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Purpose: Proliferative vitreoretinopathy (PVR) is the most common cause of failure of retinal reattachment
surgery, and the molecular changes leading to this aberrant wound healing process are currently unknown. Our
ultimate goal is to study PVR pathogenesis by employing single-cell transcriptomics to dissect cellular
heterogeneity.

Design: Here we aimed to compare single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA-
sequencing (snRNA-seq) of retinal PVR samples in the rabbit model.

Participants: Unilateral induction of PVR lesions in rabbit eyes with contralateral eyes serving as controls.
Methods: Proliferative vitreoretinopathy was induced unilaterally in Dutch Belted rabbits. At different time-

points after PVR induction, retinas were dissociated into either cells or nuclei suspension and processed for
scRNA-seq or snRNA-seq.

Main Outcome Measures: Single cell and nuclei transcriptomic profiles of retinas after PVR induction.
Results: Single-cell RNA sequencing and snRNA-seq were conducted on retinas at 4 hours and 14 days

after disease induction. Although the capture rate of unique molecular identifiers and genes were greater in
scRNA-seq samples, overall gene expression profiles of individual cell types were highly correlated between
scRNA-seq and snRNA-seq. A major disparity between the 2 sequencing modalities was the cell type capture
rate, however, with glial cell types overrepresented in scRNA-seq, and inner retinal neurons were enriched by
snRNA-seq. Furthermore, fibrotic Müller glia were overrepresented in snRNA-seq samples, whereas reactive
Müller glia were overrepresented in scRNA-seq samples. Trajectory analyses were similar between the
2 methods, allowing for the combined analysis of the scRNA-seq and snRNA-seq data sets.

Conclusions: These findings highlight limitations of both scRNA-seq and snRNA-seq analysis and imply that
use of both techniques together can more accurately identify transcriptional networks critical for aberrant
fibrogenesis in PVR than using either in isolation.
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Proliferative vitreoretinopathy (PVR) is among the most
important causes of visual morbidity in patients with retinal
diseases, and its treatment is a major unmet need. Prolifer-
ative vitreoretinopathy is analogous to an aberrant wound
healing process that stiffens and distorts the normally pliant
retina and disrupts its natural conformance to the curved
posterior eye wall.1 Early-stage PVR is characterized by
retinal stiffening and contraction; retinal pigment epithelium
(RPE) cells and activated Müller glia are thought to play
important roles at this stage.2,3 Disease progress involves
retinal traction and detachment and, ultimately, vision
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loss. Triggers of PVR include retinal detachment, infection
or inflammation, penetrating injury, hemorrhage, and,
most frustratingly, the incisional retinal surgery that is
often used to treat these conditions.4 Multiple episodes of
reparative surgery are often required to reposition the
retina and mitigate against further vision loss.

Aside from RPE cells and Müller glia, multiple other
retinal cell types may be involved in early and/or late PVR
development, yet the temporal cascade of molecular changes
in various cell types remain poorly understood. This knowl-
edge gap is further compounded by processes that cause cells
1https://doi.org/10.1016/j.xops.2023.100335
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to substantially alter their gene expression profiles, such as
epithelial-to-mesenchymal transition in which RPE cells as-
sume contractile properties.5 In general, molecular data
regarding PVR have come from bulk analysis.6,7 The lack
of information on temporally resolved, cell-specific gene
expression changes has impeded research on developing
rational pharmacologic treatment to target the specific path-
ways that initiate or drive progression of PVR.

