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AbstrAct
Cell lines derived from tumor tissues have been used as a valuable system to 

study gene regulation and cancer development. Comprehensive characterization of 
the genetic background of cell lines could provide clues on novel genes responsible 
for carcinogenesis and help in choosing cell lines for particular studies. Here, we have 
carried out whole exome and RNA sequencing of commonly used glioblastoma (GBM) 
cell lines (U87, T98G, LN229, U343, U373 and LN18) to unearth single nucleotide 
variations (SNVs), indels, differential gene expression, gene fusions and RNA editing 
events. We obtained an average of 41,071 SNVs out of which 1,594 (3.88%) were 
potentially cancer-specific. The cell lines showed frequent SNVs and indels in some 
of the genes that are known to be altered in GBM- EGFR, TP53, PTEN, SPTA1 and 
NF1. Chromatin modifying genes- ATRX, MLL3, MLL4, SETD2 and SRCAP also showed 
alterations. While no cell line carried IDH1 mutations, five cell lines showed hTERT 
promoter activating mutations with a concomitant increase in hTERT transcript levels. 
Five significant gene fusions were found of which NUP93-CYB5B was validated. An 
average of 18,949 RNA editing events was also obtained. Thus we have generated a 
comprehensive catalogue of genetic alterations for six GBM cell lines.

INtrODUctION

Grade IV glioma or glioblastoma multiforme 
(GBM) is the most common and aggressive primary brain 
tumor. It accounts for 20% of all intracranial tumors [1] 
and comprises of neoplastic glial cells called astrocytes. 
GBM can arise via the de novo pathway without clinical 
or histologic evidence of a less malignant precursor lesion 
(primary GBM) or via the progressive pathway through 
development from a low-grade astrocytoma (secondary 
GBM) [2]. With the current mode of treatment of surgery 
along with temozolomide chemotherapy and radiotherapy, 
the median survival achieved till today is only 14.6 months 
[3].

Malignant tumors arise when genomic lesions 
accumulate within cells that disrupt normal cellular 
pathways ultimately giving them a survival advantage 
leading to tumor initiation, growth and metastasis. Each 
tumor carries a combination of genetic alterations that 

determine cancer prognosis and response to therapy. 
GBM tumors show significant amount of proliferation, 
invasion, angiogenesis and necrosis and is treatment 
refractory. In the past two decades, focused studies 
on candidate genes show various genetic alterations 
typical to GBM, e.g., TP53 mutation and loss, EGFR 
amplification and mutation, INK4a/ARF mutation, MDM 
2/4 amplification or overexpression, PTEN mutation and 
loss of heterozygosity (LOH) in chromosome 10p and 
10q [4, 5]. In recent times, the advent of next generation 
sequencing (NGS) technologies has paved the path to 
analysis of entire cancer genome [6, 7]. Whole exome 
sequencing (WES) and RNA sequencing (RNA-seq) 
are two techniques that can provide information for the 
functionally relevant part of the genome at increased 
coverage and reduced cost. Recently, two independent 
groups have carried out exome and RNA-seq analysis of 
GBM tissue samples and have found out various novel 
genetic alterations which may play important role in GBM 
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development and progression [8, 9].
Established cell lines from tumors play an 

important role as in vitro model to study various aspects 
of tumor development and progression. A comprehensive 
understanding of the genomic make-up of the cell lines 
will provide us with information regarding the alteration 
status of the genes present in the cell lines thus giving 
us an opportunity to choose the cell lines appropriately 
for particular studies. There have been three studies 
which characterized glioma derived cell lines using next 
generation sequencing [10-12]. However, these studies 
have carried out either whole genome or whole exome or 
RNA sequencing. Here, we have carried out an elaborate 
study to comprehensively characterize six GBM cell 
lines that are most commonly used. Both whole exome 
sequencing and whole RNA sequencing was carried out 
and in-depth analysis was performed to find out single 
nucleotide variations (SNVs), insertions/deletions (indels), 
transcriptional changes, gene fusions and RNA editing 
events. To our knowledge, this study is the first time an in-
depth characterization of the genomic alterations present 
in these cell lines have been carried out and we believe 
that this information will be highly useful to the scientific 
community.

