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Abstract: Wnt, a secreted glycoprotein, has an approximate molecular weight of 40 kDa, and
it is a cytokine involved in various biological phenomena including ontogeny, morphogenesis,
carcinogenesis, and maintenance of stem cells. The Wnt signaling pathway can be classified into
two main pathways: canonical and non-canonical. Of these, the canonical Wnt signaling pathway
promotes osteogenesis. Sclerostin produced by osteocytes is an inhibitor of this pathway, thereby
inhibiting osteogenesis. Recently, osteoporosis treatment using an anti-sclerostin therapy has been
introduced. In this review, the basics of Wnt signaling, its role in bone metabolism and its involvement
in skeletal disorders have been covered. Furthermore, the clinical significance and future scopes of
Wnt signaling in osteoporosis, osteoarthritis, rheumatoid arthritis and neoplasia are discussed.

Keywords: osteoclast; osteoblast; osteocyte; Wnt; sclerostin; osteoporosis; romosozumab;
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1. Introduction

Int-1, an oncogene discovered in 1984, is involved in the onset of breast cancer in mice [1].
A Drosophila ortholog of wingless was identified as a segment polarity gene in 1976 [2]. This ortholog
was found to be identical to int-1, and hence Wnt (wingless-related MMTV integration site) was named
after wingless and int-1 [3]. Subsequently, a Wnt receptor, a low-density lipoprotein-related receptor
5 (LRP5), was shown to be involved in bone mass regulation in 2001 and Wnt signaling has gained
considerable attention, with its function vigorously examined [4]. As a result, based on molecular
findings, drug development has been gradually progressing. In this review, the roles of Wnt signaling
in bone metabolism and skeletal disorders as well as the current status of drug development have
been outlined.
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2. Outline of Wnt Signaling

2.1. Porcupine (Porc) and Wntless (Wls)

Wnt is conserved across species ranging from nematodes to mammals, and 19 types of Wnts have
been identified in humans so far [5–8]. It is synthesized and subjected to Porc-mediated lipidation
by palmitoleic acid, then secreted from cells by binding to Wls. Porc is an acyltransferase found
in the endoplasmic reticulum while Wls, an eight-transmembrane protein that passes through the
cellular membrane eight times, is involved in the extracellular secretion of Wnt [8–10]. Secreted Wnt
protein stimulates target cells, in which the β-catenin-mediated canonical and β-catenin-independent
non-canonical Wnt signaling pathways are activated.

2.2. Canonical and Non-Canonical Pathways

The canonical Wnt signaling pathway is mediated by β-catenin. In the absence of Wnt stimulation,
cytoplasmic β-catenin is phosphorylated by a complex of glycogen synthase kinase-3 β (GSK-3β),
adenomatous polyposis coli (APC), and Axin. Phosphorylated β-catenin is further ubiquitinated and
rapidly degraded by the proteasomal system to prevent cytoplasmic accumulation. On the other hand,
Wnt stimulation suppresses GSK-3β activity and induces the cytoplasmic accumulation of β-catenin.
The accumulated β-catenin translocates to the nucleus where it induces the expression of target genes
with the T-cell factor (TCF)/lymphocyte enhancer factor 1 (LEF1) and CREB-binding protein (CBP)
complex [5–7,11–13] (Figure 1). The activation of the canonical and non-canonical Wnt signaling
pathways is determined by the combination of ligand, receptor, and co-receptors. The binding of the
ligands such as Wnt1 and Wnt3a to a complex of the seven-pass transmembrane receptor Frizzled (FZD)
and single-pass transmembrane co-receptor LRP5/6 activates the canonical Wnt signaling pathway.
LRP5/6, initially identified as a candidate disease susceptibility gene of type I diabetes [14], has four
β-propeller domains, with protein tertiary structures of proteins composed of β-sheets outside the
cell (BP1 to BP4 domains). Wnt ligands bind to the BP domains to induce signal transduction via
the canonical Wnt signaling pathway [14]. The Dickkopf (DKK) protein family and sclerostin inhibit
Wnt signaling by competitively binding to this BP region (Figure 1). The non-canonical signaling
pathway is a generic term used for pathways not mediated by β-catenin. Ligands such as Wnt5a and
Wnt11 activate the Wnt/Ca2+ and Wnt/PCP pathways without the induction of intracellular β-catenin
accumulation. In the Wnt/Ca2+ pathway, the increased intracellular concentration of Ca2+ activates
calmodulin-dependent protein kinase II (CaMK II) and protein kinase C (PKC). In the Wnt/planar cell
polarity (PCP) pathway, small G proteins such as Rac and Rho are activated to enhance cell motility as
well as determining the direction and localization of cilia [6,7,11,15] (Figure 1). Wnt5a binds to the
cysteine rich domain (CRD) of receptor tyrosine kinase-like orphan receptor (Ror) 1/2, a single-pass
transmembrane receptor-type tyrosine kinase, which contains tyrosine kinase, serine/threonine-rich,
and proline-rich domains [5–7,15] (Figure 1).

2.3. Inhibitors of Wnt Signaling

The Secreted Frizzled-related protein (sFRP) family functions as a decoy receptor of Wnt, as it
lacks a transmembrane domain. The CRD at the N-terminus binds to the Wnt ligand and inhibits the
binding of the ligand to the receptor complex thereby inhibiting both the canonical and non-canonical
Wnt signaling pathways [5–7,11,16] (Figure 1). DKK1 binds to the BP1 and BP3 domains of the
LRP5/6 receptor and forms a complex with Kremens at the cellular surface, inducing internalization
of LRP5/6 receptor to inhibit the canonical Wnt pathway [16] (Figure 1). DKK1 is essential for the
development of the head of Xenopus laevis [17] and also the head and limbs of mammals [16,17]. The
DKK family proteins are ubiquitously expressed in vivo and play important roles in the development
of various organs.
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Figure 1. Wnt signal transduction. In the cytoplasm, β-catenin is phosphorylated by the complexes
of GSK-3β, APC and Axin and is then rapidly degraded by the ubiquitin-proteasome system. The
canonical pathway is activated by ligands, such as Wnt1 and Wnt3a, through their binding to FZD
receptors and LRP5/6 complexes. Inhibition of GSK-3β induces accumulation of β-catenin in the
cytoplasm. Accumulated β-catenin translocates into the nucleus and induces the expression of target
genes with TCF/LEF1 and CBP. The non-canonical pathway is activated by ligands, such as Wnt5a,
through their binding to FZD receptors or FZD/ Ror1/2 complexes. This binding activates the pathway
without β-catenin. LRP5/6 has four BP domains (BP1 to BP4), with tertiary structures of proteins
composed of β-sheets outside the cell. The BP domain is the region of Wnt ligand binding. The binding
of DKK1 to the LRP5/6 receptors inhibits the canonical Wnt signaling pathway. DKK1 is known to
bind to the BP1 and BP3 domains. DKK1 forms a complex with LRP5/6 and Kremen, which induces
the internalization of the complex. The binding of Sclerostin to the LRP5/6 receptors also inhibits the
canonical Wnt signaling pathway. Sclerostin is known to bind to the BP1 domain. The binding of
Sclerostin to the LRP4 enhances its suppressive effects on the canonical Wnt signaling pathway. The
sFRP family functions as a decoy receptor of Wnt, because it has the CRD that can bind Wnt ligand
and inhibits both canonical and non-canonical Wnt signaling. ZNRF3 and RNF43 are target genes
of the canonical Wnt signaling pathway and act as ubiquitin E3 ligases for FZD. Thus, Wnt-induced
expression of ZNRF3 and RNF43 degrades FZD proteins to suppress Wnt signaling. RSPO family of
secreted proteins forms a complex with the LGR, which amplifies Wnt signaling via ZNRF3/RNF43
degradation. Wnt: wingless-related MMTV integration site, GSK-3β: glycogen synthase kinase-3 β,
APC: adenomatous polyposis coli, FZD: frizzled, LRP: low-density lipoprotein-related receptor, TCF;
T-cell factor, LEF1: lymphocyte enhancer factor 1, CBP: CREB-binding protein, Ror1/2: receptor tyrosine
kinase-like orphan receptor 1/2, BP domains: β-propeller domains, DKK: dickkopf, sFRP: secreted
frizzled-related protein, CRD: cysteine-rich domain, ZNRF3: zinc and ring finger 3, RNF43: ring finger
43, RSPO: roof-plate specific spondin, LGR: leucine-rich repeat-containing G protein-coupled receptor.
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2.4. Sclerostin

Sclerostin is a gene product of the sclerostin gene (SOST) with a SOST domain at its C-terminus.
Originally identified as a gene responsible for sclerosteosis (OMIM: 269500) (Table 1) [16,18–20], it
suppresses bone formation by inhibiting the canonical Wnt signaling pathway, by binding to the BP1
domain of theLRP5/6 receptor [21–24]. Sclerostin also binds to LRP4 [25], which is as an Agrin receptor
functioning at the neuromuscular junction [26], and is also a member of the low-density lipoprotein
receptor family. However, unlike LRP5/6, LRP4 binds to sclerostin and enhances its suppressive effects
on the canonical Wnt signaling pathway [27] (Figure 1).

Table 1. Phenotypes and clinical features of the Wnt-related gene mutation in humans. AR:
autosomal recessive, AD: autosomal dominant, XLD: X-linked dominant, Synd.: syndrome, OPPG:
osteoporosis-pseudoglioma, SOST: sclerosteosis, VBCH: van Buchem disease, CLSS: Cenani-Lenz
syndactyly syndrome, FDH: focal dermal hypoplasia, OI: osteogenesis imperfecta, BMD: bone
mineral density.