To address this knowledge gap, we aimed to study PVR
pathogenesis using single-cell transcriptomic analysis. Over
the last few years, this approach has been used in multiple
species to identify molecular markers of virtually all retinal cell
subtypes,8e10 identify gene regulatory networks controlling
retinal development and regeneration,11e14 and identify mo-
lecular changes associated with onset and progression of dis-
ease.15e17 Single-cell transcriptomics can be conducted using
single-cell RNA sequencing (scRNA-seq), in which entire
dissociated cells are profiled, or using single-nucleus RNA
sequencing (snRNA-seq) on isolated cell nuclei.18,19 Both
approaches have been reported to have specific advantages
and disadvantages.20e22 Single-cell RNA sequencing cap-
tures larger numbers of fully spliced mRNA species, capturing
both cytoplasmic and nuclear transcripts, but is not usable in
analysis of frozen or fixed tissue. SnRNA-seq, on the other
hand, is suitable for analysis of archival material and efficiently
captures nuclear transcripts but is enriched for un- or partially
spliced transcripts.23,24 Selective loss of individual cell types
has also been reported for the 2 approaches, with loss of
large, mature neuronal subtypes in brain and retina, and
fibrotic cells in the kidney with scRNA-seq.12,25e27 In
contrast, depletion of active microglia has been reported in
brain snRNA-seq libraries.28

Although both scRNA-seq and snRNA-seq have been
extensively used in the retina, a systematic comparison of
the 2 approaches using the same input material has not been
conducted. As a result, it is not clear to what extent the
limitations of the 2 approaches apply, particularly in the
study of complex retinal disease. Likewise, little is known
about the relative accuracy and efficiency of these methods
in the retina of adult mammalian species other than mice. In
this study, we use both scRNA-seq and snRNA-seq to
globally profile cellular transcriptomic changes in a rabbit
surgical model of PVR. In addition to large differences
between the 2 approaches in the relative abundance of major
cell types, we also observe differences in the efficiency of
capture of fibrotic and reactive Müller glia, differences in
the overall levels of cellecell contamination, and differen-
tial expression of many individual genes. These findings
highlight the limitations of each approach and imply their
combined use may prove more effective at profiling global
transcriptional changes in disease.
Methods

PVR Induction

All animal experiments were performed in accordance with the
guidelines for the Use of Animals in Ophthalmic and Vision
Research of the Association for Research in Vision and Ophthal-
mology, approved by the Johns Hopkins University’s Institutional
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Animal Care and Use Committee and in adherence with the
ARRIVE 2.0 Guidelines. Dutch Belted rabbits (Robinson Services
Inc) weighing 1.0 to 4.0 kg were maintained in a temperature-
controlled, 12-hour light cycle environment with ad libitum food
and water. Briefly, animals were anesthetized with ketamine (35
mg/kg IM) and xylazine (5 mg/kg IM), intubated, and maintained
on isoflurane. Unilateral induction of PVR lesions was achieved
via lensectomy, pars plana vitrectomy retinotomy, and extensive
retinal detachment induction followed by retinal cryotherapy and
intravitreal autologous platelet-rich plasma injection; contralateral
eyes served as controls.
Cell Dissociation

Rabbits were euthanized, and eyes were enucleated and placed in
Hank’s Balanced Salt Solution. Control tissue or PVR lesions were
dissected en bloc and transferred to ice-cold media containing
Hibernate A, 1� B27 supplement, and 1� GlutaMAX (Thermo-
Fisher). The tissue was then dissociated using the Papain Disso-
ciation System (Worthington). Briefly, samples were incubated in
the papain/DNAse mixture for 30 minutes at 37�C, with gentle
inversion every 5 minutes until most of the tissue broke apart. The
cell suspension was triturated 10 times using a wide-bore pipette
before being mixed in a 1:1 ratio with 0.1� albumin-ovomucoid
inhibitor and DNAse in EBSS. The cell:inhibitor mixture was
carefully layered on top of 1� albumin-ovomucoid inhibitor in
EBSS and centrifuged at 70� g for 6 minutes at room temperature.
The cell pellet was resuspended in ice-cold, PBS-containing,
0.04% bovine serum albumin (BSA) and 0.5 U/mL RNasin Plus
RNase inhibitor (Promega) to achieve a concentration of
w750e1200 cells/mL. Cell concentration and viability were
assessed using a combination of trypan blue and DAPI staining.
Nuclei Lysis