rEsULts

WEs and rNA-seq statistics and quality 
assessment

Genomic DNA from six GBM cell lines (U87, 
T98G, U343, LN229, U373, and LN18) was subjected 
to TruSeq exome capture and sequenced in Illumina 

HiScanSQ platform (100 bp paired-end sequencing). 
Data analysis was carried out as given in Materials and 
Methods section. The raw reads were aligned to human 
reference genome hg19 and the initial quality statistics 
were assessed (Table 1). For each cell line, on an average 
52,629,690 reads passed quality criteria of Qscore (Phred 
quality score) ≥ 30. While the average percentage of 
reads that mapped to hg19 was 98.48% across all cell 
lines, the average percentage of properly paired reads 
was 97.56%. The targeted region (genomic regions 
covered by Illumina’s exome capture kit) covered by the 
quality passed reads was 99.68%. We obtained an average 
coverage of ~36.31X which is suitable for calling variants 
with confidence as per Illumina guidelines [13].

Similarly, total RNA from the above six cell lines 
was subjected to RNA-seq in Illumina HiScanSQ platform 
(50 bp paired-end sequencing). The average number of 
reads obtained from each cell line came to be around 
60,534,534. The percentage of reads obtained from the 
sequencing that mapped to the human reference genome 
hg19 was 94.72% (Table 1). Given the fact that a minimum 
number of 25 million reads per sample is sufficient for 
RNA-seq data analyses, we found our samples with more 
than 33 million reads suitable for our study [14].

Identification of single nucleotide variations 
(sNVs) and indels

The variant calls were generated using GATK tool 
following the filtering criteria: 1) all SNVs detected should 
be restricted to the 62 Mb region targeted by Illumina 
Truseq exome capture kit, 2) bases having quality score 
above 30 should be considered and 3) minimum 6 reads 
carrying variant bases should be present to be considered 

Table 1: Whole exome and whole RNA sequencing statistics and quality assessment of glioma cell lines
cell line U87 t98G LN229 U343 U373 LN18 Average
I - Whole Exome Sequencing
Qc-passed 
reads* 41,937,382 56,365,156 59,066,920 60,402,106 48,108,386 49,898,190 52,629,690

reads mapped 
(%) 98.53 98.22 98.43 98.62 98.89 98.18 98.48

Properly paired 
reads (%) 97.97 97.41 97.44 97.69 98.33 96.52 97.56

Target regions 
covered (%) 99.50 99.80 99.70 99.50 99.80 99.80 99.68

Average 
coverage (X) for 
whole exome

29.66 39.61 41.53 37.13 35.78 34.13 36.13

II - Whole  RNA Sequencing
QC-passed reads 33,796,760 49,895,568 42,609,412 92,046,396 47,085,884 97,773,184 60,534,534
reads mapped ( 
%) 89.63 94.36 96.53 96.87 96.73 94.17 94.72

*QC-passed reads= reads having Phred quality score ≥ 30



Oncotarget43454www.impactjournals.com/oncotarget

as an SNV. We obtained an average number of 41,071 
SNVs, out of which 39,652 SNVs were present in the 
single nucleotide polymorphism database (dbSNP) 137 
build while 1,156 were novel SNVs (Table 2). Further, 
we found an average of 20,768 homozygous and 20,302 
heterozygous SNVs. The average transition vs transversion 
(Ti/Tv) ratio was 2.42 (Table 2) [10].

Small insertions-deletions (indels) were identified 
with GATK tool using similar filtration criteria as used 
for SNVs. The list of indels found from WES is given in 
Supplementary Table 1. Indels were observed to range 
in size between -49 to +29 bases (Supplementary Figure 
S1A) and were detected at a proportion of 10 to 12 % 
of that of SNVs (Table 2) [15]. The average number 
of indels detected was 3,892 out of which 3,612 were 
present in dbSNP build 137 while 280 were novel (Table 
2). Although the indels distribution followed power law 
distribution, there was small deviation at 4-base indels 
(Supplementary Figure S1A) [16]. Interestingly, when the 
indel distribution in the coding region alone was looked 
into, there was an enrichment of indels of size equal to 
multiples of three bases (Supplementary Figure S1B).

