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Abstract

Original Article

Introduction

Until recently, postmortem examination was regarded as an 
indispensable source of scientific information, critical for 
the advancement of medical knowledge, and an invaluable 
tool to sharpen clinical acumen.[1] Autopsy rates continue a 
well‑documented fall,[2‑5] and it has become increasingly difficult 
for pathology departments to engage clinicians and hospital 
administrators with meaningful data that provide value to the 
medical field.

Network science has emerged as a tool focused on the understanding 
of complex systems by mapping the interconnectivity of diverse 
data, used in numerous disciplines including sociology, economics, 
and more recently, health. For example, cell biologists have 
described the interactions of large numbers of intracellular proteins 
using network graphs.[6] Several “phenotypic disease networks” 
have recently been published based on large, population‑level 
datasets.[7‑10] These networks show diseases represented as 

spherical “nodes” connected to each other by “edges,” lines which 
represent statistically significant co‑occurrence associations. 
This hypothesis‑free approach simultaneously demonstrates 
associations among numerous data elements  (in this case, 
diseases), allowing for the identification of associations which 
may not have been expected a priori. The patterns of disease 
associations may suggest common biological pathways and 
therapeutic targets. Networks may also provide a platform for the 
creation of predictive models for disease development.

The diagnoses obtained at autopsies are considered gold 
standard data based on the findings of anatomic evidence of 
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disease, in the context of other biochemical, hematologic, 
and/or microbiologic evidence. Further, autopsies frequently 
detect subclinical disease that otherwise may not be reported 
or identified in comorbidity studies in the living patient, 
but which may provide insight into pathophysiologic 
derangements.

We hypothesized that autopsies provide a unique source 
of high‑quality data which may be used to explore disease 
connectivity using network analysis. We compared the autopsy 
disease network to phenotypic disease networks described in 
living patients. In addition, we related the findings to relevant 
questions in the context of the current clinical environment.

Methods

Design
After receiving approval from our Institutional Review Board, 
consecutive autopsy reports of all patients who underwent full 
examination at the Pathology Department of Yale–New Haven 
Hospital between January 1, 2012, and December 31, 2013, 
were retrospectively reviewed. A full autopsy was defined as 
the examination of at least three of the following body cavities: 
cranium, thorax, abdomen, and pelvis in individuals older than 
18 years of age. Autopsies were routinely requested on in‑hospital 
deaths and permission was obtained from the appropriate family 
member. Being a teaching hospital, residents in anatomic 
pathology were intimately involved in every facet of the autopsy 
procedure, for each case. Their responsibilities included, but were 
not limited to, confirming family consent, corpse evisceration, 
organ dissection, and drafting the final autopsy report documents. 
Autopsies were performed free of cost to the patient and without 
consideration of race, religion, or social status. Any cases that 
were transferred to the jurisdiction of the Office of the Chief 
Medical Examiner were excluded from the study.

All autopsy results were reported in the electronic record as a 
final anatomic diagnosis (FAD) which contains all diagnostic 
entities identified by the pathologist supported by anatomic, 
biochemical, microbiologic, or hematologic evidence. The 
FAD includes a cause of death statement, in which an opinion 
on the underlying cause of death is rendered. FAD reports are 
accompanied by a clinicopathological summary, written in 
prose that correlates the findings with the patient’s clinical 
picture. Reports from all 12 attending autopsy pathologists at 
our institution were included.

Diagnostic entities  (henceforth interchangeably referred to 
as diseases) were extracted from each FAD and tabulated 
systematically using Harrison’s Textbook of Internal 
Medicine[11] as a reference for categorizing diseases. The 
resulting dataset was independently reviewed by the autopsy 
director  (KMR, forensic and surgical pathologist) and a 
pulmonary/critical care physician (MD).

Demographics including age, gender, body mass index 
(BMI)[12] and self‑reported race were collected at the time of 
case review.

Statistics and network analysis
Continuous data were presented as mean and standard 
deviation. Among groups, comparisons were made 
using Student’s t‑test or Fisher’s exact test according 
to the type of variables. For the network analysis, a 
total of 140 distinct diseases were identified as binary 
variables  (presence of/absence of) and from them, we 
calculated their prevalence. Each disease was represented 
by a specific node. Each node demonstrates two attributes: 
the diameter, which is proportional to the prevalence of the 
entity in our cohort, and, the color, which represents the 
organ system or general disease category to which the entity 
belongs  (i.e.,  cardiovascular, infectious, etc.). Significant 
association between diseases (nodes) was determined using 
Spearman’s rank correlation coefficient for every pair of 
co‑occurring diseases. Any correlation with P < 0.01 was 
selected for the construction of the network and is represented 
as an interconnecting line or “edge‑” connecting “nodes.” A 
conservative P < 0.01 threshold was chosen to correct for 
the family‑wise error rate of testing numerous hypotheses.