Nuclei were isolated following a modified version of 10� Geno-
mics’ isolation of nuclei from embryonic mouse brain tissue.
Harvested PVR lesions were first homogenized in 1 ml of chilled
lysis buffer (10 mMTris-HCl, 10 mM NaCl, 3 mM MgCl2, 0.01%
Nonidet P40) using an RNase-free pestle. This suspension was
incubated on ice for 15 minutes and then triturated 10 times using a
wide-bore pipette. The sample was passed through a 70 mm
Flowmi filter and centrifuged at 600� g for 5 minutes at 4�C. The
supernatant was discarded and the nuclei pellet was resuspended in
1 ml nuclei wash and resuspension buffer (1� PBS with 1% BSA
and 0.2 U/mL RNase inhibitor) and filtered through a 40 mm
Flowmi filter to remove cell debris and large clumps. The centri-
fugation, resuspension, and filtering was repeated once more before
the nuclei were resuspended in the proper volume of nuclei wash
and resuspension buffer to achieve a concentration of w750e1200
nuclei/mL. Nuclei concentration was assessed using a combination
of trypan blue and DAPI staining.
scRNA-seq Library Construction and
Sequencing

Single-cell RNA-sequencing and snRNA-seq were performed on
dissociated retinal cells or nuclei using the Chromium Next GEM
Single-Cell 3ʹ Reagent Kits v3.1 (10� Genomics). Briefly, retinal
cells or nuclei (w16 000 cells per sample) were loaded into the
10� Chromium controller and downstream scRNA-seq or snRNA-
seq libraries were generated and indexed by following the manu-
facturer’s instructions. Libraries were pooled and sequenced on
Illumina NovaSeq 6000 targeting 50 000 reads per cell.
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scRNA-seq Analysis

Sequencing reads were demultiplexed and aligned to the Ory-
Cun2.0 rabbit reference genome using the Cell Ranger 6.1.2
mkfastq and count pipeline (10� Genomics, Pleasanton, CA), us-
ing default parameters for scRNA-seq or using the –include-introns
flag for snRNA-seq and for scRNA-seq with intron mapping
analysis. The generated cell-by-gene count matrix was then used
as the input for downstream analysis. The count matrix was
analyzed using the Seurat 4.0 R package.29 Metadata
corresponding to sample, injury time point, and modality were
added and merged into cell-only, nuclei-only, or combined
Seurat objects. Cells and nuclei that had <500 unique molecular
identifiers (UMIs) or > 50 000 UMIs along with cells that had >
25% mitochondrial content or nuclei that had > 2% mitochondrial
content were filtered out. Doublets were identified and removed
using the scDblFinder R package.30

The cell, nuclei, and combined data sets underwent normalization,
variable feature selection, and scaling using the default parameters in
Seurat’s NormalizeData, FindVariableFeatures, and ScaleData
functions. Principal components were then calculated based on the top
2000 variable features and batch corrected using the Harmony R
package.31 UniformManifold Approximation and Projection (UMAP)
dimension reduction was performed on the top 10 corrected principal
components, and clusters were computed using Seurat’s
FindNeighbors and FindClusters functions. Cell types were then
identified in the cell and nuclei data sets using a list of known
marker genes that were used previously and then transferred into
the combined data sets.13,32,33 Cell type similarities between the cell
and nuclei data sets were then calculated on all variable features
using the MetaNeighbor R package.34

Before identifying differentially expressed genes between the
cells and nuclei, the combined data set was randomly down-
sampled so that each cell type had equal numbers from either
sequencing modality to reduce bias due to over representation of
certain cell types in either data set. Differentially expressed genes
between cells and nuclei were determined using the Wilcoxon rank
sum test. The clusterProfiler R package was used to perform gene
ontology enrichment analysis of biological processes found in the
differentially expressed gene lists.35

