
Saudi Pharmaceutical Journal 28 (2020) 1507–1513
Contents lists available at ScienceDirect

Saudi Pharmaceutical Journal

journal homepage: www.sciencedirect .com
Original article
A computational approach to predict multi-pathway drug-drug
interactions: A case study of irinotecan, a colon cancer medication
https://doi.org/10.1016/j.jsps.2020.09.017
1319-0164/� 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author at: Department of Information Technology, Faculty of
Computing and Information Technology, King Abdulaziz University, Jeddah 80221,
Saudi Arabia.

E-mail address: arnoor@kau.edu.sa (A. Noor).

Peer review under responsibility of King Abdulaziz University

Production and hosting by Elsevier
Abdullah Assiri a, Adeeb Noor b,⇑
aDepartment of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
bDepartment of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 80221, Saudi Arabia
a r t i c l e i n f o

Article history:
Received 25 February 2020
Accepted 18 September 2020
Available online 29 September 2020

Keywords:
Drug-drug interaction
Multi-pathway
Colon cancer
Irinotecan
Semantic web technologies
Prediction
a b s t r a c t

Drug-drug interactions (DDIs) are a potentially distressing corollary of drug interventions, and may result
in discomfort, debilitating illness, or even death. Existing research predominantly considers only a single
level of interaction; however, serious health complications may result from multi-pathway DDIs, and so
new methods are needed to enable predicting and preventing complex DDIs. This article introduces a
novel method for the prediction of DDIs at two pharmacological levels (metabolic and transporter inter-
actions) by means of a rule-based model implemented with Semantic Web technologies. The chemother-
apy agent irinotecan is used as a case study for demonstrating the validity of this approach. Mechanistic
and interaction data were mined from available sources and then used to predict interactors of irinote-
can, including potential DDIs mediated by previously unidentified mechanisms. The findings also draw
attention to the profound variation between DDI resources, indicating that clinical practice would see sig-
nificant value from the development of an evidence-based resource to support DDI identification.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Polypharmacy which is having simultaneous prescriptions for
at least five medications, has become increasingly prevalent in
recent years, as has the concomitant risk of patients experiencing
major drug-drug interactions (DDIs) (Létinier et al., 2019). In addi-
tion to increased risk of death, DDIs have been implicated in 0.12%
of re-hospitalizations (Andersson et al., 2018 May). As the number
of prescriptions per patient increases, DDIs are expected to have
even greater impact (Létinier et al., 2019), yet the study and iden-
tification of potential DDIs will also become increasingly difficult.
Early identification of DDIs is hindered by several factors, most
particularly the lack of DDI information available before a drug
enters the market (LePendu et al., 2013; Reis and Cassiani, 2010).
The clinical trials carried out ahead of a new drug’s approval are
typically insufficient to test DDIs, most notably because the
patients enrolled in the study may not have been prescribed with
the interacting drugs. Individual patients may also be predisposed
to DDIs on account of idiosyncratic factors such as diet, dosage, and
age-related changes in physiology (Patel et al., 2014). To address
these issues and minimize the risk of interactions, researchers have
begun investigating DDIs through leveraging published resources
and using diverse informatics approaches (Percha and Altman,
2013). In particular, informatics approaches offer promising oppor-
tunities to identify DDIs before they are encountered clinically. To
date, these approaches have been used with extensive biomedical
data from published literature, the FDA’s Adverse Event Reporting
System (FAERS), patient electronic health records (EHRs), and drug
information sources (Percha et al., 2012; Tatonetti et al., 2012;4:
125ra31–125ra31.; Zhang et al., 2014; Herrero-Zazo et al., 2015).

While informatics studies have made significant headway on
identifying DDIs, they only capture a portion of the available DDI
data (Paczynski et al., 2012) and have predominantly focused on
single interaction pathways, mainly metabolism-based interaction
(Tari et al., 2010; Preissner et al., 2010). Consequently, the mecha-
nisms of other interactions have not been investigated and
described, which increases the difficulty of detecting potential
DDIs. Researchers have therefore placed significant effort into the
development of informatics approaches that are able to identify
and illustrate different mechanisms of interaction in the context
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of DDIs (Berger and Iyengar, 2011). For instance, measures of drug
similarity have been developed and mechanistic information have
been successfully applied not only to predict DDIs, but also to pre-
dict the ways in which drugs interact (Ferdousi, 2017). Additional
features used to identify and better understand DDIs and mecha-
nisms of interaction include Semantic Web Technologies and
Linked Data (Noor et al., 2017 May 1), molecular structures
(Vilar, 2012), interaction profile fingerprints (Vilar, 2013), and drug
and protein properties (Kamdar and Musen, 2017).