The spatial layout of the network, which we defined as the “The 
Autopsy Multimorbidity Network,” or “Pathomorbidome,” 
was determined by a mathematical algorithm based on 
two variables: the node size  (disease prevalence) and the 
number of edges (connectivity) per node.[13] The result of this 
algorithm is that nodes with a higher number of connections 
lie toward the center of the graph. Gephi Graph visualization 
and Manipulation software V‑0.8.2 beta[14]  (open source) 
was used to create the network. The methodology followed 
was previously reported by Divo et  al.[10] All statistical 
analyses were performed using SAS JMP Pro® software, 
version 11.0 (SAS Institute, Cary, NC).

In network analysis, degree refers to the number of edges 
connecting a particular node. Using our comorbidity network, 
we identified the diseases with the highest and lowest degrees 
of connectivity.

Network topology
Computational analysis of the network identifies the existence 
of modules, or clusters of nodes, which are disease clusters 
aggregated by the unbiased statistical strength of their 
associations. The presence of modules was determined 
using the algorithm proposed by Blondel et al.[15] included in 
Gephi. This algorithm is based on a network property called 
modularity, defined as the difference between the number of 
edges found within a given group of nodes and the expected 
number if the edges between the same set of nodes were 
distributed at random.[16] In the “Pathomorbidome,” modules 
represent clusters of diseases occurring together in a pattern 
that exceeds that expected by chance alone.

Results

A total of 508 autopsies were performed between 2012 and 
2013 at Yale–New Haven Hospital. We excluded 247 cases 
based on age  (<18  years) or limited autopsy examinations 
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(i.e., brain only). The patients’ baseline clinical characteristics 
of the 261 autopsies included in the study are summarized 
in Table 1. The mean age at the time of death was 62 years 
(±15 standard deviation  [SD]), and 45% of patients were 
female. The mean number of comorbidities per individual was 
5.9 (±2.8 SD) without differences between sex (5.7 for females, 
6.0 for males, P = 0.381). Men had a significantly higher rate 
of the following nongender‑specific diseases: aortic aneurysm, 
B‑cell lymphoma, and pneumonia. Women had an increased 
rate of collagen vascular diseases (8.6%–2.1%, P = 0.021). 
The distribution of primary causes of death by gender is 
summarized in Table 2.

There was an increase in the number of diseases per patient 
with increasing age, with the expected significantly higher rate 
of several pathologies (benign prostatic hyperplasia [BPH], 
hypertension, and chronic obstructive pulmonary disease) 
in patients over  70  years old. Among patients younger 
than 50  years old, there was a higher prevalence only of 
cardiomyopathy.

Autopsy Multimorbidity Network
The Autopsy Multimorbidity Network is comprised of 
140 nodes connected by a total of 419 links represented in 
a force‑directed layout with heavily connected nodes placed 
toward the center [Figure 1]. These highly connected nodes 
are primarily represented by infectious processes. The mean 
degree or number of connections per disease is 5.5 (±3.1 SD), 
and Table 3 summarizes the twenty most connected and twenty 
least connected nodes.

Identification of disease modules
The “Pathomorbidome” contains eight distinct modules of 
highly interconnected diseases detected in the structure of the 
network [Figure 2] labeled sequentially by decreasing number 
of component nodes. Module 1 is composed of 27 nodes 
connected by 39 links and highlights the relationship of liver 
cirrhosis with viral hepatitis and alcoholic liver disease. 
Module 2 is comprised of 21 nodes connected by 27 edges and 
shows associations among numerous cardiovascular diseases. 
Module 3, comprised of 13 nodes and 23 edges, demonstrates 
the relationship of malignancy and hypercoagulability 
(deep venous thrombosis/pulmonary embolism  [DVT/PE]), 
as well as numerous diseases associated with drug abuse. 
Module 4 is comprised of 13 nodes and 23 edges, the major 
components of gastrointestinal origin, including perforation. 
The remaining modules also show interesting associations, 
some predictable, some less so [Figure 2].