To determine the different cell states of Müller glia, the Müller
glia from the combined data set was subsetted and randomly
downsampled so that each sequencing modality had equal contri-
bution. The data were renormalized and scaled with the gene
number, and UMI variables were regressed out. Principal compo-
nents were calculated based on the top 2000 variable features and
Harmony batchcorrected using the sample identification and mo-
dality variables for removal. The cell state scores of Müller glia
were calculated by the UCell R package using known genes of
resting and reactive glia and fibrotic cells identified in previous
studies.32,36,37 Using the control cells as the root, the Slingshot R
package was used to order the cells along a pseudotime lineage
and a negative binomial generalized additive model was fitted
using the fitGAM function of the tradeSeq R package.38,39 An
association test was used to determine gene expression changing
along the pseudotime lineage. The pseudotime analysis was also
replicated and compared using the monocle3 R package, and
differentially expressed genes along pseudotime were grouped
into modules using the find_gene_modules function.40 RNA
velocity was used to infer transcriptional dynamics and predict
the future state and transition of individual cells and nuclei in the
data set using the spliced and unspliced counts data generated by
velocyto python package and velocity calculated and visualized
using the scVelo python package.41,42
Data and Code Availability

All rabbit scRNA-seq and snRNA-seq data can be accessed at
GEO accession numbers GSE217333. Code used to analyze the
data sets in this study can be found at https://github.com/csanti88/
pvr_singlecell_vs_singlenucleiRNAseq_2022.
Results

To globally profile gene expression changes that occur
during the progression of PVR, we conducted scRNA-seq
and snRNA-seq on retina dissected from rabbits in which
PVR-like lesions had been induced by vitrectomy, reti-
notomy, and retinal detachment induced by saline injection,
platelet-enriched plasma injection, and cryotherapy to
induce scar formation.43,44 Retina tissue was extracted from
the lesion site, dissociated, split into 2 equal portions, and
then processed and analyzed using scRNA-seq or snRNA-
seq, respectively (Fig 1A and Table S1, available at
www.ophthalmologyscience.org). Three different treatment
conditions were profiled (uninjured control and both 4
hours and 14 days after PVR induction), thereby ensuring
a broad representation of disease progression.

We then combined data sets from all 3 timepoints for
scRNA-seq (Fig 1B) and snRNA-seq (Fig 1C) separately,
visualizing different cell types using UMAP analysis. Using
well-characterized cell type-specific marker genes, we were
able to readily identify every retina major cell type in each
data set, with the exception of astrocytes, which could be
clearly resolved in the scRNA-seq data set (Fig 1D, E; Fig
S1A, B, available at www.ophthalmologyscience.org).
Oligodendrocytes, which are not present in mouse or
human retina, are abundant in the rabbit retina and
myelinate the axons of retinal ganglion cells in structures
known as the medullary rays.45

We next combined these 2 data sets and quantified the
abundance of each major cell type. Overall, gene expression
profiles were very similar for individual cell types, and
combined UMAP analysis revealed that common cell type-
specific clusters detected by scRNA-seq and snRNA-seq
were essentially superimposable in the combined UMAP
plot (Fig 2A). Direct comparison of cell type-specific gene
expression profiles likewise showed very high correlation
between scRNA-seq and snRNA-seq profiles of individual
cell types, with these invariably being more closely corre-
lated than profiles of other cell types (Fig 2B).

