper
cell cytokine profiles, which serve as the primary readout of T cell
immunogenicity assessments performed with the MIMIC® LTE
module. Multifunctional response profiling of the generated T cell
sets was performed by multilayered Boolean data analysis; whereby,
data are represented as circular pie charts showing the number of
functions (i.e., the number of cytokines secreted) in grey, with darker
Frontiers in Immunology | www.frontiersin.org 9
colors denoting an increased number of functions, and type of
function (i.e., cytokine secreted) in color, shown as broken
concentric circles (Figure 4). A total of 31 individual cytokine
combinations of IFN-g, TNF-a, IL-2, IL-4, and IL-10 produced by
individual CD4 T cells were possible. The proportion of the total
response of each cytokine alone or in any combination produced at
the single-cell level reflects the quality of the response. Additionally,
the overall magnitude of the combined cytokine response is
represented for each peptide by size of the circular chart. Based on
the percentage of donor recall responses, multifunctional response
profiles, and magnitude of the overall cytokine responses, the
standouts from the MIMIC® platform assessment were C3/ICS8,
ICS5, ICS7, and ICS9.

Sequence Conservation and Predicted
Coverage for TH2R/R2 Sequence Variants
To assist with final class II cluster downselection, an epitope
sequence conservation analysis was performed to evaluate
epitope coverage and geographic region for sequences within
the custom database relative to the TH2R/R2 variants. In total,
478 PfCSP sequence variants contained the full PfCSP TH2R/R2
FIGURE 4 | Multifunctional Cytokine-Producing CD4 T Cell Response Profiles to Peptides Comprised of PfCSP-Predicted Epitope Clusters. Circular pie charts
represent median response across all 30 donors (i.e., individual pie charts represent the median value of the summation of total magnitude for the combined cytokine
responses from all the donors for each peptide). The proportion of single-, double-, and triple-function T cells is shown in grey tones (pie slices). The colored arcs
highlight the total proportions of T cells secreting a particular cytokine or combination of cytokines. Relative magnitude of the overall median response (for all 30
donors to a peptide) can be gauged by size of the pie chart, with greater magnitude response represented by larger pie charts.
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domains and were used for this analysis, matching the predicted
epitopes within each of the ICS to the set of 478 variants. Results
of this analysis are represented as a heat map showing the
number of epitope matches for each PfCSP sequence variant
along with the geographic region where the sequence variant was
isolated (Figure 5). Of note is that ICS2 has epitope conservation
across a broad geographic range, including PfCSP variants
isolated in Africa, East Asia/Pacific, Latin America, and South
Asia. Further, ICS7 has epitope conservation with a set of East
Asia/Pacific origin variants not seen in the other ICS. In
consideration of T cell recall response cytokine profiles and
epitope conservation across PfCSP sequence variants,
respecting both geographical origin and number of variants, we
recommend the following class II epitope clusters for future
PfCSP vaccine development: C3/ICS8, ICS2, ICS5, ICS7,
and ICS9.
DISCUSSION