Next, we classified the SNVs and indels using 
Oncotator [17], according to their location in the genome 
and also the type of changes the alteration will bring to 
the protein (Supplementary Figure S1C, D, E, F). While 
SNVs were found in equal proportion between non-coding 
and protein coding regions, a tenfold more occurrence of 
indels in non-coding region compared to protein coding 
regions was found (Supplementary Figure S1C and D). We 
found a high occurrence of SNVs in the form of missense 

and silent mutations compared to a very low occurrence in 
the form of nonsense, nonstop, splice site and translation 
start site mutation (Supplementary Figure S1E). Indels 
resulted in frame-shift, in-frame and splice site changes at 
a higher frequency, but it was found rarely in translational 
start sites. (Supplementary Figure S1F).

Comparison of SNVs from exome data to 
catalogue of somatic mutations in cancer 
(COSMIC) and cancer cell line encyclopedia 
(ccLE) databases

COSMIC database contains most comprehensive 
resource of genetic alterations occurring in a large number 
of human cancer tissue and cancer derived cell lines [18]. 
CCLE project undertaken by Broad Institute provides 
information for mutations, copy number variations 
(CNVs) and mRNA expression in a large panel of cell 
lines [19]. To test the robustness of in-house WES data, 
we compared SNVs detected in this study with COSMIC 
and CCLE databases. SNV information was available for 
four of the six cell lines we have studied (U87, T98G, 
LN229 and LN18) in COSMIC and CCLE databases. 
We found that our data had an average concordance of 
65.3% with COSMIC and 74.74% with CCLE databases 
(Supplementary Figure S2). A more in-depth comparison 
of cancer specific mutations between our finding and 
COSMIC database is described later (Figures 3 and 4).

Table 2: Single nucleotide variation and indel classification and quantification
cell line U87 t98G LN229 U343 U373 LN18 Average
I. Single Nucleotide Variations (SNVs)
Total variants 
detected 38,515 42,423 42,788 43,582 40,095 39,020 41,071

Variants present in 
dbSNP* 37,545 41,029 41,196 42,001 38,915 37,224 39,652

Novel variants** 970 1,394 1,592 1,581 1,180 1,796 1,156
Homozygous 
variants 19,710 20,762 21,293 17,104 22,175 23,566 20,768

Heterozygous 
variants 18,805 21,661 21,495 26,478 17,920 15,454 20,302

Ti/Tv Ratio 2.49 2.42 2.38 2.44 2.41 2.38 2.42
II. Indels
Total indels detected 3,780 3,968 4,000 4,151 3,779 3,672 3,892
Indels present in 
dbSNP* 3,528 3,693 3,712 3,831 3,515 3,390 3,612

Novel indels* 255 275 288 320 264 282 280
Homozygous indels 1,963 2,045 2,148 1,730 2,144 2,180 2,035
Heterozygous indels 1,817 1,923 1,852 2,421 1,635 1,492 1,857

*dbSNP refers to the Single Nucleotide Polymorphism database.
**In comparison with dbSNP Build 137. 
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Detection of cancer-specific SNVs from WES data 

Due to unavailability of matched normal samples 
and also to eliminate the mutations which may have no 
role in cancer development and progression, a stringent 
filtration criteria was followed as described in Materials 
and Methods section and the SNVs were divided into 
cancer-specific and non-specific types (Supplementary 
Figure S9). The list of cancer-specific SNVs is given 
in Supplementary Table 2. The average percentage of 
cancer-specific SNVs for each cell line was found to be 
3.88% of the total number of SNVs obtained. The average 
number of cancer-specific and non-specific SNVs across 
the cell lines came to be approximately 1,595 and 39,476 
respectively (Figure 1A). The number of non-specific 
SNVs was quite variable for each cell line, although the 
number of cancer-specific SNVs showed more or less 
equal frequencies. The cell line LN18 showed a higher 

cancer-specific SNV rate compared to its relatively lower 
non-specific SNVs. Previous reports identified that cell 
lines with microsatellite instability (MSI), which arises 
due to mutation in mismatch repair (MMR) genes, 
harbored several fold higher cancer-specific mutations 
compared to those cell lines without MSI [11]. In our 
study, the frequency of cancer-specific mutations in all 
the six cell lines was in a much lower range (1595 ± 
310), same as that of cell lines without MSI as previously 
reported [11]. Concomitantly, we also found that none of 
cell lines studied here harbored mutation in MMR genes 
(MSH2, MSH3, MSH6, MLH1, PMS2, MSH4, MSH5, 
MLH3, PMS1 and PMS2L3). This is expected because 
microsatellite instability is a rare phenomenon in GBM 
[20].