However, we observed major differences in the relative
abundance of each cell type. Müller glia, cone photorecep-
tors, bipolar cells, and microglia were all overrepresented in
the scRNA-seq data set, whereas rod photoreceptors, ama-
crine cells, retinal ganglion cells, and oligodendrocytes were
enriched in the snRNA-seq data set. Horizontal cells were
roughly equally abundant in both samples (Fig 2C; Fig S2A,
available at www.ophthalmologyscience.org). Although a
comprehensive histological analysis of cell type ratios has
yet to be conducted in rabbit retina, it is clear that the
snRNA-seq data set provides, overall, a more accurate
reflection of the true abundance of these various cell types.
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Figure 1. All major retinal cell types are captured by single-cell RNA-sequencing (scRNA-seq) and single-nucleus RNA-sequencing (snRNA-seq). A,
Schematic summary of the study. Proliferative vitreoretinopathy (PVR) lesions were induced via lensectomy, pars plana vitrectomy, retinotomy, and
extensive retinal detachment induction followed by retinal cryotherapy and intravitreal autologous platelet-rich plasma injection. At different time points,
the lesions were dissected out, and cells were dissociated, or nuclei were isolated before profiling by scRNA-seq or snRNA-seq. B, C, Combined Uniform
Manifold Approximation and Projection (UMAP) projection of all cells (left) or nuclei (right) profiled in this study. D, E, Examples of gene expression
levels for selected cell type-specific genes for cells (left) or nuclei (right). RGC ¼ retinal ganglion cell.
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For instance, the rod:cone ratio as observed histologically is
20:146 versus 13:1 as measured by snRNA-seq and 1.7:1 as
measured by scRNA-seq (Fig S2C, available at www.
ophthalmologyscience.org). Likewise, the histologically
defined relative ratios of inner retinal cells are 27 (bipo-
lar):21 (amacrine):17 (Müller glia):1 (horizontal cells).47 We
observed that these were 12:4:48:1 for scRNA-seq and
7:17:9:1 for snRNA-seq (Fig 2C; Fig S2B, available at
www.ophthalmologyscience.org). Because roughly half of
all amacrine cells exist as displaced amacrine cells in the
ganglion cell layer,48 the ratios of cells profiled using
4

snRNA-seq closely match those defined using histological
approaches.

Next, we more closely examined differences in the gene
expression levels between the scRNA-seq and snRNA-seq
data sets. As expected, when data from all individual
cellular or nuclear profiles were aggregated, we observed
significantly greater numbers of UMI and individual genes
detected in scRNA-seq relative to snRNA-seq profiles
(Fig 3A). We likewise observed that expression of
individual genes was detected in a larger fraction of
individual scRNA-seq than snRNA-seq profiles (Fig 3B).
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Figure 2. Single-nucleus RNA-sequencing (snRNA-seq) has improved capture efficiencies for neuronal cell types. A, Uniform Manifold Approximation
and Projection (UMAP) embedding of single-cell RNA-sequencing (scRNA-seq) and snRNA-seq profiles showing profiles of the combined data set (left)
scRNA-seq (middle), and snRNA-seq (right), colored by the assigned cell type signatures. B, Heatmap of area under the receiver operating characteristics
(AUROC) scores of the combined data set between all retinal cell types based on highly variable genes. All replicating cell types cluster together after
applying hierarchical clustering. C, Bar plots of cell type proportions from each sequencing modality. RGC ¼ retinal ganglion cell.
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As expected, we also observed a vastly larger number of
spliced reads in the scRNA-seq data set when compared
with the snRNA-seq data set (Fig S3A, available at
www.ophthalmologyscience.org). Correspondingly, we
observed both common and cell type-specific differences
in the expression levels of mRNAs corresponding to specific
functional classes of genes in the scRNA-seq relative to the
snRNA-seq data set (Fig 3C). Transcripts encoded by genes
controlling protein synthesis, oxidative phosphorylation,
viral gene expression, synapse formation, and RNA
metabolism and splicing were enriched in scRNA-seq
samples from all cell types, whereas snRNA-seq samples
were enriched for transcripts encoding genes regulating
histone modification, GTPase activity, cellular morphogen-
esis, and dendrite development. Notable cell type-specific
differences in measured gene expression levels included
enrichment of transcripts regulating protein dephosphory-
lation and ciliogenesis in cone snRNA-seq, poly-
ubiquitination in microglial snRNA-seq, and neutrophil
degranulation in microglial scRNA-seq data sets. Overall,
we observed 2401 genes showing significantly higher
expression in the snRNA-seq data set, whereas in the
scRNA-seq data set we observed 2093 that showed higher
expression in � 1 cell types (Fig 3D; Fig S3CeI, available
at www.ophthalmologyscience.org). We also noted
substantial differences in the level of contamination of
individual cell types by genes specifically expressed in
other cell types in the 2 data sets, with snRNA-seq overall
showing lower levels of contamination relative to scRNA-
seq data, particularly for rod photoreceptor-enriched genes
(Fig S3B, available at www.ophthalmologyscience.org). A
recent study showed that inclusion of intronic reads
5
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Figure 3. Differences between single-cell and single-nucleus RNA-sequencing modalities. A, Boxplots showing that the unique molecular identifier (UMI)
capture rate (left) and the gene capture rate (right) is higher in cells versus nuclei. B, Binned scatterplot of the proportion of genes detected in cells vs.
nuclei. C, Split violin plots displaying the distribution of percentage transcripts that map to protein coding (top left), long noncoding RNA (top right),
mitochondrial (bottom left), and transcription factor genes (bottom right). D, Four thousand four hundred ninety-four genes are differentially captured in
the combined data set with 2401 genes expressed higher in nuclei and 2093 expressed higher in cells. The top 5 overrepresented gene ontology terms (GO)
are displayed on the left (nuclei) and right (cells) of the volcano plot.
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improved the sensitivity of scRNA-seq data sets.49