Gene Symbol
(Location)

Type of mutation
(Genetic Inheritance) Phenotype OMIM Clinical Features Refs

LRP5
(11q13.2)

Loss-of-function
(AR) OPPG synd. 259770 osteoporosis, visual

impairment [4,14]

Gain-of-function
(AD)

endosteal
hyperostosis, AD
osteosclerosis, AD

144750 high BMD, cranial nerve
palsies, torus palatinus [14,28]

SOST
(17q21.31)

Loss-of-function
(AR) SOST1 269500

high BMD, thick cortical bone,
cranial nerve palsies,

syndactyly
[18–20]

Loss-of-function
(AR) VBCH 239100 high BMD, thick cortical bone,

cranial nerve palsies [20,29,30]

LRP4
(11p11.2)

Loss-of-function
(AR) CLSS 212780

syndactyly, mild facial
dysmorphism, agenesis of

kidneys
[31,32]

Loss-of-function
(AD, AR) SOST2 614305 See SOST1 [25]

SFRP4
(7p14.1)

Loss-of-function
(AR)

Pyle disease
metaphyseal

dysplasia
265900

wide trabecular metaphyses,
thin cortical bone, bone

fragility
[33]

RSPO2
(8q23.1)

Loss-of-function
(AR) Tetraamelia synd.2 618021 symmetric absence of the

limbs, agenesis of lungs [34]

PORCN
(Xp11.23)

Loss-of-function
(XLD)

FDH
Goltz-Gorlin synd. 305600 linear skin lesions, asymmetric

bone defects, striation of bones [35]

WNT1
(12q13.12)

Loss-of-function
(AR) OI, type15 615220 recurrent fractures, bone

deformity, low BMD, short
stature

learning delays and brain
anomalies in some patient

[36–41]
Loss-of-function

(AD)

osteoporosis,
early-onset,

susceptibility to, AD
615221

WNT5A
(3p14.3)

Loss-of-function
(AD) Robinow synd., AD1 180700 resembling a fetal face,

mesomelic limb shortening,
micro penis in males, renal

and vertebral anomalies

[42,43]

ROR2
(9q22.31)

Loss-of-function
(AR) Robinow synd., AR 268310 [42]

SOSTdc1, also known as Wise or ectodin, is a secreted protein containing a C-terminal SOST
domain similar to sclerostin. It not only inhibits the canonical Wnt signaling pathway but also
suppresses bone morphogenetic protein (BMP) signaling by binding to BMP via its cystine knot
structural motif [16,44].

2.5. ZNRF3 and RNF43

Zinc and ring finger 3 (ZNRF3) and ring finger 43 (RNF43) are single-pass transmembrane proteins
on cell surfaces, targeted by the canonical Wnt signaling pathway and act as ubiquitin E3 ligases for
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FZD. Thus, Wnt-induced expression of ZNRF3 and RNF43 degrades FZD proteins to suppress Wnt
signaling [12,45–47].

The roof-plate specific spondin (R-spondin; RSPO) family of secreted proteins forms a complex
with the leucine-rich repeat-containing G protein-coupled receptor (LGR) that contains a seven-pass
transmembrane domain, which amplifies Wnt signaling via ZNRF3/RNF43 degradation [12,45–47]
(Figure 1). RSPO is involved in the development of various organs including the limbs, [48] while
recent findings indicate that a mutated form of RSPO2 acts as a direct antagonist of ZNRF3 and RNF43
independently of the LGR receptor, and is responsible for the development of Tetraamelia syndrome
(OMIM: 618021) (Table 1), which is characterized by pulmonary aplasia and complete absence of
limbs [34].

3. The Roles of Wnt Signaling in Bone Turnover

Osteoblasts produce bone matrix proteins and have a total lifespan of 2-3 months. They
eventually become apoptotic, remain on the bone surface as quiescent bone lining cells, embed within
self-secreted bone matrix proteins, or differentiate into osteocytes [21,22,49]. Osteoblasts are derived
from undifferentiated mesenchymal cells, which also differentiate into chondrocytes, adipocytes,
myocytes, and fibroblasts. Differentiation from progenitor cells to tissue-specific cells is regulated by
tissue-specific transcription factors. Wnt proteins suppress apoptosis in osteoblast precursor cells prior
to determination of cell differentiation, thus facilitating osteoblast differentiation. Studies in knockout
and transgenic mice have found that Wnt10b facilitates osteogenesis and increases bone mass [50–52]
(Table 2). In vitro studies have revealed that Wnt6, Wnt10a, and Wnt10b suppress the differentiation of
mesenchymal stem cells to adipocytes and facilitate the differentiation of mesenchymal stem cells to
osteoblasts through the canonical Wnt pathway [52,53]. These results indicate that the canonical Wnt
pathway is essential for mesenchymal stem cell differentiation to osteoblast-lineage cells.
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Table 2. The relationship between genetic modification of Wnt-related genes and bone phenotypes in mice. Obl: osteoblast, Ocy: osteocyte, Ocl: osteoclast, Ocp:
osteoclast precursor, KO: knockout, cKO: conditional knockout, KI: knock in, TG: transgenic, OCN: osteocalcin, Vil1: villin1, Dmp1: dentin matrix protein1, HBM: high
bone mass-causing alleles, het: hetero, CtsK: cathepsin K, OSX: osterix, Col1a1-tTA: the type 1 collagen a1 promoter-driven tetracycline-controlled transcriptional
activator, Lyz2: lysozyme2, Col2.3: the mouse 2.3-kb type 1 collagen promoter, R26: Rosa26, Oc: the human osteocalcin promoter. * cortical thickness. ** shorter bone
length compared to control littermates

Gene Symbol Type of Genetic Modification Bone Volume Bone Formation Bone Resorption Refs

Lrp4 Obl cKO (OCN-Cre) ↑ ↑ ↓ [54–56]

Lrp5

KO ↓ ↓ - [57]

Gut cKO (Vil1-Cre) ↓ ↓ → [58]

Ocy cKO (Dmp1-Cre) ↓ - -

[59]Ocy HBM KI ↑ ↑ →

Gut HBM KI → - -

Lrp6 Obl cKO (OCN-Cre) ↓ ↓ → [60]

Lrp5/6 Ocp cKO (RANK-Cre) ↓ ↓ ↓ [61]

Fzd8 KO ↓ → ↑ [62]

Fzd9 KO ↓ ↓ → [63]

Ror2

het KO ↑ → ↓

[64]Ocp cKO (RANK-Cre) ↑ → ↓

Ocl cKO (Ctsk-Cre) ↑ → ↓(function) [65]

Sost KO ↑ ↑ → [66]

Sfrp4
KO ↓* ↓ ↑ [33]

LacZ KI ↑,↓* ↑ ↓ [67]

Dkk1

het KO ↑ ↑ → [68]

Obl cKO (OSX-Cre) ↑ ↑ →

[69]Ocy cKO (Dmp1-Cre) ↑ ↑ →

Rspo2 Obl cKO (OCN-Cre) ↓ ↓ → [70]

Lgr4 KO ↓ ↓ ↑, - [71,72]

Ocp cKO (Lyz2-Cre) ↓ → ↑ [73]

Wls Obl cKO (OCN-Cre) ↓ ↓ ↑ [74]

Wnt1

Ocy cKO (Dmp1-Cre) ↓ ↓(function) → [75]

Obl cKO (Runx2-Cre) ↓ - -

[76]Obl TG (Col1a1-tTA) ↑ ↑ →

Ocp cKO (Lyz2-Cre) → - -

Wnt4 Obl TG (Col2.3) ↑ ↑ ↓ [77]

Wnt5a
het KO ↓ ↓ ↓ [64,78]

Obl cKO (OSX-Cre) ↓ ↓ ↓ [64]

Wnt7b
Obl TG (Col1-Cre;R26-Wnt7b) ↑ ↑ ↑ [79]
Obl TG (OSX-Cre;R26-Wnt7b) ↑** ↑ ↑

Wnt10b
KO ↓ ↓ → [50,51]

Obl TG (OC) ↑ ↑ ↑(function)

Wnt16

KO ↓* → ↑

[80]Ocy cKO (Dmp1-Cre) →* - -

Obl cKO (Runx2-Cre) ↓* - -
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On the other hand, the progenitor cells of osteoclasts are monocytes and macrophage-lineage
cells. The differentiation of osteoclast progenitors into osteoclasts is tightly regulated by
osteoblasts and osteocytes, which express receptor activator NF-κB ligand (RANKL) and macrophage
colony-stimulating factor (M-CSF) cytokines. Osteoclast progenitors express c-Fms and receptor
activator NF-κB (RANK), the respective receptors of M-CSF and RANKL, facilitating their differentiation
into osteoclasts. In addition, osteoblasts and osteocytes secrete osteoprotegerin (OPG), a decoy receptor
of RANKL, which inhibits RANKL-RANK interaction to suppress bone resorption [6,7,21,23,24,49].
The activation of the canonical Wnt signaling in osteoblast-lineage cells enhances OPG expression and
suppresses osteoclast differentiation [6,7,21,23,24,49,81].

4. Wnt Signaling and Bone Formation

4.1. LRP5 and Osteoporosis-Pseudoglioma Syndrome

Osteoporosis-pseudoglioma syndrome (OPPG; OMIM: 259770) is an inherited disorder
characterized by osteoporosis and blindness. The cause of OPPG has been reported as a loss-of-function
mutation in LRP5, and the role of Wnt signaling has been implicated [4,6,7,14] (Table 1). Conversely,
patients with LRP5 G171V, a gain-of-function mutant of LRP5, exhibited hyperostosis (OMIM:
144750) [6,7,14,28] (Table 1). Substitution of glycine with valine at codon 171 of LRP5 changes
BP1 domain conformation, leading to decreased affinity towards sclerostin and DKK1, followed by the
development of hyperostosis by triggering the canonical Wnt signaling pathway.