The percentages of homozygous and heterozygous 
SNVs for cancer-specific changes have been represented 
(Figure 1B). The ratio of the homozygous to the 
heterozygous variants was around 1:8. Somatic mutations 

Figure 1: Cancer-specific mutation quality statistics: A. Number of Cancer-specific versus non-specific SNVs. b.. Percentage 
of homozygous versus heterozygous changes. The numbers in each quadrant represent the percentage, and the number in the center of the 
circle represents the total number of cancer-specific mutations. C. Ti/Tv changes for each cell line’s cancer-specific SNVs. Each type of 
base change has been given by different color codes and the overall Ti/TV ratio has been given in red font at the top of each bar-plot. For 
A., b. and c., plot for each cell line has been given in one column and the name of the cell line has been specified at the top.
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being sporadic and random in nature, the probability 
of both alleles being mutated similarly is rare which is 
why cancer-specific SNVs show a very high proportion 
of heterozygous changes as compared to homozygous 
changes. The proportion of each type of base changes 
for the cancer-specific SNVs for each cell line has been 
given (Figure 1C). The average Ti/Tv ratio for each cell 
line came to be around 1.66 (ranging from 1.28 to 1.93), 
in a similar range as reported before [11]. The proportion 
of each functional type of SNVs, depending upon their 
genomic location or the consequence that the SNV can 
bring about in the gene product i.e. changes in exonic 
regions, has been plotted for both types of variants (Figure 
2). It was observed that the proportion of cancer-specific 
SNVs is higher in regions where nucleotide changes have 
a deleterious consequence. This includes the functional 
classes ‘missense mutation’ and ‘nonsense mutation’, as 
previously reported, as compared to other regions where 
non-specific SNV proportion was observed to be more 
[11].

Comparison of indels and cancer-specific SNVs 
with TCGA, COSMIC and CCLE databases

We investigated the overlap between mutations 
(indels and cancer-specific SNVs) identified in the six 
cell lines and the significantly mutated genes in GBM 
tumor samples as per large scale exome sequencing [8, 9]. 
Figure 3A shows the map of occurrence of alterations in 
these genes for the six cell lines studied. Out of 38 genes 
tested, we found mutations in 12 genes in one or more cell 
lines from WES. As previously reported, the genes TP53, 

PTEN and EGFR are mutated in more than 20 % of TCGA 
GBM tumor tissue samples [8, 9]. We found PTEN and 
TP53 to be mutated in 4 out of 6 cell lines, while EGFR 
was mutated in one cell line only (Figure 3A). Among 
the genes that are mutated between 5 to 20% in TCGA 
GBM tumor samples [8, 9], we found mutations in NF1, 
SPTA1, TCHH and ATRX genes, although, the other 
genes like PIK3R1, PIK3CA, RB1, IDH1 and KEL were 
not mutated in any cell line (Figure 3A). Upon analyses of 
the status of a set of 34 chromatin modifying genes [9], we 
found mutations in ATRX, SETD2, SRCAP, MLL3 and 
MLL4, genes (Figure 3B). Investigation of the mutation 
status of DNA repair genes that were mutated in TCGA 
study revealed that out of 61 genes that were analysed, 
17 genes harbored SNVs in one or more cell lines (Figure 
4). No indels were observed in the DNA repair genes. No 
mutation was observed in any of the genes related to base 
excision repair (BER) and also, in MMR genes (Figure 4).

We also investigated the overlap between indels and 
cancer-specific SNVs with that of COSMIC and CCLE 
databases for four cell lines which are common between 
these data sets [18] (Figures 3 and 4). A total of 32 
mutations were uncovered in 129 genes tested from WES 
in U87, T98G, LN229 and LN18 (Figures 3 and 4) out of 
which 21 mutations were reported either in COSMIC or 
CCLE or both datasets giving a concordance of 65.6%, 
and the rest 11 mutations were found novel from WES data 
(Supplementary Table S3). Further, 13 novel mutations 
were also observed in the remaining two cell lines, U343 
and U373 (Figures 3 and 4; Supplementary Table 3). From 
the 24 novel mutations found across all six cell lines, 8 
were selected for validation by Sanger sequencing out of 
which 7 could be validated (Supplementary Figure S3).