Conclusions

Using network analysis to explore the unbiased relationships 
among 140 different diseases identified at autopsy, this 
study had three major findings: first, the presence of certain 
“hub” diseases (primarily infectious) that have significantly 
more associations than others seems to represent important 
modulators of the final common expression of other diseases. 
These “hubs” could be targeted for screening or further 

intervention; second, diseases clustered into modules, 
suggesting the potential for clinically relevant syndromic 
presentations of pathobiologically related entities that are 
currently considered individual diseases; and third, the use of 
data analysis using unbiased methods provides added value to 

Table 1: Patients’ clinical characteristics

Demographic Male Female P
n 145 116
Age (mean±SD) 61±15 63±15 0.180
Age groups 
(n, % of total for the group)

<50 years 27 (19) 19 (16) 0.744
50‑70 years 78 (54) 64 (55 ) 0.901
>70 40 (27) 33 (28) 0.890

BMI (mean±SD) 29.9±9.5 29.8±8.8 0.528
BMI (n, % of total for the group)

<18.5 8 (6) 6 (5) 0.942
>30 59 (41) 49 (44) 0.690

Self‑reported race 
(n, % of total for the group)

Caucasian 99 (68) 62 (53)
Black 30 (21) 38 (33)
Hispanic 15 (10) 13 (11)
Asian 1 (1) 0 (0)
Number of comorbidities per 
patient (mean±SD)

6.0±2.8 5.7±2.8 0.892

SD: Standard deviation, BMI: Body mass index

Table 2: Top causes of death by gender

Diagnostic entity n Prevalence (%)
Female

Atherosclerotic cardiovascular disease 17 15.2
Hypertension 6 5.4
Lung cancer (non‑small cell) 6 5.4
Cardiomyopathy 5 4.5
Collagen vascular disease 5 4.5
Pulmonary embolism 5 4.5
Colonic carcinoma 4 3.6
Alcoholic liver disease 3 2.7
Breast carcinoma 3 2.7
Diabetes mellitus 3 2.7
HIV/AIDS 3 2.7

Male
Atherosclerotic cardiovascular disease 33 23.4
Hypertension 10 7.1
Lung cancer (non‑small cell) 8 5.7
B‑cell lymphoma 7 5.0
Pancreatic carcinoma 6 4.3
Cardiomyopathy 4 2.8
Alcoholic liver disease 3 2.1
Interstitial lung disease 3 2.1
Intestinal hernia 3 2.1
Liver cirrhosis 3 2.1
T‑cell lymphoma 3 2.1

HIV: Human immunodeficiency virus, AIDS: Acquired 
immunodeficiency syndrome
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the interpretation of the rich autopsy data obtained from the 
“complex” biology that characterizes death.

Dissecting the “cause” of death and its clinical 
implications
The first important finding relates to the connectivity of diseases. 
Examination of the network  [Figure  1] reveals numerous 
associations, some well described in the medical literature and 
some less so. Identification of known relationships supports the 
biological plausibility of the methodology behind this analysis 
and confers potential credibility for the less recognizable 
associations. Close examination of the diseases at opposite 
ends of the degree distribution or connectivity  [Table  3] 
reveals a pattern. There exists an overrepresentation of 
infectious conditions among the nodes, with the highest 
connectivity (8/20 = 40%) primarily located at the center of the 
network. There is only one neoplastic entity (gastrointestinal 
stromal tumor [GIST]) among the twenty diseases with highest 
degree (highest connectivity). Neoplastic entities account for 
30% (7/20) of the twenty least connected diseases, with only 
two infectious entities represented there  (osteomyelitis and 

human papillomavirus infection). Based on these findings, 
we hypothesized that the least connected nodes tend to 
represent diseases with few known predisposing conditions. 
The highly connected “hubs” are processes that are caused 
by and simultaneously cause multiple other pathologies and 
should be special targets for interventions aimed at interrupting 
their ripple consequences. In keeping with this theory, the top 
causes of death  [Table 2] are nearly all chronic conditions, 
while “hubs” appear to be the subacute‑to‑acute complications 
of those diseases that may truly be the immediate causes of 
death. This would make sense in a quaternary medical center, 
where patients with chronic conditions such as cancer often 
succumb to infectious complications of the underlying disease 
or treatment.