Despite these advances, existing approaches employed to predict
and identify DDIs still face several limitations, including the validation
process andmechanistic coverage. The validation process refers to the
gold standard DDI source used when developing and testing the
method. At present, there is neither a single comprehensive database
of DDIs nor an integrative technique that incorporates all extant data
in order to predict DDIs before they manifest in patients (Roblek et al.,
2015; Banda et al., 2015; Scheife et al., 2015; Lewis, 2010). Mean-
while, mechanistic studies have focused predominantly on using
pharmacokinetics and pharmacodynamics to predict and demystify
DDIs. This focus leads to neglect of other possible interaction path-
ways, and therefore misses effects that result from two or more inter-
active mechanisms, termed multi-pathway DDIs. An example drug
with multi-pathway DDIs is cyclosporine, which interacts with many
cholesterol-lowering HMG-CoA reductase inhibitors (statins) by
simultaneously inhibiting CYP3A4-mediated drug metabolism and
also the polypeptide-mediated transport of drugs into hepatocytes,
which is required for therapeutic activity of statins (Asberg, 2003).

Here we describe a computational method that utilizes Seman-
tic Web technologies to identify and predict potential DDIs at two
pharmacological levels. Semantic Web technologies provide ‘‘a rig-
orous mechanism for defining and linking data using web proto-
Fig. 1. Multi-pathway DDIs workflow. Starting with five different drug resources, a DD
prediction was performed by the rule engine.
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cols in such a way that the data can be used by machines not
just for display, but also for automation, integration, and reuse
across various applications” (Pathak et al., 2013). Our method inte-
grates mechanistic and DDI information from multiple drug infor-
mation sources: DrugBank (Wishart et al., 2008), the National Drug
File – Reference Terminology (NDF-RT) (Brown et al., 2004), the
National Cancer Institute thesaurus (NCIt) (de Coronado et al.,
2004), the Pharmacogenomics Knowledge Base (PharmGKB)
(Klein et al., 2001), and the Unified Medical Language System
(UMLS) (Bodenreider, 2004). Subsequently, it uses a semantic
rule-based model to identify potential multi-pathway DDIs result-
ing from metabolic and transporter interactions. To illustrate the
utility and validity of this approach, a case study was performed
on the chemotherapy drug irinotecan, whose pharmacokinetics
profile is well documented (Mathijssen et al., 2001).
2. Methods

To ensure accurate discovery of multi-pathway DDIs, it is neces-
sary to have a knowledge framework that incorporates information
on both metabolism and transport. As no extant knowledge base
supplies both levels of information, it was necessary in this study
to develop one that did. Entries in the knowledge base were cre-
ated and stored using the Java framework Jena (Carroll et al.,
2004; Owens et al., 2008). Fig. 1 shows the overall workflow of
the multi-pathway DDIs prediction method.

2.1. Data sources

Five key sources were used to develop the DDI knowledge base:
DrugBank (which contains detailed information on drugs and their
I knowledge base was developed through semantic integration. Multi-pathway DDI
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targets), PharmGKB (which documents significant drug-gene rela-
tionships), NDF-RT (an ontology that describes and models drugs
within pharmacokinetic, pharmacodynamic, physiological, and
related disease domains), NCIt (an ontology for medical and trans-
lational research vocabulary, focused on cancer), and the UMLS
Metathesaurus. The semantic representation, integration, and stor-
age of these sources in the DDI knowledge base fills in critical
knowledge gaps in drug information. The backbone of the knowl-
edge base was the ULMS terminology integration system (Version
2020) provided by the National Library of Medicine (NLM), which
has been stable for more than 20 years. The information imported
from each source was as follows: drugs and their associated trans-
porters from DrugBank, drug pharmacokinetics from NDF-RT, drug
metabolic properties from NCI, and specific associations of drugs
with enzymes/transporters from PharmGKB. Data from the UMLS,
NCIt, and NDF-RT were stored in a local MySQL database, while
data from DrugBank (https://www.drugbank.ca/releases/5–1-
2/downloads/target-approved-polypeptide-sequences) and