Figure 2: Functional classification of cancer-specific versus non-specific variants. The variants have been plotted as a fraction 
of the total number of cancer-specific (CS) or non-specific (NS) variants. Fraction of CS and NS variants have been plotted for each 
functional type according to their location in the genome i.e. inter-genic region, intron, 5’ flank, 5’ UTR, 3’ UTR, RNA, splice site, 
translation initiation site and coding region which has been further subdivided into the type of change the alteration will bring to the protein 
(missense, nonsense, non-stop and silent).
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Functional importance of cancer-specific SNVs

The cancer-specific SNVs obtained in this study 
might have potential carcinogenic consequence as these 
changes are not observed in multiple normal human 
sequence databases. Out of 129 genes as in Figures 3 
and 4, 30 genes were seen to harbor non-synonymous 
cancer-specific SNVs in one or more cell lines. We 
used PolyPhen-2 and SIFT tools on the above 30 genes 
to predict whether a particular cancer-specific SNV 
can alter the function of the protein significantly [21, 
22]. Mutations that were predicted by both tools to be 
deleterious or damaging were considered. Thirty percent 
of genes (n = 9) were found to contain SNVs that attribute 
a significant change in protein function (Supplementary 
Table S4). The functional significance of the SNVs present 
in NF1, MLL3, BRCA2, ATR, ERCC2 and TP53 was 
further investigated. The protein domain structure and the 
positions mutated in each protein is given (Supplementary 

Figure S4). NF1 is a negative regulator of RAS signaling 
pathway. It has a RAS-GAP domain (1174-1535 amino 
acid positions) which functions to convert GTP in 
activated RAS to GDP, thus inactivating RAS. Recurrent 
mutations are found in GBM tumor in NF1 RAS-GAP 
domain [9]. NF1 mutation in U87 occurs in this domain 
where lysine residue at 1444 position gets converted to 
methionine which could lead to abrogation of GTPase 
activity of NF1 [23]. The tumor suppressor gene MLL3 is 
mutated in three positions, G892R, Y987H and C988F, in 
different cell lines (Supplementary Table 4). Of the three 
positions, Y987H and C988F are reported in COSMIC 
database [18]. MLL3 is a nuclear protein comprising of 6 
PHD finger domains, one of each of HMG, FYRN, FYRC 
and SET domains [24] and it functions as a histone methyl 
transferase. In cancer scenario, it has been observed that 
enrichment of mutations is present in the PHD, FYNC, 
FYRC and SET domains [25]. The mutations, Y987H and 
C988F, found in the cell lines are present in PHD finger 

Figure 3: Mutation spectrum for most commonly mutated genes and chromatin modifying genes in each cell line. A. 
SNV and indel status of genes (n = 38) in cell lines that are frequently altered in GBM [8, 9]. b. SNV and indel status of frequently altered 
chromatin modifying genes (n = 34) [9]. The percentage at which each gene is mutated in TCGA GBM tissue [9] has been provided in 
brackets after each gene name. comparison with COSMIC & CCLE databases for the same genes A. and b. is also shown. The dual/triple 
colors indicate that the gene harbors two/three types of mutations in the particular cell line respectively.
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domain of MLL3. PHD finger domains are required for 
proper histone methylation [25] and mutation in this 
domain will significantly abrogate MLL3 function. LN18 
cell line was seen to harbor a deleterious mutation in 
BRCA2 (N856Y). BRCA2 interacts with various proteins 
like RAD51, PALB2, NPM1, PCID2 and DSS1 and is 
mainly involved in DNA double strand break repair. The 
above mutation in BRCA2 is present in the region which 
is involved in binding to NPM1 [26]. ATR is a kinase that 
gets activated when DNA damage occurs within the cell. 
LN229 cell line was seen to harbor G2375R mutation in 
the kinase domain (2321-2567 amino acid positions) of 
ATR which might severely abrogate its function [27]. 
ERCC2, mutated in LN18 (R690W), is a nuclear protein 
involved in the repair of damaged DNA through nucleotide 
excision repair pathway. This particular mutation is 
present in the nuclear localization signal sequence (682-
696 amino acid positions) of ERCC2 and this will hamper 
the targeting of ERCC2 to the nucleus [28]. The tumor 
suppressor gene, TP53, is involved in the regulation of 
apoptosis, genome stability and angiogenesis and it is 
found to be mutated in almost all types of cancer. In this 
study, 4 out of 6 cell lines was found to be mutant for TP53 
(T98G, LN229, U373 and LN18) where the mutations 
were seen to be present in the DNA binding domain (95-
289 amino acids), thus leading to significant functional 