LRP5 KO mice (LRP5-KO) exhibited osteoblast deficiency and decreased bone mass [57]. Interbred
LRP5-KO and LRP6 heterozygous KO mice exhibited an even more prominent reduction in bone
mass. These results suggest that LRP5 and LRP6 activate the canonical Wnt signaling pathway
and promote bone formation. Signaling from LRP5 in the duodenum inhibits serotonin synthesis
in chromaffin cells, promoting osteoblast differentiation [58]. While decreased bone mass has been
reported in osteocyte-specific LRP5-KO, it has not been observed in intestine-specific LRP5-KO,
suggesting that LRP5 specifically regulates the maintenance of bone mass in the bone tissue [59]. While
osteoblast-specific LRP5-KO exhibited bone loss from 16 weeks of age, osteoblast-specific LRP6 KO
mice exhibited bone loss starting as early as 4 weeks. A more prominent decrease was observed in bone
mass in osteoblast-specific LRP5/LRP6 double KO mice [60] (Table 2). The effect of cell type-specific
LRP5 expression on bone formation is still controversial and requires further investigation.

4.2. Sclerostin and Sclerosteosis/Endosteal Hyperostosis

Sclerostin secreted by osteocytes inhibits the canonical Wnt signaling pathway through its binding
to LRP5/6. Sclerosteosis (OMIM: 269500) is a disease characterized by an increase in bone density owing
to a loss-of-function mutation in the SOST gene encoding sclerostin [16,18–20] (Table 1). A similar
disease, endosteal hyperostosis (van Buchem disease: OMIM: 239100), is associated with a deletion of
52 kbps downstream of the SOST gene (evolutionarily conserved region; ECR), leading to an increase in
bone mass [20,29,30] (Table 1). SOST KO mice (SOST-KO) exhibited an increased bone mass phenotype
due to enhanced osteogenesis, similar to the human sclerosteosis phenotype [66] (Table 2).

The expression of SOST gene is regulated by two regions: the upstream promoter region and the
downstream enhancer, ECR5 (Figure 2). The upstream promoter region has binding sites for runt-related
transcription factor 2 (Runx2), a master transcription factor of osteoblasts [82], and osterix (OSX) thereby
promoting the transcription of SOST. This region also contains a methylation site and demethylation
of this region in osteoblast differentiation results in increased SOST expression [83]. Endosteal
hyperostosis develops in the absence of the downstream enhancer ECR5 region, which contains a
binding sequence for the myocyte enhancer factor (Mef) 2c transcription factor. Osteoblast-specific
Mef2c KO mice exhibited high bone mass [29,84] with decreased expression of sclerostin, suggesting
that the binding of Mef2c to the ECR5 region of the SOST gene is important for SOST expression
(Figure 2).



Int. J. Mol. Sci. 2019, 20, 5525 8 of 37

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 8 of 38 

 

LRP5 KO mice (LRP5-KO) exhibited osteoblast deficiency and decreased bone mass [57]. 

Interbred LRP5-KO and LRP6 heterozygous KO mice exhibited an even more prominent reduction 

in bone mass. These results suggest that LRP5 and LRP6 activate the canonical Wnt signaling 

pathway and promote bone formation. Signaling from LRP5 in the duodenum inhibits serotonin 

synthesis in chromaffin cells, promoting osteoblast differentiation [58]. While decreased bone mass 

has been reported in osteocyte-specific LRP5-KO, it has not been observed in intestine-specific 

LRP5-KO, suggesting that LRP5 specifically regulates the maintenance of bone mass in the bone 

tissue [59]. While osteoblast-specific LRP5-KO exhibited bone loss from 16 weeks of age, 

osteoblast-specific LRP6 KO mice exhibited bone loss starting as early as 4 weeks. A more 

prominent decrease was observed in bone mass in osteoblast-specific LRP5/LRP6 double KO mice 

[60] (Table 2). The effect of cell type-specific LRP5 expression on bone formation is still 

controversial and requires further investigation. 

4.2. Sclerostin and Sclerosteosis/Endosteal Hyperostosis 

Sclerostin secreted by osteocytes inhibits the canonical Wnt signaling pathway through its 

binding to LRP5/6. Sclerosteosis (OMIM: 269500) is a disease characterized by an increase in bone 

density owing to a loss-of-function mutation in the SOST gene encoding sclerostin [16,18–20] (Table 

1). A similar disease, endosteal hyperostosis (van Buchem disease: OMIM: 239100), is associated 

with a deletion of 52 kbps downstream of the SOST gene (evolutionarily conserved region; ECR), 

leading to an increase in bone mass [20,29,30] (Table 1). SOST KO mice (SOST-KO) exhibited an 

increased bone mass phenotype due to enhanced osteogenesis, similar to the human sclerosteosis 

phenotype [66] (Table 2).  

The expression of SOST gene is regulated by two regions: the upstream promoter region and 

the downstream enhancer, ECR5 (Figure 2). The upstream promoter region has binding sites for 

runt-related transcription factor 2 (Runx2), a master transcription factor of osteoblasts [82], and 

osterix (OSX) thereby promoting the transcription of SOST. This region also contains a methylation 

site and demethylation of this region in osteoblast differentiation results in increased SOST 

expression [83]. Endosteal hyperostosis develops in the absence of the downstream enhancer ECR5 

region, which contains a binding sequence for the myocyte enhancer factor (Mef) 2c transcription 

factor. Osteoblast-specific Mef2c KO mice exhibited high bone mass [29,84] with decreased 

expression of sclerostin, suggesting that the binding of Mef2c to the ECR5 region of the SOST gene 

is important for SOST expression (Figure 2). 

 

Figure 2. Regulation of sclerostin expression in osteocytes. PTH signals, mechanical loading, IL-6 

family signals suppress the expression of sclerostin. MEF2 binds the ECR5 (enhancer region) of the 

Figure 2. Regulation of sclerostin expression in osteocytes. PTH signals, mechanical loading, IL-6
family signals suppress the expression of sclerostin. MEF2 binds the ECR5 (enhancer region) of the
Sost gene to induce the expression of sclerostin. SIKs phosphorylate HDAC4/5 to promote complex
formation of HDAC4/5 and 14-3-3, which in turn retains HDAC4/5 in the cytoplasm. PTH signals
inhibit the kinase activity of SIKs, which in turn increases dephosphorylated HDAC in the nucleus.
Nuclear dephosphorylated HDAC inhibits the activity of MEF2. Mechanical loading induces the
expression of periostin, which is secreted by periosteal osteoblasts and suppresses sclerostin expression
from osteocytes. The IL-6 cytokine family proteins such as LIF, OSM, and CT-1 also suppress the
expression of sclerostin. MEF: myocyte enhancer factor, ECR: evolutionarily conserved region, SIK:
salt-inducible kinase, HDAC: histone deacetylase, LIF: leukemia inhibitory factor, OSM: oncostatin M,
CT-1: cardiotropin-1.

4.3. Regulation of Sclerostin Expression in Osteocytes

Investigation of SOST regulation has revealed that parathyroid hormone (PTH), mechanical
loading, and IL-6 family of cytokines suppress SOST expression in osteocytes (Figure 2).

Intermittent administration of PTH has been shown to increase bone mass, and expression of the
PTH/parathyroid hormone -related protein (PTHrP) receptors in osteocytes leads to enhanced canonical
Wnt signaling. On the other hand, osteocyte-specific PTH/PTHrP receptor KO mice display decreased
bone mass with increased SOST expression, showing that the effect of PTH on bone formation is
partly mediated by the suppression of sclerostin [85,86]. The Parathyroid hormone 1 receptor- cyclic
adenosine monophosphate (cAMP)/ protein kinase A (PKA) signaling pathway inhibits Mef2c binding
to the ECR5 region of the SOST gene. In addition, it has been reported that a histone deacetylase,
HDAC5, interacts with Mef2c and suppresses the expression of SOST [29,87,88]. An HDAC4/5 kinase
salt-inducible kinase (SIK) has been found to promote the phosphorylation of HDAC5 and formation
of the HDAC5/14-3-3 complex. This protein dimerization prevents the nuclear translocation of HDAC5.
The suppression of SIK by PTH stimulation promotes HDAC4/5 dephosphorylation and enhances its
nuclear translocation. Nuclear HDAC4/5 forms a complex with Mef2c and prevents the recruitment
of Mef2c to the ECR5 region of the SOST gene to suppress sclerostin expression (Figure 2). In Hdac5
KO mice, elevated expression of SOST and decreased bone mass were observed [29,88]. On the other
hand, hypoxia increases Sirtuin 1-dependent deacetylation of the Sost promoter, resulting in decreased
sclerostin expression and enhanced Wnt/β-catenin signaling in osteocytes [89].

The administration of a SIK inhibitor accelerates bone formation by suppressing sclerostin
expression [29,90]. A recent report has demonstrated that SIK inhibitors such as HG-9-91-01 in
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osteoclast precursors suppress RANKL-induced activation of nuclear factor of activated T cell c1
(NFATc1) and c-Fos, subsequently suppressing osteoclast differentiation and function [91]. Furthermore,
SIK has been reported to contribute to glucose and lipid metabolism [92]. Considering these reports,
SIK may be considered as a novel therapeutic target for osteoporosis and lifestyle-related diseases.

Periostin, an extracellular matrix protein, is secreted by periosteal osteoblasts when subjected to
mechanical loading and binds to the integrin αvβ3 receptor. Periostin KO mice (Postn-KO) exhibited
osteoporosis, and in these mice, mechanical loading [93] and PTH administration [94] did not suppress
sclerostin expression or increase cortical bone mass. However, administration of a neutralizing
anti-sclerostin antibody increased the cortical bone mass to suggest that mechanical loading and PTH
administration induce periostin expression in periosteal osteoblasts and cause a decrease in sclerostin
expression in osteocytes, thereby accelerating cortical bone formation [29,93,94].