Based on its connectivity pattern, we can hypothesize that 
perturbation of networks could be achieved by targeting 
“hub” diseases, an epidemiologic strategy for which there 
is precedence. Independent authors have established 
the characteristics of the sexually transmitted human 
immunodeficiency virus  (HIV) network,[17‑19] where nodes 

Figure  1: The Autopsy Multimorbidity Network, “Pathomorbidome”. 140 diseases/nodes are connected by a total of 419 edges. Art: Artery, 
BPH: Benign prostatic hyperplasia, CHF: Congestive heart failure, DIC/TTP: Disseminated intravascular coagulation/thrombotic thrombocytopenic 
purpura, Dis: Disease, DVT/PE: Deep venous thrombosis/pulmonary embolism, GI: Gastrointestinal, GIST: Gastrointestinal stromal tumor, HCV: Hepatitis 
C infection, HPV: Human papillomavirus infection, HTN: Hypertension, IBD: Inflammatory bowel disease, ITP: Immune thrombocytopenic purpura, 
MGUS: Monoclonal gammopathy of unknown significance, NASH: Nonalcoholic steatohepatitis, NSCLC: Non‑small cell lung carcinoma, NOS: Not 
otherwise specified, PVD: Peripheral vascular disease
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represent carriers and edges represent disease transmission. 
Trewick created an algorithm to predict the effect of targeting 
“hubs” in the HIV network to deter the rate of viral spread.[20] 
Barabási et al. also argued that targeting the treatable “hub” 
diseases would mitigate their disproportionate effect on the 
system.[8]

Sepsis, urinary tract infection, and multiple organ infections 
are all “hub” diseases and are all theoretically preventable and 
treatable. Other highly connected hubs include DVT/PE and 
the hypercoagulable state. These acute “hubs” could be targeted 
for selective monitoring across hospital systems since they 

seem to offer the best chance of preventing a poor outcome. 
Other diseases that are also “hubs” such as HIV/acquired 
immunodeficiency syndrome or liver cirrhosis are all highly 
prevalent, highly connected, and preventable diseases. From 
an epidemiological perspective, increased targeting of these 
diseases may increase the effectiveness of system‑level health 
care. Eventually, network representation of comorbidity 
data may help hospital administrations visualize the global 
landscape of human illness at their respective institutions. 
The impact of system‑level interventions could be measured 
qualitatively in changes seen in the network topology over 
time.

Disease clustering
The second important finding relates to the interconnected 
grouping of diseases clustering together as independent 
modules. Module 1 shows a cluster of diseases with 
liver‑related morbidity. This module bears out the intimate 
association of alcoholic liver disease and hepatitis C infection 
to liver cirrhosis. Other modules reveal other connections that 
may relate to epidemiology more than pathophysiology, such 
as Module 2, which clusters cardiovascular diseases with 
BPH, likely reflecting the highly prevalent co‑occurrence 
of these conditions in elderly males. We interpreted these 
logical associations as validation of the method, thereby 
provoking new hypotheses about the reason for the unexpected 
associations observed in other modules. The relationship 
in Module 2, for example, raises the question of whether 
Meckel diverticulum has a role to play in infection. Similarly, 
Module 5 demonstrates the associations of inflammatory 
bowel disease  (IBD), primary sclerosing cholangitis, and 
cholangiocarcinoma, and also raises the specter of an 
association between IBD and endometriosis. In this context, 
close examination of the different clusters may offer new 
avenues for research and intervention. Just as this unbiased 
analysis confirmed the well‑established relationship between 
liver cirrhosis and gastrointestinal bleed,[21‑23] the integrative 
nature of network graphs suggests a potentially credible 
association of GIST and pancreatic carcinoma, or adrenal 
atrophy and coagulopathy. While many of these associations 
are likely spurious, the possibility of true correlations should 
be explored with further study. These early findings should 
prompt further investigation about other possible links that 
develop using this unbiased clustering of diseases.

Relating autopsy findings to the living patient
A comparison of our findings with that of studies of 
comorbidities in the living patient shows some similarities 
and also some differences. The presence of modules that 
closely resemble those reported by Divo et al.,[10] Barabási 
et  al.,[8] and Hidalgo et  al.[7] among others supports the 
validity of our findings. In those studies, the cardiovascular, 
gastrointestinal, and substance abuse modules were very 
similar to those we describe. Importantly, none of those 
studies noted the presence of the “infectious hubs” that 
we report. While all of those studies were completed in 
patients in a “stable” state, ours was based on autopsies 