alteration in the protein. Since TP53 is a transcriptional 
regulator, its mutation will have a direct effect on the 
transcriptome of the cell.

We next sought to find out the alteration in the 
transcriptome in p53 mutant versus p53 wild-type cell 
lines from RNA-seq data. The expression levels of 227 
genes were found to be altered in p53 mutant cell lines 
as compared to p53 wild type ones (Supplementary 
Table 5). These 227 genes were subjected to analysis 
using DAVID tool to find out pathways enriching in p53 
mutant conditions (Supplementary Figure S5) [29, 30]. 
p53 regulates multiple processes within the cell which 
include cell differentiation [31-33], neuron development 
[34-36], cell adhesion [37-40], cell proliferation and 
apoptosis [41-47]. All these biological processes were 
seen to be significantly enriched when above 227 genes 
were subjected for pathway enrichment in DAVID Gene 
Ontology (GO) analysis (Supplementary Figure S5).

We next investigated the mutation status of isocitrate 
dehydrogenase genes (IDH1 and IDH2) in the cell lines. 
Mutation in IDH1 is observed in ~80% of grade 2 and 
3 gliomas and secondary GBM [48, 49]. The typical 
mutation that occurs in gliomas is R132H mutation, 
although R132C or R132S is also seen at much lower 
percentages [50]. Paralog of IDH1, i.e., IDH2 mutated 
in the position R172 also show similar effect although 

Figure 4: Mutation spectrum for DNA repair genes in each cell line. SNV and indel status of genes (n = 61) in cell lines that are 
altered in GBM [9]. Comparison with COSMIC & CCLE databases for the same genes is also shown.
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frequency of mutation in IDH2 is rare [51]. No mutations 
in IDH1or IDH2 were obtained from WES data in the cell 
lines tested. IDH1 mutation status was further validated 
through Sanger Sequencing, which included an additional 
three cell lines - U251, SVG and immortalized human 
astrocytes (IHA) (Figure 5A; Supplementary Figure S6A). 
Thus the cell lines used are derived from primary GBM 
patients.

Telomerase activation caused by promoter mutation 
in glioma has been reported recently [52-54]. There are 
two mutations, C > 1,295,228 > T and C > 1,295,250 > T 
reported in the promoter region of hTERT gene. Fifty five 
percent of GBM tumor samples harbor hTERT promoter 
mutation where the above two mutations are mutually 
exclusive [54]. Since the exome enrichment method 
used does not capture the hTERT promoter region, we 
carried out Sanger sequencing to detect hTERT promoter 

mutations. U87, LN229, U343, U251, and U373 cell lines 
showed C228T whereas; T98G showed C250T promoter 
activating mutations (Figure 5B; Supplementary Figure 
S6B). GBM cell line LN18 and the immortalized normal 
astrocytes SVG and IHA showed no mutation in hTERT 
promoter. RT-qPCR for hTERT mRNA revealed increased 
levels in cell lines carrying hTERT promoter mutations 
in GBM cell lines (U87, LN229, U343, U251, U373 and 
T98G) and IHA in comparison to wild type cell lines 
(LN18 and SVG) (Figure 5C). IHA, harboring wild-type 
hTERT promoter, shows high levels of the mRNA because 
the immortalization of the cell line has been carried out by 
overexpression of hTERT along with E6/E7 viral proteins. 
From the above investigations, it is evident that mutations 
present in functionally important part of the proteins 
indeed lead to drastic changes in their functions which 
ultimately play a role in carcinogenesis.