The IL-6 cytokine family proteins such as leukemia inhibitory factor (LIF), oncostatin M (OSM),
and cardiotropin-1 (CT-1) suppressed the expression of sclerostin in the UMR106 cell line [29,95].
Administration of recombinant OSM to wild-type mice was also shown to decrease sclerostin expression.
OSM is abundantly expressed in osteoblasts, and the acceleration of osteoblast differentiation is mediated
by the OSM receptor. On the other hand, it is considered that OSM suppresses sclerostin expression
through the LIF receptor on osteocytes [29,95].

Sclerostin is decreased in OPG-KO, and an antibody array identified LIF as a potential suppressor
of sclerostin expression [29,96,97]. Sclerostin was suppressed when recombinant LIF or an osteoclast
culture supernatant was added to a culture of osteocytes expressing sclerostin. Further, the long bone
in OPG-KO revealed a significant increase in LIF expression and decrease in sclerostin expression.
LIF produced by osteoclasts suppresses the production of sclerostin in osteocytes to accelerate bone
formation [29,97]. Recently, it has been reported that Irisin, produced by muscle tissue, promotes the
expression of sclerostin through integrin αV receptor in osteocytes [98]. Further studies are needed to
clarify how muscle-derived factor irisin and osteoclast-derived LIF regulate sclerostin expression.

4.4. Functional Regulation of Sclerostin by LRP4

The LRP4 gene is known to be involved in Cenani-Lenz syndactyly syndrome (OMIM: 212780)
characterized by syndactyly and kidney abnormalities [31,32] (Table 1). A genome-wide association
study (GWAS) has identified a correlation between LRP4 and bone density [99], while loss-of-function
mutations (R1170W, W1186S) of LRP4 were found in a patient with osteosclerosis (OMIM: 614305)
(Table 1). The direct binding of LRP4 to sclerostin augments the suppressive effect of sclerostin but
the mutated form of LRP4 has been shown to weakly bind to sclerostin [25]. LRP4 is not expressed
in osteocytes [54], and osteoblast-specific LRP4 KO mice generated using osteocalcin (OCN)-Cre
mice [54–56] demonstrated increased bone mass with accelerated bone formation, indicating that LRP4
is required for the negative regulatory function of sclerostin in the canonical Wnt signaling pathway
in osteoblasts (Table 2). In addition, administration of anti-LRP4 antibody to inhibit the binding of
LRP4 to sclerostin restored the suppression of osteoblast differentiation [54]. LRP4 plays a key role at
the neuromuscular junction, and autoantibodies against LRP4 have been detected in some cases of
myasthenia gravis [100]. However, it is considered that sclerostin does not affect the binding of LRP4
to Agrin at the neuromuscular junction; thus, anti-LRP4 antibody may be a potential therapeutic agent
to specifically increase bone mass [54,56].

4.5. Other Wnt Inhibitors and Bone Formation

In the GWAS, sFRP was reported to correlate with bone density and fracture [101]. Metaphyseal
dysplasia (Pyle’s disease: OMIM: 265900) is a genetic disease characterized by the thinning of the
cortical bone, limb deformity, and bone fracture (Table 1) caused by a deficiency of the sFRP4 Wnt
inhibitor. The crosstalk between Wnt and the BMP signal transduction regulated by sFRP4 is pivotal
for the maintenance of cortical bone mass [33].
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The sFRP family proteins bind to the Wnt ligand and thereby inhibit its binding to the receptor
complex. Hence, the sFRP family proteins not only inhibit the Wnt/β-catenin pathway, but also the
non-canonical signaling pathway. The loss-of-function mutation in sFRP4 promotes Wnt5a function,
which induces BMP2 expression, and subsequently increases SOST expression resulting in reduced
bone formation (Table 2). Administration of anti-sclerostin antibody to sFRP4-KO mice (sFRP4-KO)
inhibited thinning of the cortical bone. By contrast, increased Wnt/β-catenin signaling and trabecular
bone mass have been reported in sFRP4-KO as sFRP4 suppresses Wnt/β-catenin signaling under
physiological conditions [67] (Table 2). The phenotypical difference between cortical and trabecular
bone mass changes is an interesting phenomenon that needs to be further clarified.

On the other hand, there are no reports on the Online Mendelian Inheritance in Man®(OMIM®)
database regarding human DKK family (DKK1-4) mutations. In mice, DKK1 KO mice (DKK1-KO)
are embryonically lethal. In DKK1 heterozygous mutant and in osteoblast lineage-specific DKK1-KO
mice, bone formation is accelerated, with elevated trabecular and cortical bone masses [68] (Table 2).
Serum DKK1 is lower in the osteoblast lineage-specific DKK1-KO generated using OSX-Cre mice
than in DKK1-KO generated using dentin matrix protein 1 (Dmp1)-Cre mice indicating that DKK1 is
produced in immature osteoblasts rather than in mature osteoblasts or osteocytes in bone tissues [69].
In addition, serum sclerostin concentration was found to be increased in both KO mice suggesting that
DKK1 and sclerostin complement each other to avoid excessive osteoblast differentiation. β-catenin
activation elevates sclerostin expression in mice osteocytes [102], implying that the canonical Wnt
signaling pathway activates the transcription of SOST, which might explain the increased sclerostin
caused by reduced DKK1 expression.

4.6. Wnt Promotion and Bone Formation by RSPO and LGR

RSPO forms a complex with its receptor LGR and amplifies Wnt signaling by degrading
ZNRF3/RNF43 that downregulates FZD [12,45–47] (Figure 1). Among the RSPO family proteins,
RSPO3 correlates with bone density and in particular, vertebral body fractures [103–105]. However,
from the molecular biology perspective, RSPO1 and RSPO2 are also reported to be associated with bone
metabolism [106]. RSPO1 expression is elevated with differentiation in the human osteoprogenitor
cell line FOB1.19 and addition of recombinant RSPO1 to a culture system results in elevated alkaline
phosphatase (ALP) activity via the canonical Wnt signaling pathway [107]. RSPO1 also promotes
vibration-induced bone formation while systemic administration of recombinant RSPO1 in a mouse
osteoporosis model resulted in increased bone mass [108]. More recently, the role of RSPO1 and its
receptor (LGR4) in mechanical load-triggered bone formation has been reported [109]. LGR4 KO
mice exhibited a phenotype with dramatically delayed differentiation and calcification of osteoblasts
at the embryonic stage. LGR4 activates the cAMP-PKA-CREB signaling pathway and accelerates
osteoblast differentiation via an elevated expression of ATF4 [71]. LGR4 is also expressed in MC3T3E1
cells, C3H10T1/2 cells and primary mouse calvarial osteoblasts to promote bone formation [72,110].
LGR4 has been shown to function as a second receptor of RANKL and suppresses the differentiation
and function of osteoclasts [73] (Table 2). In MC3T3E1 cells, overexpression of RSPO2 enhanced
ALP activity via the stimulation of BMP, leading to maturation and calcification of osteoblasts [111].
Furthermore, a smaller body size has been reported in osteoblast-specific RSPO2 KO mice generated
using OCN-Cre mice than in wild-type mice. Decreased bone mass due to suppressed bone formation
and calcification was observed [70] (Table 2).

4.7. Porcupine/Wntless and Focal Dermal Hypoplasia

The genetic disease caused by a mutation in Porc is known as focal dermal hypoplasia (Goltz-Gorlin
syndrome: OMIM: 305600) (Table 1). This disease is characterized by skeletal abnormality of the limbs
in addition to skin symptoms such as atrophy, capillary dilation, linear pigmentation, and local fat
deposition [35]. In limb skeletal abnormalities, linear osteopathy is believed to result from decreased
bone density, and these patients also reported a family history of fractures [35,112]. The Porc KO mice
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phenotype mimics focal dermal hypoplasia; however, a detailed analysis of bone metabolism has not
been performed as of yet [113,114].

Osteoblast-specific Wls KO mice (Wls-cKO) generated using OCN-Cre mice showed a severe
decrease in bone mass [74]. Morphological analysis demonstrated a markedly decreased bone formation
rate but increased osteoblasts per bone surface. This implies that Wnt ligands secreted from osteoblasts
are important for the maturation and function of osteoblasts [74] (Figure 3). The osteoclast surface, a
parameter of bone resorption, was elevated in Wls-cKO (Table 2). However, there was no change in the
expression of OPG, which is induced in canonical Wnt signaling, or RANKL in Wls-cKO [74]. These
results suggest that Wls is involved in the secretion of non-canonical Wnts such as Wnt16 and Wnt4
that suppress osteoclast differentiation. A more detailed description of the effects of Wnt16 and Wnt4
on osteoclastogenesis is given later in this review.
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Figure 3. The roles of Wnt proteins in osteoblast differentiation. Wnt is synthesized, subjected to
Porc-mediated lipidation by palmitoleic acid, and is secreted from cells; Porc is an acyltransferase
found in the endoplasmic reticulum. Wls is involved in the extracellular secretion of Wnt. Lipidation
by palmitoleic acid is required for the binding of Wnt to Wls. Wls-deficient cells failed to secrete all Wnt
ligands. Wnt ligands activate β-catenin-dependent canonical and -independent non-canonical signals.
β-catenin-dependent canonical signal induces bone formation through promotion of osteoblastogenesis
and OPG expression. β-catenin-independent non-canonical signals enhance LRP5/6 expression, thereby
promoting osteoblast differentiation. OPG: osteoprotegerin, Porc: porcupine, Wls: wntless.