PharmGKB (https://www.pharmgkb.org/downloads) were down-
loaded on November 2019.
2.2. Adding resources into the DDI knowledge base

The reference set of concepts in the knowledge base consisted
of Concept Unique Identifiers (CUIs) from ULSM that had been con-
verted to DDI Unique Resource Identifiers (URIs). Information from
other data sources was mapped to these reference concepts. The
knowledge base was built on four selected UMLS Metathesaurus
tables:MRCONSO to standardize drug names,MRREL to add seman-
tic relationships, MRSAT to map external sources, and MRSTY to
check semantic groups and assure the quality of the mapping pro-
cess between sources (Bodenreider and McCray, 2003). All knowl-
edge base resources, including external sources, were represented
as UMLS CUIs in order to avoid any extra linking between URIs or
need for complicated inference syntaxes. Due to being already
included in the UMLS, NDF-RT, and NCIt data were added to the
knowledge base directly during UMLS processing. Subsequently,
DrugBank and PharmGKB data were integrated through cross-
referencing properties and using the SPARQL/update technique to
harmonize identifiers.

As a test case, DrugBank data on irinotecan was added to the
knowledge base by means of cross-referencing the Anatomical
Therapeutic Chemical (ATC) system, in which drugs are catego-
rized by their therapeutic, pharmacological, chemical properties,
active ingredients, and the systems or organs affected (WHOCC,
2020). As this system is incorporated in the UMLS Metathesaurus,
CUIs associated with ATC identifiers can be obtained by querying
UMLS. In the ATC system, irinotecan is given the unique identifier
L01XX19, which maps to CUI C0123931. The corresponding Drug-
Bank identifier, DB00762, was accordingly replaced with
C0123931, and PharmGKB information was similarly integrated.
Fig. 2. Model schematic for multi-pathway inference discovery of irinotecan
interactors.
2.3. Normalization and insertion of DDI semantic relationships

In the Resource Description Framework graph of the DDI knowl-
edge base, resources were linked by way of semantic relationships
(predicates) from the UMLS MRREL table. During the process of
mapping data sources, additional relationships were inherited
from PharmGKB and DrugBank. All semantic relationships were
reviewed manually, and relationships were grouped when possible
in order to simplify and remove redundancies. For example,
irinotecan was linked to CYP3A4 in NCIt with the chemical_or_dr
ug_is_metabolized_by_enzyme relationship, while in DrugBank the
two were connected with substrate_of. As the same resources were
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involved (irinotecan to CYP3A4), we grouped the two relationships
and stored them under drug_is_metabolized_by_enzyme.

2.4. Description of a semantic rule-based model

Among the most powerful tools of the Semantic Web is infer-
ence, the process of arriving at conclusions by reasoning from evi-
dence and conditions. We performed inference using Jena’s generic
rule engines (Jena and Reasoners, 2015), particularly the forward
chaining technique. Using irinotecan as a test case, we identified
potential interaction candidates based on similarities at two phar-
macological levels (metabolic and transport). That is, drugs were
assumed to be potential interactors of irinotecan if they and
irinotecan shared metabolic pathways (i.e. CYP3A4 processing)
and transporters (i.e. P-glycoprotein [P-gp]). These inferences were
made using a semantic rule-based model with the PharmGKB
knowledge base as the source of evidence to ensure that only drugs
sharing a metabolic and transporter pathway with irinotecan were
considered. The inference model is graphically represented in
Fig. 2, including the forward chaining rule used to identify poten-
tial DDIs.

2.5. Analysis of DDI source variation

Eighty DDIs were reported for irinotecan. A conformity sample
was constructed for these DDIs, in which a value of 1 indicated the
presence of a reporting source and a value of �1 the absence of a
reporting source. Where two reports had opposing scores, the
mean of 0 would indicate absolute disagreement. Similarly, two
sources in agreement would have a mean of either 1 or �1, both
indicating absolute agreement. Agreement was evaluated regard-
less of whether a DDI was reported or not reported by any two
sources, thus only the magnitude of the mean need be considered.

https://www.drugbank.ca/releases/5%e2%80%931-2/downloads/target-approved-polypeptide-sequences
https://www.drugbank.ca/releases/5%e2%80%931-2/downloads/target-approved-polypeptide-sequences
https://www.pharmgkb.org/downloads
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Reports were also scaled by a trust score (weight) for each source;
however, for the purpose of the case study, all sources were consid-
ered to have equal weight, preserving fairness and objectivity. In
hypothesis testing, means and standard deviations were first cal-
culated for the sample comprised of mean magnitudes (conformity
values). Potential population means were then assumed so that
95% confidence intervals could be determined.