Figure 5: Mutation status of IDH1 and hTERT promoter in the cell lines. A. Mutation status of IDH1 position R132H/C/S in 
each cell line. b. Presence or absence of C228T or C250T mutations in the promoter region of hTERT in each cell line. c. Real-time PCR 
quantification of hTERT mRNA in different cell lines has been given. The mRNA level for SVG has been normalized to 1 and the levels 
for other cell lines have been given in comparison to that of SVG. Red line indicates 1 in log2 scale.
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Gene expression of GBM cell lines and 
comparison with GBM tumor transcriptome

Differential gene expression profiling was carried 
out by comparing RNA-seq data of the six cell lines with 
that of five normal brain tissue samples from TCGA. As 
per Gencode Version 19 annotation file [55], applying a 
cut-off of 2 fold change in absolute expression value, we 
obtained a total of 3,428 differentially regulated genes 
of which 509 were up regulated and 2,919 were down 
regulated (Figure 6A and 6B). The differentially expressed 
genes were classified into the different classes of RNA 
- protein coding, long non coding RNA and miRNA 
etc. (Figure 6A) and the entire result was tabulated 
(Supplementary Table 6).

The differentially regulated genes in the six GBM 
cell lines were compared with Agilent microarray data of 
GBM tumor tissue samples from TCGA (Figure 6C). Of 
the 3,428 genes differentially regulated in the cell lines 

2,214 genes (383 up regulated and 1,831 down regulated) 
were found to be present in Agilent microarray gene list 
from TCGA GBM tumor samples. Differentially expressed 
genes from TCGA’s Agilent microarray data was selected 
on the basis of p-value cut-off (p-value ≤ 0.05). A total of 
1,621 genes were found to be similarly regulated between 
in-house cell line data and TCGA GBM Agilent data 
(Figure 6C) thus giving a concordance of ~73%.

Analysis of potential oncogenic gene fusions from 
rNA-seq data

Numerous studies discovered gene fusion to be 
a critical and significant event in hematopoietic tumors 
[56] as well as solid cancers including GBM [8, 9, 57-
62]. In the six cell lines analyzed here, a total of 389 gene 
fusion events were detected using three different tools: 
FusionMap [63], TopHat-Fusion [64] and PRADA [65] 
(Supplementary Table 7), out of which 5 fusions were 

Figure 6: Gene expression analysis of GBM cell lines. A. Distribution of different classes of RNAs that are differentially regulated 
across the six GBM cell lines compared to normal brain samples. b.. Heat map of the differentially expressed genes in the six GBM cell 
lines versus normal brain samples. c. Concordance of the transcriptome data from RNA-seq data of cell lines with Agilent microarray of 
GBM samples from TCGA. Of the 3,428 differentially regulated genes from cell lines, concordance in 2,214 genes that are also present in 
Agilent microarray data has been presented.
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detected by all three tools (Figure 7A and 7B). A low 
overlap between the three tools was obtained because 
PRADA uses stringent criteria for fusion detection and 
hence only few fusions were obtained from PRADA. 
Only two of the five fusions namely NUP93-CYB5B and 
STX17-NR4A3 were found to give rise to in-frame fusion 
products and both were present in LN18 cell line (Figure 
7B).

NUP93-CYB5B gene fusion was taken up for 
characterization. As per analysis by PRADA, NUP93-
CYB5B fusion was represented by a total of 19 junction-
spanning reads (Figure 7B). Both the fusion partners are 
located in the same chromosome (Chromosome 16) where 
NUP93 has 20 exons and CYB5B has 5 exons (Figure 
7B). The predicted reading frame at the breakpoint is 
shown for NUP93 (green) and CYB5B (purple) fusion 
(Figure 7C). The predicted intron-exon structure of 
the fused product shows that the first three exons of 

NUP93 and last four exons of CYB5B are retained and 
the fusion is created by joining of the end of exon 3 of 
NUP93 with the start of exon 2 of CYB5B (Figure 7C 
and 7D). The genomic breakpoint was mapped to Chr. 
16q13 position 56,839,544 for NUP93 and Chr. 16q22.1 
position 69,481,053 for CYB5B (Figure 7D). NUP93 is a 
nucleoporin protein comprising of 818 amino acids and 
it plays a vital role in nuclear pore complex formation 
(Figure 8A). While its C-terminal amino acids (~600) 
are essential for the assembly of the structural backbone 
of the nuclear pore complexes [66], the N-terminal 165 
amino acids are required for binding to CREB-binding 
protein (CBP) [67](Figure 8A). The C-terminal region 
of CYB5B, a mitochondrial hemoprotein, is essential 
for its localization to the outer mitochondrial membrane 
(Figure 8A) [68]. Analysis revealed that the fusion protein 
encoded by fused transcript is a 222 amino acid protein 
consisting of the N-terminal 163 amino acids of NUP93 