We systematically identified and characterized a set of PfCSP
class II epitope clusters by establishing a workflow that combined
computational vaccinology tools, laboratory analysis techniques,
and sequence conservation analysis. In silico analysis to predict
class II epitope clusters within PfCSP was performed using the
PfCSP 3D7 vaccine strain and 539 PfCSP sequence variants as
input sequences. Six class II epitope clusters were predicted in the
PfCSP 3D7 sequence and ten class II epitope clusters (ICS) were
predicted from the 539 PfCSP sequence variants. We
Frontiers in Immunology | www.frontiersin.org 10
downselected four clusters of interest from the PfCSP 3D7
sequence outputs, based on the number of predicted epitopes
in the cluster, breadth of HLA-DRB1 alleles the epitopes were
predicted to bind, and the cluster location. As two of the ten ICS
overlapped PfCSP 3D7 sequences, the eight remaining ICS were
downselected as of interest, all of which overlapped the TH2R/R2
region of PfCSP. This set of downselected clusters was further
curated based on results of laboratory assays including in vitro
assessments of HLA-DRB1 allele binding and ex vivo
assessments of CD4 T cell recall responses, the latter resulting
in multifunctional cytokine profiles characterized by increased
IFN-g, TNF-a, and IL-2 production and relatively little IL-4 and
IL-10 production. We prioritized those class II epitope clusters
capable of simulating multifunctional T cell responses for IFN-g,
TNF-a and/or IL-2, as a correlation between vaccine-induced
sterile protection and induction of multifunctional T cells
expressing high amounts of these cytokines has been
demonstrated (41) and T cells simultaneously secreting more
than one cytokine provide optimal effector function (42).
Moreover, this basis for prioritization aligns with the finding
that protected RTS,S vaccinees have a significantly higher
frequency of multifunctional cytokine CD4 T cell responses as
compared to unprotected vaccinees (4). With regard to final
downselection, the clusters of most interest were evaluated for
epitope conservation across 478 PfCSP sequence variants to
ensure that final class II epitope cluster selection reflected the
sequences most capable of eliciting cognate T cell help across
PfCSP strains. The final selectees represent five variants of the
PfCSP TH2R domain that have been shown to prime DC and T
FIGURE 5 | PfCSP Isolate Coverage Map for TH2R/R2 Epitope Cross-Conservation. An epitope sequence cross-conservation analysis was performed to determine
the number of matching predicted epitopes between each ICS and the 478 PfCSP isolates evaluated to identify the ICS. The Pf isolates are shown horizontally,
grouped by geographical region, and the number of isolates for each geographical region (N) is indicated. Areas of darker colors indicate higher numbers of
matching predicted epitopes while white areas indicate a lack of matching predicted epitopes. *ICS8 is the 3D7 sequence and identical to the C3 sequence.
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cell cultures, elicit multifunctional Th1 cytokine responses, and
reflect a sequence set with epitope conservation across a large
number of PfCSP variants. Notably, three of these final selectees
(C3/ICS8, ICS7, and ICS9) were identified in the early ex vivo
T cell simulation studies using PBMCs from malaria-exposed
individuals (8).

Several aspects of this analysis strongly suggest thatCSP is under
immune pressure with regard to generation of cognate T cell help
populations. Overall, based on size of this protein, the number of
predicted class IIT cell epitopeswithinPfCSP3D7 is fairly low.This
is indicated by relatively low overall class II epitope EpiMatrix score
of -20 for the protein (proteins with overall EpiMatrix scores of +20
and higher are considered to have strong immune potential).
Further, the conserved PfCSP class II T cell epitope clusters that
showed good immune potential, based on in silico analysis (C2 and
C4), demonstrated the most limited ex vivo responses across the
broad set of HLA alleles represented among the 30 donors.
However, the most variable epitope clusters C3 and TH2R/R2
variants generally demonstrated the broadest responses across the
30 donors. In the human host, elicitation of poor/limited T cell
responses to conserved regions of PfCSP is of advantage to the
parasite as an immune evasion strategy. Based on this, and in
consideration of the in silico analysis, ex vivo studies, and predicted
strain coverage, we recommend five ICS for CSP vaccine
development (C3/ICS8, ICS2, ICS5, ICS7, and ICS9) to expand
the available cognate T cell help in a manner that facilitates cross-
strain coverage.

The primary T cell subset that provides cognate T help and
drives antibody responses is Tfh, which play a central role in B cell
affinity maturation, isotype switching and memory (20). Further,
robustness and longevity of such humoral responses are regulated
by the interplay betweenTfh and Tfr (21, 22). Based on this and the
relatively short-livedhumoral responses seenwithRTS,S (1), class II
epitope clusters with a high potential to activate Treg should be
circumvented in order to best optimize humoral responses. To this
end, ourworkflow included assessments using the JanusMatrix tool
to identify cross-conservation of the identified epitope clusters with
the human proteome as a means to flag Treg cell activation
potential. Further, our ex vivo CD4 T cell simulation assessments
found that a relatively low percentage of donors produced IL-10,
suggesting minimal Treg cell activation.