3. Results

3.1. Identification of potential Multi-pathway DDIs using Semantic
inference

After applying the semantic rule-based model, a total of 215
FDA-approved drugs were identified as potential interactors of
irinotecan. These drugs were all inferred as being metabolized by
CYP3A4 and transported by P-gp, and those associations were val-
idated with evidence from PharmGKB. Out of the 215 candidate
interactors, only 116 had validating evidence in PharmGKB.

Of the 116 drugs with validated inferences, 28 had potential
metabolism-based interactions with irinotecan (either inhibition
or induction), another 28 had potential transporter-based interac-
tions (either inhibition or induction), and 8 drugs did not inhibit or
induce CYP3A4 or P-gp, but were considered co-substrates for both
(similar disposition). The remaining 52 drugs were inferred to
potentially interact with irinotecan through both transporter and
metabolic mechanisms (Fig. 3).

3.2. Validation of predicted potential Multi-pathway DDIs

As no single comprehensive database of DDIs exists (Ayvaz
et al., 2015), the 116 predicted interactions were compared against
five different commercial and free license DDI information sources:
Drugs.com (Drugs.com | Prescription Drug Information,
Interactions Side Effects [Internet]. [cited, 2020), Lexi-Comp
(Lexicomp� Online | Clinical Drug Information [Internet]. [cited,
2020); Micromedex Solutions (Micromedex� Healthcare Series.
[Internet]. Thomson Micromedex, 2020), Medscape (News and
Trials, 2020), and finally the Potential Drug-Drug Interactions
(PDDIs) source by Ayvaz et al. (Ayvaz et al., 2015), which combines
five clinical sources, four natural language corpora, and five phar-
macovigilance sources. Notably, Zhang et al. (Zhang et al., 2014)
suggest that when using extant curated data sources for validation,
as here, the incompleteness of those sources could lead to many
false positives and impaired precision. Tari et al. (2010) also
reported limitations of using DrugBank as a gold standard for val-
idation, in that only 11.0% of their results were represented in the
database, while 77% were detected via literature search; therefore,
poor recall is also an issue with curated databases. In this study, 80
of the predicted DDIs were found to be reported in the collected
Fig. 3. Classification by mechanism of 116 drugs predicted to interact with
irinotecan.
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sources, while 36 were not represented in any curated source. Of
those 36, supporting evidence for 12 was obtained from published
literature and other clinical websites (Table 1) (Supplementary
Tables 1, 2, and 3). The remaining 24 interactions have never been
studied or discussed in either the medical literature or in commer-
cial and free DDI sources.

3.3. Statistical significance of predicted potential Multi-pathway DDIs

The gold standard for this study was the PDDIs source from
Ayvaz et al., as it is comprised of 14 publically available sources
of DDI information. The significance of the overlap between model
results and documented PDDIs was evaluated by Fisher’s exact test
on a two-by-two contingency table (Table 2).

3.4. Precision and recall of predicted potential Multi-pathway DDIs

The recall and precision were additionally calculated for evalu-
ation of the predicted interaction candidates. As described above,
of the 116 potential interactors, 80 were validated with support
in curated databases (true positives, TP) and 36 were not (false
positives, FP). As a count of false negatives (documented interac-
tions not predicted by the model) is required to determine recall,
all irinotecan interactions were individually retrieved from PDDIs,
Lexi-Comp, Drugs.com, Micromedex Solutions, and Med-scape
sources, then combined and cleaned of duplicate reports to pro-
duce a total of 547 interacting drugs. Subtracting the 80 true pos-
itives gave 467 as the number of false negatives (FN). The recall
then was computed as:

ð Tpð80Þ
TP 80ð Þ þ FNð467Þ � 100% ¼ 14%Þ

and the precision as:

ð Tp 80ð Þ
TP 80ð Þ þ FP 37ð Þ � 100% ¼ 68%Þ

The poor recall of the inference model can be attributed to the
strict restrictions used to define interactors (i.e. metabolism by
CYP3A4 or transport by P-gp). Notably, in the context of DDIs,
the relevance and precision of information is key; that is to say,
for the purpose of this case study, precision is more important than
recall. The recall can also be improved in future by modifying the
model to account for enzyme-transporter co-interactions.