4.8. Wnt1 and Osteogenesis Imperfecta

In recent years, missense or nonsense mutations of Wnt1 have been reported to be responsible for
osteogenesis imperfecta (OMIM: 615220) and juvenile osteoporosis (OMIM: 615221) [36–39] (Table 1).
Laine et al. [36] found mutations of Cys218Gly and Ser295* in each of the two families with the
respective disorders. Decreased nuclear translocation of β-catenin and suppression of Wnt/β-catenin
signaling were observed in HEK293 cells cultured in the presence of mutant Wnt1. The addition of
mutant Wnt1 to MC3T3-E1 cultures decreased calcified nodule formation. Keupp et al. [38] found one
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frameshift mutation and three nonsense mutations in five families with bone fragility. These results
indicate that Wnt1 activates Wnt/β-catenin signaling and confirms its involvement in bone formation.

Additionally, certain patients with loss-of-function mutations of Wnt1 have been reported to
present with cerebral malformations. Genetic knockout models in mice have revealed that Wnt1 is
involved in cerebral development, which is corroborated by findings of abnormalities in the central
nervous system in patients with Wnt1 mutations [40,41].

So far, the source of Wnt1 in bones has been controversial. Osteoclast-specific transforming
growth factor (TGF)-β II receptor KO mice generated using cathepsin K (Ctsk)-Cre mice exhibited
decreased bone mass. Measurement of bone morphology demonstrated no change in osteoclast lineage,
but a decrease in osteoblast lineage parameters was observed. TGF-β released into the bone matrix
by osteoclasts acts on osteoclasts to promote Wnt1 expression through Smad activation [115,116].
Thus, Wnt1 produced by osteoclasts acts as a coupling factor and promotes the differentiation of
osteoblasts [115]. Analysis of the bones of late osteoblast/osteocyte-specific Wnt1 KO mice generated
using Dmp1-Cre mice showed no change in the number of osteoclasts and osteoblasts; however,
decreased bone mass due to the reduction of osteogenic markers was observed [75] (Table 2). This
finding has been partly attributed to decreased osteoblast function by impaired mammalian target of
rapamycin (mTOR) signaling [75]. Osteoblast-specific Wnt1 KO mice generated using Runx2-Cre mice
exhibited a bone loss phenotype [76], while analysis of bones in osteoblast-specific mice overexpressing
Wnt1 under the type I collagen a1 promoter confirmed an increase in bone mass (Table 2). However,
when these mice were mated with LRP5-KO, bone mass remained unchanged, indicating that Wnt1
promotes bone formation via a receptor other than LRP5 [76]. Investigation of cell types that express
Wnt1 and the receptors through which Wnt1 exerts its functions is paramount in understanding
bone formation.

4.9. Non-Canonical Wnt Signaling and Bone Formation

Wnt5a activates non-canonical Wnt signaling and promotes osteoblast differentiation. Analysis of
osteoblast-specific Wnt5a KO mice (Wnt5a-KO) generated using OSX-Cre transgenic mice revealed
a phenotype with decreased bone resorption and formation [64]. Wnt receptor expression in
Wnt5a-KO-derived osteoblasts showed decreased expression of LRP5/6 receptors and reduced activation
of the canonical Wnt signaling pathway by endogenous Wnt [78]. An overexpression of LRP5 in
the Wnt5a-KO-derived osteoblasts activated canonical Wnt signaling and accelerated osteoblast
differentiation. Accordingly, it was suggested that Wnt5a promotes osteoblast differentiation via
LRP5/6 expression in an OSX-dependent manner [78] (Figure 3). More recently, it was suggested
that sphingosine-1-phosphate (S1P) promotes the expression of Wnt5a and LRP5 in osteoblasts [117].
However, whether increased Wnt5a promotes LRP5 expression or whether S1P directly promotes the
expression of Wnt5a and LRP5 is yet to be elucidated.

Wnt7b accelerates osteoblast differentiation via the activation of PKC delta [11]. Studies on bone
tissues obtained from osteoblast-specific Wnt7b transgenic mice showed accelerated bone formation
and increased bone mass [11,79] (Table 2). Investigation of the molecular mechanisms underlying these
observations suggested that Wnt7b activated mammalian target of rapamycin complex 1 (mTORC1)
through the PI3K-Akt signaling pathway instead of the canonical Wnt signaling pathway [11,79]
(Figure 3). mTORC activated downstream of the Wnt signaling pathway during bone formation
accelerates glutamine metabolism and enhances energy production. Improved understanding of the
roles of Wnt signaling in cellular energy metabolism will allow us to establish a novel treatment for
metabolic diseases or musculoskeletal disorders such as osteoarthritis (OA).

FZD9 KO mice (FZD9-KO) exhibited decreased bone mass due to suppression of osteoblast
differentiation [63] (Table 2). The expression of osteoblast markers in FZD9-KO-derived osteoblasts
did not differ from those of wild-type osteoblasts, and signal transduction from the canonical Wnt
signaling pathway was not affected. However, Wnt5a-induced ERK and Akt phosphorylation was
inhibited in FZD9-KO-derived osteoblasts. In addition, microarray analysis of FZD9-KO-derived
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osteoblasts showed reduced expression of interferon-stimulated gene 15 from the interferon-inducible
gene group. These results suggest the importance of a signaling pathway downstream of FZD9 other
than the canonical Wnt pathway in the regulation of osteoblast differentiation [63] (Figure 3). However,
the role of interferon-stimulated gene 15 in the regulation of bone formation is not fully understood
and requires further investigation.

5. Wnt Signaling and Bone Resorption

5.1. Canonical Wnt Signaling Pathway and Bone Resorption

FZD8 KO mice exhibited osteopenia characterized by normal bone formation and increased bone
resorption [62] (Table 2). Osteoclast differentiation is suppressed by the activation of the canonical Wnt
signaling pathway in osteoclast precursors. Osteoclast precursor-specific β-catenin KO mice generated
using LysM-Cre mice showed osteopenia due to enhanced osteoclast differentiation. These results
indicate that the activation of the canonical Wnt signaling pathway in osteoclast precursors suppresses
osteoclastogenesis in an OPG-independent manner. On the other hand, osteoclast precursor-specific
LRP5/6 KO mice generated using RANK-Cre mice exhibited low-turnover osteopenia due to reduction of
bone resorption and formation [61] (Table 2). This study showed that cAMP-PKA pathway suppressed
NFATc1 activation in a β-catenin-independent manner [61]. Further reports are needed to determine
which Wnt ligands activate the cAMP-PKA pathway independently of β-catenin downstream of
LRP5/6 in osteoclasts.

5.2. Non-Canonical Wnt Signaling Pathway and Bone Resorption

In the GWAS, Wnt16 and Wnt4 genes were reported to correlate with bone mass and risk of
fracture [101,104,105,118]. In a later study, it was reported that Wnt16 activates the canonical Wnt
signaling pathway in osteoblasts and suppresses osteoclast differentiation through elevated OPG
expression [80] (Table 2). On the other hand, the stimulation of osteoclast precursors by Wnt16 did not
activate the canonical Wnt signaling pathway, but supressed RANKL-induced activations of NF-κB and
NFATc1, and thereby suppressing osteoclast differentiation through direct OPG-independent inhibition
of RANK signaling (Figure 4). Wnt16 KO mice have normal cancellous bone masses and remarkably
decreased cortical bone masses. In addition, Wnt16 expression is higher in cortical bones than in
cancellous bones. Accordingly, it has been demonstrated that Wnt16 inhibits osteoclast differentiation
in cortical bones while maintaining cortical bone mass [80]. It has been reported that Wnt16 expression
is promoted by IL1-β [119], but further investigations are required to assess the regulation of Wnt16
expression in osteoblasts.

Wnt4 has been reported to accelerate osteoblast differentiation through the non-canonical
p38MAPK-mediated signaling pathway [120]. Recently, osteoblast-specific Wnt4-overexpressing
mice were generated using a 2.3-kb type I collagen promoter (Wnt4-Tg). The Wnt4-Tg mice exhibited
increased bone mass. Bone morphometry revealed reduced number of osteoclasts in the Wnt4-Tg
mice (Table 2). It was demonstrated that Wnt4 suppresses the phosphorylation of RANKL-induced
transforming growth factor-activated kinase 1 in osteoclast precursors and negatively regulates
osteoclast differentiation by inhibiting tumor necrosis factor (TNF) receptor-associated factor 6
binding [77] (Figure 4).
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Figure 4. The roles of non-canonical Wnt pathways in osteoclast differentiation and function.
Wnt5a-Ror2 signaling is crucial for osteoclastogenesis in both physiological and pathological
conditions. In physiological bone remodeling, Wnt5a secreted from osteoblast-lineage cells binds
Ror2 and activates JNK in osteoclast precursors, and in turn, c-Jun is recruited to Sp1 on the
RANK promoter. This signaling enhances RANK expression in osteoclast precursors, thereby
enhancing RANKL-induced osteoclastogenesis. In arthritis, synovial cells produce excess amounts
of Wnt5a, which aggravates joint destruction. This pathway also activates Rho in an adapter
protein Daam2-dependent manner. Subsequently, the Rho effector kinase Pkn3 binds to c-Src, which
enhances the bone-resorbing activity through actin ring formation in mature osteoclasts. Wnt4 and
Wnt16 are also secreted from osteoblasts and inhibit the RANKL-induced activation of NF-kB and
NFATc1 signals, which in turn inhibit osteoclast differentiation. JNK: Jun N-terminal kinase, Daam2:
dishevelled associated activator of morphogenesis, Pkn3: protein kinase N3.