Including intron mapping in our scRNA-seq data
set allowed for increased UMI and gene capture rates and
lower mapping percentage of reads to mitochondrial genes
(Fig S3JeL, available at www.ophthalmologyscience.org).
However, 97% of the differentially captured genes
between cells with intron mapping and nuclei overlapped
with differentially captured genes when using cells
without intron mapping (Fig S3M, available at
www.ophthalmologyscience.org).

By analyzing multiple timepoints of PVR progression,
we were also able to investigate the efficiency with which
scRNA-seq and snRNA-seq captured differences between
resting, activated, and fibrotic Müller glial cells. We
investigated this by conducting combined UMAP analysis
of Müller glia from both scRNA-seq and snRNA-seq data
sets, incorporating equal number of cells from each data
set generated and timepoint profiled (Fig 4A). Using well-
characterized molecular markers,32,50e52 we then grouped
glia into resting, reactive, and fibrotic subgroups (Fig 4B).
Müller glia profiled by scRNA-seq showed much higher
overall enrichment for reactive glia (Fig 4D, E), whereas
glia profiled by snRNA-seq were much more likely to be
fibrotic (Fig 4D, E) and somewhat more likely to be in a
6

resting state, even after controlling for injury state.
Significant differences in the expression in the relative
levels of marker genes of specific glial states are also
observed between scRNA-seq and snRNA-seq data sets.
Pseudotime lineage analysis and RNA velocity analysis of
the individual data sets and the combined data set show
overlap of cellular transitions between glial cell states,
starting with control cells, followed by reactive and ter-
minating with fibrotic cells (Fig 4BeD,F; Fig S4AeC),
available at www.ophthalmologyscience.org.
Differential gene expression along pseudotime of the
combined data set also captures the majority of gene
changes seen in the individually analyzed data sets (Fig
4G, H). The analysis of differential expression between
postinjured and fibrotic Müller glia, compared with
control glia, using pseudobulk methods, revealed that
only approximately 25% to 35% of the significant genes
were shared between scRNA-seq and snRNA-seq data
sets. Notably, scRNA-seq identified genes related to
NADH metabolism, protein translation, and cell adhesion,
whiereas snRNA-seq identified genes associated with ki-
nase and GTPase activity (Fig S4DeG, available at
www.ophthalmologyscience.org). However, despite this
discrepancy, around 60% of the unique genes that were
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Figure 4. Integration of single-cell RNA sequencing (scRNA) and single-nucleus RNA sequencing (snRNA-seq) captures Müller glia transitional states
after proliferative vitrreoretinopathy induction. A, Schematic summary of integrating and combined analysis of scRNA and snRNA-seq data. BeD,
Uniform Manifold Approximation and Projection (UMAP) embeddings of the combined integrated (B), cells (C), and nuclei (D). Dots are colored by
injury timepoints (left), cell state with the respective combined expression of cell state specific genes (middle) and pseudotime with RNA velocity trajectory
predictions overlayed. E, Comparison of Müller glia transitional states proportions between injury timepoints of the combined data set (left) and sequencing
modalities (right). F, Density plots of injury timepoints (left) or cell states (right) plotted along pseudotime in the combined data set. G,Heatmap comparing