3.5. Consensus of DDIs among data sources

The various data sources demonstrated significant differences
in terms of the number and coverage of DDIs. For instance, NDF-
RT listed seven drug interactions for irinotecan, while Drugs.com
reported 329 and DrugBank reported only 11 interactions. Of
greater concern was the lack of consensus among the various
sources; that is, it was common for one source to report a particu-
lar interaction while others did not. For instance, only in Lexi-
Comp reported irinotecan to interact with beta-blocker drugs.
Upon noting these inconsistencies, we investigated the level of
agreement among the curated sources. As a preliminary null
hypothesis, it was proposed that the sources would have neither
Table 1
Validation results for the 116 predicted irinotecan
interactions.

Validation Source Predicted Interactions

Curated DDI sources 80 (69%)
Literature 12 (10%)
Never studied 24 (21%)



Table 2
Contingency table and Fisher’s exact test two-tailed p-value for predicted interactors
of irinotecan.

True False P-value

Predicted 55 37 <0.05
Unpredicted 166 1356
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consistent agreement nor consistent disagreement. Then, an agree-
ment/disagreement scale was constructed in which a value of zero
represented absolute disagreement and one absolute agreement.
The null hypothesis thus corresponded to the middle of the scale
(H0 = 0.5). This scale and structure was chosen with the goal of
exploring various forms of hypothesis testing in order to collec-
tively analyze the overall relative reporting behaviors of the
sources. Such hypothesis testing would also allow the approximate
determination of source independence in terms of reporting
behavior to be approximately determined. For testing, a sample
set was prepared from the sources based on the reporting behav-
iors of the 80 validated irinotecan DDIs. Those samples were used
to construct a conformity sample consisting of the mean reporting
behaviors determined for all pairwise combinations of the five
sources and for the sources as an overall whole. The collective sam-
ple had a 95% confidence interval of 0.49 to 0.58, overlapping the
null hypothesis score (0.5). Based on this interval and the con-
structed conformity, it was strongly evident that no level of statis-
tical agreement existed for the DDI sources used in this study. The
Overall
TWOSIDES-DrugBank

TWOSIDES-Lexi_comp
TWOSIDES-NDF-RT

TWOSIDES-Drugs.Com
TWO-SIDES-Mixormedic

TWOSIDES-Medsacpe
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DrugBank-NDF-RT
DrugBank-Drugs.Com

DrugBank-Mixormedic
DrugBank-Medscape
Lexi_Comp-NDF-RT

Lexi_Comp-Drugs.Com
Lexi_Comp-Mixormedic

Lexi_Comp-medsacpe
NDF-RT-Drugs.Com

NDF-RT-Mixormedic
NDF-RT-Medsacpe

Drugs.Com-Mixormedic
Drugs.Com-Medsacpe

Mixormedic-Medscape

0% 20%

Lower Outside Expected Agre

Expected DDI Source Agreemen
(with 95% Statistic

Fig. 4. Depiction of the degree of independence (95% confidence) among five DDI s
interactions). Values below 40% indicate disagreement of sources, those above 60% indica
(Overall) have an expected agreement level in the middle bound, thus are often indepe
indicating their dependence on and independence from one another.
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dependence and independence of the sources was further investi-
gated by analyzing pairwise confidence intervals (Fig. 4).
4. Discussion and conclusions

To aid patients in avoiding serious health complications, it is
key to detect DDIs early and effectively. A number of studies have
applied in vitro, in vivo, or informatics approaches to identify
potential DDIs, including mining scientific literature, AERS, and
EHRs. While these approaches have seen success, the most com-
mon approaches also feature significant limitations that can con-
tribute to neglect of potentially important DDI pathways and to
delayed detection. First, although in vitro and in vivo investigative
processes are useful for alerting researchers to interactions
(Wienkers and Heath, 2005), these studies are slow and often
involve limited numbers of drugs and targets (Hutzler et al.,
2011). Consequently, researchers are not able to use these methods
to evaluate new drugs for DDIs as rapidly as those drugs are added
to the market (Tatonetti et al., 2012). Second, informatics benefits
from a rich data source in the form of medical literature, but the
extracted data is error-prone and must undergo substantial man-
ual curation and cleanup before use. Ultimately, the currently
available resources are disparate and disconnected, and so create
challenges for researchers attempting to discover potential hazards
for medical patients, such as DDIs.