Wnt5a-activated non-canonical Wnt signaling has been reported to promote osteoclast
differentiation and function [62,64,121–123]. A loss-of-function mutation of Wnt5a or Ror2 in humans
is known as Robinow syndrome (OMIM: 180700, OMIM: 268310) [42] (Table 1). Although Robinow
syndrome is a disease characterized by short limbs, morphological abnormality of ribs and vertebral
bodies, and micropenis, its bone tissue has not been analyzed in detail [43]. In addition, Wnt5a
and Ror2 KO mice are regarded as perinatally lethal due to low cardiopulmonary development.
Examination of the femurs of Wnt5a heterozygous KO mice and Ror2 heterozygous KO mice showed a
significant decrease in bone resorption owing to reduced osteoclast numbers [64] (Table 2). Subsequent
examination of Wnt expression in calvaria-derived osteoblasts showed that the expression of Wnt5a was
the strongest among all Wnts and osteoclast precursors also expressed Ror2, a receptor of Wnt5a [64].
Osteoblast-specific Wnt5a knockout (Wnt5a cKO) mice and osteoclast precursor cell-specific (RANK
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Cre x Ror2 fl) mice exhibited reduced osteoclasts due to suppression of RANK expression in osteoclast
precursors (Table 2). RANK expression is regulated by Jun N-terminal kinase (JNK)- c-Jun-Sp1 pathway
and Wnt5a produced by osteoblasts enhanced osteoclast differentiation via RANK expression in a
JNK-c-Jun-Sp1 dependent manner (Figure 4). Wnt5a is also produced by mature osteoclasts, and
examination of late-stage osteoclast-specific Ror2 KO (Ctsk Cre x Ror2 fl) mice revealed an increased
bone mass. Although the differentiation of Ctsk Cre x Ror2 fl mice-derived osteoclasts does not differ
from that of the wild-type mice, decreased bone resorption was observed due to the failure of actin ring
formation [65,124] (Table 2). The binding of Wnt5a to Ror2 activates a small GTPase Rho, which functions
in cytoskeletal restructuring in an adapter protein dishevelled associated activator of morphogenesis
(Daam) 2-dependent manner (Figure 4). Subsequently, protein kinase N3 (Pkn3), a Rho effector kinase,
binds to c-Src, which is important for actin ring formation to enhance activity. Similar to the Ctsk
Cre x Ror2 fl mice, increased bone mass due to reduced bone resorption was observed in Pkn3 KO
mice (Pkn3-KO), without any difference in the number of osteoclasts. Pkn3 promotes bone resorption
downstream of the Wnt5a-Ror2 pathway; thus, inhibition of this pathway may suppress bone resorption
while maintaining the differentiation state of osteoclasts. [65,124] (Figure 4). This pathway can be a
novel therapeutic target for suppressing bone resorption while maintaining bone formation by coupling
factors of bone metabolism produced by osteoclasts. In summary, the Wnt5a-Ror2 pathway is involved
in RANK expression in the early stages of osteoclast differentiation, while it is also required for the
formation of an actin ring and the functional expression of osteoclasts at the late stages [64,65,124]
(Figure 4).

6. Wnt Signaling and Musculoskeletal Disorders: Recent Findings and Clinical Application

To date, only anti-sclerostin antibodies against osteoporosis have been clinically used as
molecular-targeted agents for Wnt-related molecules (Table 3). In this section, the relationship between
various musculoskeletal disorders and Wnt signals, existing therapies, preclinical findings including
those obtained from animal studies, potential novel therapies, and clinical issues are summarized.
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Table 3. Patient characteristics and outcomes of clinical trials with romosozumab. PMO: postmenopausal osteoporosis, M with OP: men with osteoporosis, romo.:
romosozumab, deno.: denosumab, TPTD: teriparatide, ALN: alendronate, M: every month(s), W: every week, D: every day, BMD: bone mineral density.

Study
Patient Group

Participants Age
Protocol Length

BMD (%)
New Fracture

(%)

Bone Turnover Marker
(Maximum %)

[Ref No.] (N) (Year) Lumber
Spine Total Hip P1NP CTX

FRAME
[125,126] PMO

All 7180 70.8 12months after 24
months on day 14

Treatment 3589 70.9 210mg romo./1M
⇒60mg deno./6M
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6.1. Osteoporosis

6.1.1. Wnt-Related Molecules Involved in Osteoporosis

Osteoporosis is a disease in which bone fragility is caused by increased bone resorption and
decreased bone formation owing to decreased estrogen levels and aging. Wnt/β-catenin and estrogenic
pathways have been implicated in bone homeostasis, but their interactions have been unclear.
However, there seems to be a synergistic effect of estrogen receptor signaling and Wnt3a upregulation,
in promoting osteogenic differentiation [130]. The potential interaction of estrogen and sclerostin
has also been implicated in osteocyte-specific estrogen receptor α KO mice, which exhibited elevated
SOSTdc1 expression, a sclerostin homologue [131].

The expression of sclerostin is considered to increase with age showing a 46% increase in older
women [132–134]. Serum sclerostin level of postmenopausal women is significantly higher than
that of premenopausal women [135]. A report shows that the administration of selective estrogen
receptor modulators (SERM), used in the treatment of osteoporosis, significantly decreases serum
sclerostin level [136]. Further reports are needed to determine whether an increase in serum sclerostin
is attributable to an increase in the osteocyte count in the bone or the elevation of oxidative stress.

6.1.2. Existing Therapies for Osteoporosis

The current osteoporosis treatments include administration of drugs that inhibit bone resorption
and promote bone formation [137–140]; the drugs that inhibit bone resorption include SERM,
bisphosphonates, and denosumab, an anti-RANKL antibody. Bone resorption inhibitors increase bone
mass by suppressing osteoclast differentiation. Because osteoclasts express bone metabolism-related
coupling factors, the suppression of osteoclast differentiation results in the suppression of
osteoblast differentiation, resulting in decreased bone formation and turnover. On the other hand,
osteogenesis-promoting agents such as teriparatide increase bone turnover using a mechanism opposite
to the above. Although these effects have the advantage of activating remodeling leading to the
formation of new bone tissues, deteriorating porosity in the cortical bone has also been reported. The
efficacy of teriparatide is limited in areas where the cortical bone is predominant, such as the proximal
femur and distal radius, supporting this report [137–140]. Furthermore, the use of teriparatide is
currently restricted to a total of 2 years [137–140].

A history of fractures has also been reported to be a significant risk for further fractures in
patients with osteoporosis, particularly the risk of secondary fractures in those within the first year
of a fracture [141]. Therefore, treatment with drugs that exert early protective effect is required.
However, it takes time for existing drugs to demonstrate efficacy, and there is an unmet need in current
osteoporosis treatments.

6.1.3. Novel Therapies for Osteoporosis

Anti-sclerostin antibodies promote bone formation and suppress bone resorption through
promotion of osteoblast differentiation and OPG production [81] (Figure 3), thereby demonstrating
a dual effect [140]. In a study conducted using postmenopausal osteoporosis and male osteoporosis
animal models, bone densities of trabecular and cortical bones were shown to markedly increase in
a group administered with anti-sclerostin antibody [138,142–144]. The results of the clinical trials
conducted based on the above findings are outlined in the following sections. To date, four phase
III clinical trials have been conducted, and good results have been reported (Table 3) [125]. In each
clinical trial, superior bone density-increasing effects, bone formation-stimulating effects, and bone
resorption-suppressing effects have been shown [126–129]. In addition, two of these trials have shown
antifracture efficacy (Table 3) [126,128]. These results indicated that the use of romosozumab may
solve the immediate unmet short-term problems with the existing treatments. Clinical trials of BPS804,
a fully humanized sclerostin neutralizing antibody, in hypophosphatasia [145] and osteogenesis
imperfecta [146] are also underway.
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6.1.4. Clinical Issues

The concern that romosozumab might be associated with a higher incidence of cardiovascular
events has been raised [128,129]. However, there have been no reports of increased cardiovascular
events in sclerosteosis, van Buchem disease, or sclerostin knockout mice [20,66], and there is a lack
of scientific evidence suggesting that romosozumab strongly leads to cardiovascular events. As a
result, romosozumab was approved for clinical use in patients with severe osteoporosis from March
2019 in Japan and April 2019 in USA [147]. In the future, the use of this treatment is expected to
gain popularity worldwide. Therefore, more clinical data on the onset of cardiovascular events and
oncogenesis are required.

On the other hand, the osteogenic effects of romosozumab gradually diminish within a year.
The inhibition of sclerostin by romosozumab may promote DKK1 expression in a compensatory
manner. Sclerosteosis and van Buchem disease present with increased levels of DKK1 in sera [148].
Moreover, it has been reported that DKK1 expression is promoted in ovariectomized rats following the
administration of an anti-sclerostin antibody [149]. Osteocyte-specific DKK1- and SOST-conditional
double-KO (cDKO) mice exhibit high bone mass compared with the control mice [150]. In addition,
a bispecific antibody against DKK1 and sclerostin has been developed. The administration of the
bispecific antibody significantly improved fracture healing compared with the anti-sclerostin antibody
alone [151]. DKK1 is a target gene of the canonical Wnt signaling pathway, and sclerostin inhibition
induces DKK1 expression. Therefore, a combination of anti-sclerostin and anti-DKK1 antibodies may
prove to be effective.

6.2. Osteoarthritis

6.2.1. Wnt-Related Molecules Involved in Osteoarthritis

OA is a degenerative disease associated with articular cartilage damage, osteophyte formation,
and hardening of the subchondral bone [152,153]. Mice in which β-catenin is activated specifically in
chondrocytes exhibit an OA-like phenotype [152,154]. In addition, Wnt7b expression increase has been
reported in the articular cartilage of OA patients [152,155]. mTORC is activated downstream of the Wnt
signaling pathway. In human OA cartilage, mTOR expression and accelerated cartilage destruction
have been reported [11,79,156]. Furthermore, in cartilage-specific mTOR KO mice generated using
tamoxifen-inducible Col2-Cre mice, cartilage damage due to OA was not observed.