Table 3: Twenty most connected and least connected 
diseases

Disease Prevalence Degree
Fungemia 2.3 13
Urinary tract infection 1.9 13
Sepsis 14.2 12
Multiple organ infection 1.5 12
Neuroendocrine tumor, intestinal 1.5 12
Hypoxic‑anoxic encephalopathy 6.9 11
Intra‑abdominal infection 6.5 11
Splenic infarct 3.4 11
GI perforation 2.3 11
Adrenal atrophy 1.5 11
Arteriovenous malformation 1.5 11
Inflammatory bowel disease 1.1 11
Liver cirrhosis 13.8 10
HIV/AIDS 3.1 10
Pericarditis 2.7 10
Bacterial endocarditis 2.3 10
Fungal pneumonia 1.9 10
Scoliosis 1.5 10
GIST 1.1 10
Diverticulosis 21.5 1
Renal simple cyst 17.6 1
COPD 16.9 1
Goiter 6.5 1
GI polyp 3.1 1
Urothelial carcinoma 1.5 1
Cerebral artery aneurysm 0.4 1
Chronic myeloid leukemia 0.4 1
Osteomyelitis 0.4 1
Benign ovarian neoplasm 13.8 2
Lung cancer (non‑small cell) 6.1 2
Renal carcinoma 3.1 2
Alzheimer’s disease 2.7 2
Hernia of bowel 2.7 2
Aortic fistula 0.8 2
Huntington’s disease 0.8 2
Gastric carcinoma 0.4 2
Gaucher’s disease 0.4 2
HPV 0.4 2
GI: Gastrointestinal, GIST: Gastrointestinal stromal tumor, 
COPD: Chronic obstructive pulmonary disease, HPV: Human 
papillomavirus infection, AIDS: Acquired immunodeficiency syndrome
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that were completed on patients in a quaternary medical 
center, where more patients with severe infections will be 
encountered. Our findings suggest that increased attention 
to infection surveillance and targeted monitoring of patients 
with preventable diseases such as liver cirrhosis may be one 

cost‑effective method to perturb the network and potentially 
prevent or decrease mortality.

Finally, this study shows that novel approaches of large data 
analysis may add value to the list of diagnoses obtained at 
autopsies. To date, this long list has been seen as diseases that 

Figure 2: Disease cluster “Modules.” The modules represent groups of diseases which tend to co‑occur. They are labeled sequentially by decreasing 
number of component diseases
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generate “noise” as to what should be a single cause of death. 
The unbiased clustering of diseases provides a new dimension 
to the meaning of that data. The opportunity exists to evaluate 
the quality of care provided by a system, by the change in the 
topography of “Pathomorbidomes” over time, once “hubs” are 
identified and intervened upon.

Our study has some limitations. The lack of standardization 
in reporting is a common issue in comorbidity‑based studies. 
Standardized autopsy reporting does not necessarily lend itself 
to synoptic reports as used in reporting neoplasia; however, 
greater efforts to implement standardization are warranted. In 
addition, we analyzed reports from 12 attending pathologists, 
each with different subspecialty and research interests and in 
whom inherent biases may play a role in diagnosing certain 
conditions. As mitigation, we implemented standard diagnostic 
terms as used in Harrison’s Principles of Internal Medicine, 
placing each individual diagnostic entity encountered in the 
autopsy reports into one of these categories.[11] In addition, 
three independent physicians reviewed all disease categories 
prior to analysis. While imperfect, our data were extracted 
and screened by physicians rather than the automated 
methodology using diagnostic codes sometimes utilized in 
other epidemiological studies. Our cohort is predominantly 
Caucasian, while Hispanics  (15%) and Asians  (1%) are 
underrepresented. As such, the cohort imperfectly represents 
the evolving demographics of the United States of America,[24] 
and the findings may not necessarily be extrapolated to 
some settings. Finally, this is a single‑center study from a 
quaternary medical center, where the motivation to seek 
autopsy on patients with the most complex clinical problems 
introduces selection bias. We excluded cases from the office 
of the chief medical examiner because we wanted to focus on 
the causes of natural death, and felt that the highest quality of 
diagnostic data would be procured from an academic medical 
center. Future studies could incorporate data from multiple 
medical environments and regions, both to increase power 
and generalizability.

Using network analysis of autopsy data, this study demonstrated 
that the occurrence of “hubs” may indicate highly influential 
diseases and/or conditions that may represent targets of 
interventions. Using these data, cases with seemingly unusually 
related diseases should be interrogated to elucidate the 
underlying pathophysiologic mechanisms. We propose that 
network analysis is a useful technique to apply to autopsy 
data at hospitals in order to provide meaningful quality 
improvement metrics and enhance general medical knowledge 
and patient care.
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