In addition to avoiding vaccine antigens containing sequences
with cross-conservation to the human proteome, other strategies
to modulate Treg suppression during vaccination are actively
being researched and include efforts to develop novel adjuvants
that induce effector T cells while modulating Treg activity or
recruitment (43–45). For example, targeting C-C chemokine
receptor 4 expression on Treg cells, in experimental models,
enhanced T and B cell responses using various antigens (43, 45).
Further, as programmed cell death (PD1) expression in Treg cells
is indispensable for their suppressive functions (46) and PD1
upregulation upon naïve T cell activation plays a regulatory role
in naïve-to-effector T cell differentiation (47), modulation of PD1
signaling may increase vaccine induced, antigen-specific
responses. In this regard, we have recently demonstrated that
when a peptide-based PD1 antagonist is prophylactically-
Frontiers in Immunology | www.frontiersin.org 11
combined with an adenovirus-based or irradiated sporozoite-
based malaria vaccination, antigen-specific CD8 T cell expansion
is enhanced (48). Additionally, with the same peptide-based PD1
antagonist, we found that therapeutic treatment of mice infected
with a lethal malaria strain resulted in survival that was
associated with lower numbers of Treg cells (48). When taken
together with the data suggesting poor immune response to
malaria infection is partially due to Treg cell activation and that
interference in regulation of immune checkpoint proteins can
lead to chronic malaria disease (24–26), we posit the need for
minimizing epitopes cross-conserved with the human proteome
and the inclusion of mechanisms to boost immune response
through modulation of checkpoint proteins such as PD1 in best
practice PfCSP vaccine development strategies. Moreover, we
suggest such strategies are particularly important based on the
relatively short-lived humoral responses found in RTS,S
vaccinees and to overcome possible immune dysfunction (e.g.,
T cell exhaustion) in vaccinees with past malaria exposure.

While the focus of this work centered on identification of
PfCSP class II epitope clusters, we recognize the possibility that
elicitation of CD8 T cell responses to PfCSP epitopes may be
relevant based on vaccine platform and/or in multi-antigen
vaccine context. To this end, the prediction and evaluation of
class I HLA-A and HLA-B epitopes was included as part of our
umbrella strategy for PfCSP vaccine development. Our work in
this area utilized the PfCSP 3D7 vaccine strain and 539 PfCSP
sequence variants as input sequences for in silico epitope
prediction across a panel of six class I HLA-A and HLA-B
alleles (A*0101, A*0201, A*0301, A*2402, B*0702, B*4402) and
included assessment of in vitro HLA binding via a competition
assay format (see Table S11 for reference peptide sequences) to
77 of the predicted epitopes synthesized as peptides (Table S12).
Overall, 58% of the predicted class I epitopes that were tested
bound the class I HLA allele (in vitro) that they were predicted to
bind (Table S13). Only three of the predicted class I HLA
epitopes were assessed for CD8 T cell response stimulation in
the MIMIC platform. While all three of these sequences were
previously shown to be determinants of CD8 T cell responses
(49–51), only one demonstrated strong cytokine recall responses
across multiple donors (Table S14) and these responses were
multifunctional for IFN-g, TNF-a, and IL-2 (Table S15).
Notably, this epitope overlaps the PfCSP 3D7 TH2R region.

In consideration of future vaccine construct development
with the downselected ICS, selection of an appropriate vaccine
platform is critical. The sequence and structure of the TH2R/R2
domain variants may complicate vaccine development due to the
presence of hydrophobic residues and the secondary structure;
this region forms an alpha helix that interacts with and/or is
stabilized by two beta sheets (52). Therefore, due consideration
of the sequences for inclusion in a PfCSP vaccine should inform
platform selection. Further, inclusion of B cell epitopes is critical
in CSP vaccines where expanding the cognate T help repertoire is
intended to increase protective antibodies in a manner that
provides efficacy when vaccinees are challenged/infected with
either homologous or heterologous PfCSP strains. While
identifying the optimal composition of the B cell epitopes for
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inclusion in a PfCSP vaccine is outside the scope of work detailed
herein, we recommend that this also be taken into account when
selecting a vaccine platform. Lastly, although vaccine construct
development and evaluation of ex vivo T cell response profiles with
these sequences as part of a vaccine construct was also outside of
our scope of work, we highly recommend such studies (using
human PBMCs) prior to advanced PfCSP vaccine development.
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