Sclerostin is not expressed in normal chondrocytes but is observed in OA chondrocytes [152,157].
Destabilization of the medial meniscus to induce OA led to a significantly high OA score of SOST-KO
than in wild-type mice, and the expressions of aggrecanase and type X collagen were also significantly
elevated [158]. Considering that the activation of the canonical Wnt signaling pathway in chondrocytes
exacerbates OA, sclerostin expression by OA chondrocytes may have a protective effect.

6.2.2. Existing Therapies for Osteoarthritis

As a treatment for OA, oral NSAIDs, external preparations, and intra-articular injection of
hyaluronic acid are used. Developments in molecular biology and the advent of antibody preparations
have resulted in a dramatic progress in treatment strategies for osteoporosis and rheumatoid arthritis
(RA). However, virtually, almost no progress has occurred over the past 20 years in the effective
treatment for OA. Understanding Wnt signaling might serve as a means to develop effective treatments
for OA.

6.2.3. Preclinical Findings and Potential Novel Therapies for Osteoarthritis

The administration of rapamycin, an inhibitor of mTOR, to an OA model reduced the expression
of MMP13 involved in cartilage destruction and promoted the production of type 2 collagen [156].
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Treatment using low molecular weight compounds that inhibit Wnt signaling pathway activity
has shown an inhibitory effect on cartilage destruction in OA model animals [159,160]. Phase II clinical
trials are currently underway for treatments using these compounds.

6.2.4. Clinical Issues

The systemic inhibition of Wnt signaling may affect bone turnover; thus, improvements in selective
drug delivery systems are required.

6.3. Rheumatoid Arthritis

6.3.1. Wnt-Related Molecules Involved in Rheumatoid Arthritis

RA is an autoimmune disease in which osteochondral destruction occurs with the increased
expression of RANKL and MMPs from synovial tissues by excessive inflammatory cytokines such as
TNF-α and IL-6 [161].

RA is associated with elevated serum DKK1 concentrations [162]. TNF-α is known to induce DKK1
expression in synoviocytes in RA [163,164]. DKK1 is involved in the acceleration of bone resorption
and suppression of bone formation via upregulation of the MKK3-p38 pathway and suppression of the
Wnt-β-catenin pathway in RA [163].

Some studies have reported sclerostin expression in the synovial tissues obtained from patients
with RA [165]. TNF-α induction increased the expression of sclerostin in fibroblast-like synoviocytes.
Although the inhibition of sclerostin in RA model mice has been reported to promote TNF-α-dependent
inflammatory joint destruction [165], osteochondral destruction has also been suppressed despite
continued inflammation [166]. Furthermore, in another study in which an anti-sclerostin antibody
was administered, inflammation and local bone erosion were not suppressed, but systemic bone loss
was prevented [167]. Therefore, further investigations are warranted before anti-sclerostin antibody
treatment becomes clinically available for RA.

Sen et al. demonstrated that synovial Wnt5a expression in RA patients is higher than that
in OA patients [123,168,169]. In addition, they reported that Wnt5a enhances the expression of
inflammatory cytokines in synovial fibroblasts [123,169,170]. In several studies, it has been reported
that during arteriosclerosis, macrophages regulate the production of inflammatory cytokines through
Wnt5a expression [171]. Rauner et al. reported a high expression of Wnt5a in the synovial tissue of
TNFα-Tg mice. In addition, Wnt5a induced chemokine production and promoted the migration of T
cells and monocytes [172]. Recently, Sato et al. reported that the Wnt5a-Ror2 axis was involved in
pro-inflammatory cytokine synthesis in dendritic cells [173], and Miao et al. reported that inflammatory
cytokine also promotes Wnt5a expression in RA synoviocytes [174]. Kwon et al. reported an
anti-inflammatory role for sFRP in fibroblast-like synoviocytes of RA patients wherein reduced
expression of sFRP5, which inhibits Wnt signaling, stimulated the expression of pro-inflammatory
genes [175]. Matrix metalloproteinase (MMPs) produced by synoviocytes destroy articular cartilage in
RA. Wnt5a is involved in regulation of MMPs production via the activation of JNK and Src by tumor
cells [176,177]. Therefore, Wnt5a produced by synoviocytes might be involved in cartilage destruction
via enhanced MMPs production in RA.

6.3.2. Existing Therapies for Rheumatoid Arthritis

Treatment is centered on methotrexate, which is classified as a conventional synthetic
disease-modifying antirheumatic drugs (DMARDs). Used in conjunction are biologic DMARDs, which
are molecular-targeted agents for inflammatory cytokines, and targeted synthetic DMARDs, which are
JAK inhibitors. The European League Against Rheumatism regularly provides recommendations on
treatment to tightly control patients with RA [178].
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6.3.3. Preclinical Findings and Potential Novel Therapies for Rheumatoid Arthritis

The findings that Wnt5a produced by synoviocytes promotes the differentiation and function of
osteoclasts and expression of inflammatory cytokine and MMPs suggest that osteochondral destruction
and inflammation can be suppressed in RA via the suppression of Wnt5a [64,179,180].

6.3.4. Clinical Issues

In Japan, the use of denosumab is approved for inhibiting joint destruction in patients with RA.
Although denosumab administered to patients with RA prevents bone erosion, it does not prevent
joint space narrowing [181–183]. This result shows that denosumab can prevent bone destruction but
not cartilage destruction. Regarding RA, a drug that prevents cartilage destruction needs be developed.
A molecular targeting pathway is thought to be commonly involved in the following three processes:
osteoclast differentiation, inflammatory cytokine production, and MMP production, which would
improve bone destruction, pain caused by inflammation, and cartilage destruction. Therefore, the
Wnt5a-Ror2 pathway is considered as a new promising molecular target for RA.

On the other hand, in a study conducted using human mesenchymal stem cells and stem
cells derived from human adipocytes, the Wnt5a-Ror2 axis promoted osteoblast differentiation and
mineralization in the presence of inflammatory cytokines [184,185]. Further studies will be needed to
assess the influence of osteoblast differentiation under inflammatory conditions.

6.4. Neoplasm

6.4.1. Primary Bone Tumors

Wnt-Related Molecules Involved in Primary Bone Tumors

The relationship between activation of Wnt signaling pathway and progression of osteosarcoma
is controversial [186], as both Wnt ligands and Wnt inhibitory factors are expressed in osteosarcoma. A
study involving the use of osteosarcoma cell lines has found that WIF1 suppressed cellular proliferation
by suppressing the canonical Wnt pathway [187,188]. DKK3 has also been reported to suppress
the infiltration and metastasis of osteosarcoma [189,190]. These results suggest that Wnt signaling
facilitates osteosarcoma. However, sFRP2, another Wnt inhibitory factor, also facilitates the infiltration
and metastasis of osteosarcoma [191]. The Wnt canonical pathway has also been reported to be
involved in angiogenesis and immune tolerance and is important for lung metastases in sarcoma [192].

EWSR1-FLI1, an oncogenic fusion gene detected in 85% of patients with Ewing sarcoma [193,194],
is a transcription factor that controls the expression of over 500 genes which suppress cellular
differentiation and facilitate cellular proliferation [195]. Although no mutations in Wnt-related genes
have been identified in Ewing sarcoma to date, a relationship between EWSR1-FLI1 and Wnt, as well
as the involvement of DKK2 have been reported [196], which warrants further analysis.

Existing Therapies for Primary Bone Tumors

Current standard treatments for primary bone tumors focus on multi-modal therapy, including
multi-agent chemotherapy, radiation therapy, and surgical treatment [197].

Preclinical Findings and Potential Novel Therapies for Primary Bone Tumors

Activation of GSK-3β, which phosphorylates β-catenin, is known to suppress Wnt signals. A
recent study has found that GSK-3β inhibitors suppress proliferation in osteosarcoma cell lines and
therefore might lead to normal osteogenesis. These findings indicate that the activation of Wnt signaling
might lead to the differentiation of osteosarcoma cells to osteoblast-like cells, with consequent reduction
in the proliferation of osteosarcoma cells [198]. However, it remains unclear whether there is a direct
and causal relationship between β-catenin accumulation and facilitation of osteogenesis via GSK-3β
inhibition leading to cancer suppression. The possibility remains that GSK-3β inhibition to suppress
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cancer growth involves a different mechanism independent of the canonical Wnt pathway [199], and
this requires further investigation.

Clinical Issues

Existing chemotherapy has extended the 5-year survival rate of osteosarcoma from 60% to
80% [200]. Clinical trials targeting Wnt signaling for solid tumors are underway. Analyses of the
efficacies of these novel drugs on primary bone tumors remain a future challenge.

6.4.2. Multiple Myeloma

Wnt-Related Molecules involved in the Developing Multiple Myeloma

The Wnt signaling pathway is involved in the development of bone disorders in multiple
myeloma [201,202]. Serum sclerostin concentration is elevated in patients with multiple myeloma and
bone lesions, while a correlation with bone destruction has been suggested. Serum and bone marrow
sclerostin concentrations are significantly higher in patients with multiple myeloma than in healthy
subjects or leukemia patients [203].

Existing Therapies for Multiple Myeloma

The treatment for multiple myeloma has become diversified with the advent of new drugs.
In addition to the treatment of the underlying disease, bone resorption inhibitors, such as zoledronate
and denosumab, have been shown to be effective in patients with bone lesions [202].