gene expression dynamics of common highly variable differentially expressed genes along pseudotime between scRNA-seq (left) and snRNA-seq (right). H,
Comparison of combined or modality-specific analysis of differentially expressed genes along pseudotime.
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differentially expressed in the nuclei data set exhibited a
similar trend in the cell data set, and roughly 65% of
the unique differentially expressed genes identified in
the cell data set displayed a comparable trend in the
nuclei data set.
Discussion

In this study, we performed a systematic comparison of
scRNA-seq and snRNA-seq data sets obtained from a
rabbit model of PVR across multiple stages of disease
7



Ophthalmology Science Volume 3, Number 4, December 2023
progression. Although both scRNA-seq and snRNA-seq
captured and accurately profiled gene expression in abun-
dant retinal cell types, we observed major differences be-
tween these data sets. Overall, cell type proportions
captured by snRNA-seq much more accurately reflected
cell composition data obtained from histological analysis.
Single-cell RNA sequencing overrepresented Müller glia
and microglia, as well as cone photoreceptor and bipolar
interneurons, but captured few amacrine cells and hardly
any retinal ganglion cells, oligodendrocytes, and astro-
cytes. This may have reflected relative differences in
viability during the dissociation and microfluidic steps of
library construction and has been observed in other tissue
sample preparations.26,53,54 Optimized dissociation
protocols such as gentle papain treatment or fixative
approaches such as rapid methanol fixation may be used
to partially overcome this sampling bias and improve the
capture efficiency of retinal neurons and rare cell
types.55,56 Furthermore, despite the greater overall
efficiency of Müller glia capture with scRNA-seq,
snRNA-seq more efficiently captures fibrotic glia.
Improved recovery of fibrotic cells with snRNA-seq has
previously been reported in kidneys26 and may reflect
greater difficulty in removing extracellular matrix
associated with these cells and thereby obtaining clean
dissociation. The greater level of rod and cone
photoreceptor contamination seen in scRNA-seq data sets
likely reflects inclusion of mRNA-containing inner
segment fragments, which may be less likely to
8

contaminate nuclear preparations, whereas the greater
levels of inner retinal cell contamination seen in snRNA-
seq may simply reflect the overall more efficient recovery
of these cell types.

Although these findings generally weigh in favor of
routine use of snRNA-seq for these studies, scRNA-seq
offers several potential overall advantages. The number of
transcripts and genes detected in each cellular profile are, as
expected, considerably higher than observed with snRNA-
seq. We likewise observe many differences in the expres-
sion of individual genes between cell-specific scRNA-seq
and snRNA-seq profiles. Transcripts encoding certain
functional categories of genes are consistently enriched in
either scRNA-seq or snRNA-seq data sets both across all
cell types and in individual cell types. Likewise, several
well-characterized marker genes for different Müller glia
activation states show dramatic differences in expression
levels between scRNA-seq and snRNA-seq data obtained
from identical biological samples. If resources allow, com-
bined use of both approaches may thus provide a more
comprehensive and useful data set for analyzing progression
of PVR than using either technique in isolation.
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