The Semantic Web technologies employed here provide a viable
approach for the identification and investigation of potential DDIs.
40% 60% 80% 100%

ement Level Upper Outside

t Levels for Irinotecan DDIs
al Confidence)

ources based on 80 degrees of freedom (true positive predictions for irinotecan
te agreement, and intermediate values a level of variation. All five sources combined
ndent. Other rows represent pairwise comparisons for all combinations of sources,
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This study illustrates the utility of a semantically integrated
knowledge base for the identification of multi-pathway interac-
tions, specifically at the metabolism and transporter levels. We
hypothesized that the sharing of important factors across multiple
biomedical levels could be informative for the prediction of poten-
tial DDIs. The model we developed identified 116 FDA-approved
medications as potential irinotecan interactors. The observed ten-
dency for drugs to interact with irinotecan through multiple mech-
anisms highlights the essential import of a rule-based model that
can accurately and simultaneously infer all potential interaction
mechanisms. For example, the model successfully detailed the
interaction of nefazodone with irinotecan in terms of both trans-
porter and metabolism mechanisms. In contrast, decision support
tools such as Micromedex, Lexicomp, and Facts and Comparisons
identified only the metabolic interaction via CYP3A4. As interac-
tion via one mechanism may enhance or mitigate another interac-
tion that occurs through a distinct mechanism, perhaps with
clinically meaningful impact, comprehensive identification of all
DDI mechanisms is critical (Hinton et al., 2008). The complex case
of irinotecan thus illustrates inadequacies in conventional systems
for DDI identification, and equally demonstrates the value and
capability of integrated the Semantic Web technology as a means
of modeling potential DDIs and ultimately developing tools that
better support clinical decisions.

Although our method achieved 79% correct detection of irinote-
can interactors (69% from DDI sources +10% from literature and clin-
ical websites [Table 1]), there are nonetheless several limitations of
this study that merit addressing in future work. First, the rule-
based model only investigated potential interactions; it did not con-
sider whether those interactions had clinical significance. In fact,
assessing interaction severity from mechanistic information alone
is complex, and best aided by using clinical pharmacokinetic/pharma
codynamic studies to (1) determine the effect of identified interac-
tions on the concentrations of interacting drugs and (2) assess how
altered drug concentration will impact therapeutic efficacy and the
potential for adverse effects (i.e. therapeutic index). A benefit of
our model is that it can provide scientists and clinicians with poten-
tial interaction candidates for further evaluation through clinical
studies. Second, due to limited available data source for other events
such as absorption and excretion, the method in this paper and the
determination of metabolism and transport as the main pharmacoki-
netic events were based on the available well-known, reliable, and
validated data sources. With the expansion of and increased atten-
tion paid to the world of big data (Noor, 2019), we expect to have
available in future years more sources with reliable data that can
be used to build more comprehensive and thorough programs that
will precisely identify DDIs across multiple pathways. Lastly, this
study is also limited by examining interactions only for the drug
irinotecan. While the complex pharmacokinetic profile of irinotecan
enabled testing of the full range of our model, additional examples
would provide more definitive proof of the value of the developed
DDI knowledge base.

In conclusion, while this study was limited in scope, the results
give clear illustration of the benefits of Semantic Web technologies
in identifying potential DDIs across multiple pharmacological
levels, and of the capability of a comprehensive DDI knowledge
base to yield novel candidate interactions for further clinical study.
It remains necessary to conduct further prospective and retrospec-
tive studies in order to determine the clinical significance of the
findings and to propose recommendations for future clinical use.

Key points

� Present state-of-the-art drug-drug interaction (DDI) research
largely focuses on fairly simple linear interactions and neglects
effects arising from more complicated scenarios, including
multi-pathway interactions.
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� It is feasible to use Semantic Web technologies to predict novel
DDIs that involve multiple pathway interactions. Using the
chemotherapy agent irinotecan as an exemplar, we show that
our model can identify previously unreported multi-pathway
(metabolic and transporter) interactions.

� This study might inform clinicians in the selection of medica-
tions that do not interact with a patient’s existing prescriptions.
It also suggests that the establishment of a single evidence-
based resource for DDI identification would offer significant
value for clinical practice.
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