Preclinical Findings and Potential Novel Therapies for Multiple Myeloma

In a mouse myeloma model with bone lesions generated by transplanting a human myeloma cell
line into NOD-SCID mice, elevated blood levels of human DKK1 were observed, and while human
sclerostin level was undetected, mouse sclerostin level was elevated. These findings indicate that the
source of sclerostin detected in the blood and bone marrow of patients with multiple myeloma was of
the host and not the tumor [203]. Administration of an anti-sclerostin antibody in a mouse myeloma
model improved bone lesion. In addition, combined anti-sclerostin antibody and proteasome inhibitor
treatment improved bone lesions and reduced the number of tumor cells. Furthermore, it has been
demonstrated that instead of inducing apoptosis of osteoblasts, myeloma cells suppress osteoblast
differentiation leading to increased sclerostin. Such an effect might be inhibited by the neutralization
of DKK1, assuming that DKK1 promotes sclerostin expression [203].

Clinical Issues

An additional concern is that the use of an anti-sclerostin antibody results in elevated Wnt
signaling, which exacerbates tumor progression. So far, the administration of an anti-sclerostin
antibody in a mouse myeloma model did not affect tumor mass [204,205]. Future evaluations are
needed to determine whether the use of anti-sclerostin antibodies in patients with multiple myeloma
affects tumor size.

6.4.3. Bone Metastasis

Wnt-Related Molecules Involved in Bone Metastasis

Mass spectrometric comparison of secreted proteins in breast cancer cell lines known to exhibit
bone metastases and lung metastases demonstrated elevated expressions of DKK1 in those with
affinity toward bone, and decreased expressions of DKK1 in cell lines with affinity toward lung [206].
A retrospective analysis of 102 breast cancer patients revealed that the DKK1 expression in breast
cancer was significantly higher in patients with bone metastasis [206]. A detailed analysis of the
molecular mechanisms underlying bone metastasis revealed that in the osteoblasts of breast cancer
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patients with a high DKK1 expression, suppression of the canonical Wnt signaling pathway reduced
osteogenesis. A further decrease in OPG expression accelerated osteoclast differentiation and promoted
bone metastasis. On the other hand, in breast cancer patients with a low DKK1 expression, activation
of the non-canonical Wnt signaling pathway induced an elevated expression of TGF-β and PGE2, thus
promoting lung metastasis [206].

Existing Therapies for Bone Metastasis

The standard treatment for bone metastases is the treatment of the primary disease and treatment
using zoledronate and denosumab for osteolytic lesions [207].

Preclinical Findings and Potential Novel Therapies for Bone Metastasis

DKK1 expression is a predictive biomarker of metastasis in the surgical specimens of breast cancer
patients. Prediction of bone metastases may enable the prevention of bone metastases in the future.

Clinical Issues

Whether there is a similar trend in not only breast cancer but also other neoplasms with affinity
for bone requires further consideration.

7. Future Direction and Conclusions

The Wnt protein was reported as an oncogene by Nusse et al. Activation of signaling owing to
mutations in Wnt-related molecules has been reported in various cancers [208–210]. More recently,
Wnt signaling has been identified to play an important role in cancer stem cell survival; therefore,
treatments that target cancer stem cell niches have also been reported [211]. The proteins involved
in Wnt signaling are molecular targets in cancer therapy [13,212] with clinical trials for the treatment
of cancer using ETC-159 and LGK974 (Porc inhibitors) [213,214], OMP-54F28 (ipafricept: soluble
FZD8) [215,216], OTSA101 (anti-FZD10 antibody) [217], OMP-18R5 (vantictumab: anti-FZD1/2/5/7/8
antibody) [218], OMP-131R10 (rosmantuzumab: anti-RSPO3 antibody) [212], PRI-724 (β-catenin/CBP
inhibitor) [219,220], and UC-961 (cirmtuzumab: anti-ROR1 antibody) [221,222] ongoing (Table 4). As
Wnt signaling plays a key role in the maintenance of bone mass, the Porc inhibitors LGK974 and
Wnt-C59 have been reported to cause skeletal-related events (such as cancer treatment-induced bone
loss) in phase I studies and in animal studies [223]. The efficacy of alendronate use in patients with
these adverse events has also been reported [224]. Thus, treatment with Wnt protein as a molecular
target may mimic the bone tissue phenotypes observed in Goltz-Gorlin syndrome, with PORCN
mutation [35], and Wls-cKO [74]. In the future, clinicians involved in cancer treatment or osteoporosis
management should consider these findings and pay close attention to skeletal-related events and
prepare appropriate preventative measures. The development of Wnt inhibitors that do not affect bone
metabolism is expected.
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Table 4. Therapeutic strategies of anti-WNT signaling in clinical development. mAb: monoclonal
antibody, CBP: CREB-binding protein.

Target Mechanism of
Action Agent

Stage of Clinical
Development

(Identifier)
Tumor Hystotype Refs

WNT

Porc inhibitor

ETC-159 Phase1
(NCT 02521844) solid tumors [213]

LGK974 Phase1
(NCT 01351103)

pancreatic cancer,
colorectal cancer,

melanoma (and 5 more...)
[214]

Soluble FZD8
OMP-54F28
(ipafricept)

Phase1
(NCT 02069145) hepatocellular cancer

[13,212,215]
Phase1

(NCT 02092363) ovarian cancer

Phase1
(NCT 02050178) pancreatic cancer

Phase1
(NCT 01608867) solid tumors [216]

FZD10 Anti-FZD 10
mAb OTSA101 Phase1

(NCT 01469975) synovial sarcoma [217]

FZDs
Anti-FZD

1/2/5/7/8 mAb
OMP-18R5

(vantictumab)

Phase1
(NCT 01345201) solid tumors

[13,212,218]
Phase1

(NCT 02005315) pancreatic cancer

Phase1
(NCT 01957007) solid tumors

Phase1
(NCT 01973309) metastatic breast cancer

RSPO3 Anti-RSPO3
mAb

OMP-131R10
(rosmantuzumab)

Phase1
(NCT 02482441) solid tumors [212]

b-catenin b-catenin/CBP
Inhibitor

PRI-724

Phase1
(NCT 01764477)

metastatic pancreatic
cancer [13,212,219,

220]Phase1/2
(NCT 01606579)

advanced myeloid
malignancies

ROR1 Anti-ROR1
mAb

UC-961
(cirmtuzumab)

Phase1
(NCT 02860676)

chronic lymphocytic
leukemia

[212,221,222]Phase1/2
(NCT 03088878)

B-cell lymphoid
malignancies

Phase1
(NCT 02776917) breast neoplasms

Sclerostin has been reported to be involved in macrovascular development [225]. Serum sclerostin
levels have also been reported to correlate with the calcification of the abdominal aorta in patients with
chronic kidney disease [226]. Alternatively, there is a report that survival prognosis in dialysis patients
is not correlated with serum sclerostin levels [227], and the effect of sclerostin on the vasculature is
controversial. In the future, there is a necessity to analyze the effect on large vessels when anti-sclerostin
antibodies are used in healthy subjects.

In summary, Wnt signaling and Wnt-related molecules were outlined in detail, covering the
basic points and their clinical significance. Wnt signaling has been shown to regulate bone formation
and resorption, while molecules identified to have developmental and morphogenetic significance
through studies on Drosophila melanogaster and Xenopus laevis were also found to play a key role in
bone metabolism. Although recent advances have enabled clinical application to diseases, there are
still problems that need to be overcome in clinical practice. There is much hope that this field will
continue to expand, and further understanding of Wnt signaling will be beneficial to patients.
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ALP alkaline phosphatase
APC adenomatous polyposis coli
BMP bone morphogenetic protein
LD linear dichroism
BP domains β-propeller domains
CaMKII calmodulin-dependent protein kinase II
cAMP cyclic adenosine monophosphate
CBP CREB-binding protein
CRD cysteine-rich domain
CT-1 cardiotropin-1
Ctsk cathepsin K
Daam dishevelled associated activator of morphogenesis
DKK dickkopf
DMARDs disease-modifying antirheumatic drugs
DMP 1 dentin matrix protein 1
ECR evolutionarily conserved region
FZD frizzled
GSK-3 β glycogen synthase kinase-3 β

GWAS genome-wide association study
HDAC histone deacetylase
IL interleukin
JNK Jun N-terminal kinase
KO knockout
LEF 1 lymphocyte enhancer factor 1
LGR leucine-rich repeat-containing G protein-coupled receptor
LIF leukemia inhibitory factor
LRP low-density lipoprotein-related receptor
M-CSF macrophage colony-stimulating factor
Mef myocyte enhancer factor
mAb monoclonal antibody
MMPs matrix metalloproteinase
mTOR mammalian target of rapamycin
mTORC1 mammalian target of rapamycin complex 1
NFATc1 nuclear factor of activated T cell c1
OA osteoarthritis
OCN osteocalcin
OSM oncostatin M
OMIM® Online Mendelian Inheritance in Man®
OPG osteoprotegerin
OPPG osteoporosis-pseudoglioma syndrome
OSX osterix
PCP planar cell polarity
PKA protein kinase A
PKC protein kinase C
PKN3 protein kinase N3
Porc porcupine
Postn periostin
PTH parathyroid hormone
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PTHrP parathyroid hormone -related protein
RA rheumatoid arthritis
RANK receptor activator NF-kB
RANKL receptor activator NF-kB ligand
RNF43 ring finger 43
Ror1/2 receptor tyrosine kinase-like orphan receptor 1/2
RSPO roof-plate specific spondin
Runx runt-related transcription factor
S1P sphingosine-1-phosphate
SERM selective estrogen receptor modulators
sFRP secreted frizzled-related protein
SIK salt-inducible kinase
TCF T-cell factor
TGF-β transforming growth factor-beta
TNF tumor necrosis factor
Wls wntless
Wnt wingless-related MMTV integration site
ZNRF3 zinc and ring finger 3
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