Figure 7: Gene fusion analysis. A. Number of fusions obtained from each tool- TopHat-Fusion, FusionMap and PRADA. Intersection 
of each circle represents the fusions found common in between the tools. b. Five fusions obtained from all three tools specifying cell line in 
which it is present, chromosome no., fusion type, total no. of exons for each gene. c. Split reads aligning to the gene fusion junction as per 
TopHat-Fusion prediction. The possible protein sequence present at the junction has been given on top with NUP93 sequence represented 
in green and CYB5B sequence in purple. The exonic structure of the gene fusion is given at the bottom where boxes represent exons and 
the lines represent introns. D. Chromosomal location of the members of the fusion, exon-intron structure and possible fusion region has 
been depicted. The entire fusion protein sequence has been provided where amino acids represented by green letters belong to NUP93 and 
those represented by purple belongs to CYB5B.
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and C-terminal 59 amino acids of CYB5B (Figure 7D 
and 8A). Thus the fusion protein is likely to target the 
CBP to the mitochondria with a potential possibility of 
acetylation of certain proteins located in the mitochondrial 
outer membrane. Indeed, acetylation of mitochondrial 
enzymes present in the mitochondrial matrix occurs in 
nutrient excess condition thus leading to their inactivation 
[69]. Mitochondrial lysine acetyltransferase has not been 
identified till date although it has been observed that 
knockdown of a homolog of histone acetyltransferase in 
yeast leads to hypoacetylation in mitochondrial enzymes 
[70]. Acetylation of outer mitochondrial membrane 
proteins like Voltage-dependent anion channel proteins 
(VDACs), Fatty acyl-CoA synthetase 1 (ACS-1) and 
Carnitine palmitoyl-transferase 1 (CPT-1) has been 
reported to increase their stability while the functional 
consequence of such acetylation is unknown [71, 72]. 
Here, we hypothesize that targeting CBP to mitochondria 
by the fusion protein would result in acetylation and 
subsequent stabilization of mitochondrial proteins which 
might provide metabolic advantage for the cancer cell [73, 
74].

The primer design for the confirmation of fusion 
product has been given (Figure 8B). The fusion specific 
primers have been designed such that the forward primer 
that can amplify the wild-type NUP93 and the reverse 
primer that can amplify the wild-type CYB5B can be 
combined to amplify the fusion product such that the 
amplicon will be of different size than both the wild-
type products (Figure 8B). Semi-quantitative analysis of 
NUP93-CYB5B fusion revealed the presence of the fusion 
product in LN18 but not in K562, a human leukemic cell 
line (Figure 8C). Sanger sequencing validation was carried 
out for the fusion junction (Figure 8D). The exact fusion 
junction as predicted by PRADA was confirmed in the 
Sanger sequencing analysis.

GBM specific RNA editing events in the cell lines

RNA editing is a molecular process by which RNA 
sequences are altered post-transcriptionally through base 
conversion or insertion/deletion. In mammals, especially 
in humans, the most common type of editing changes 

Figure 8: NUP93-CYB5B gene fusion validation. A. Representative image of the protein structure of wild-type NUP93 and CYB5B 
and NUP93-CYB5B fusion product. The exons representing each section of the protein sequence has been represented by smaller boxes in 
the protein schematic and exon numbers (black) have been provided on top of the diagram. The amino acid length of each protein sequences 
have been denoted in red. b. Primer design for detecting wild type and fusion gene for NUP93-CYB5B. FP = Forward primer and RP 
= Reverse primer. c. Semi-quantitative PCR gel picture of amplicons derived from PCR of wild type NUP93 and CYB5B and NUP93-
CYB5B fusion products in LN18 and K562. D.. Sanger sequencing chromatogram of the fusion junction region.
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includes A to I and C to U base modifications (canonical 
editing events) carried out by ADAR family of enzymes 
and APOBEC enzymes respectively [75, 76]. A schematic 
representation of the pipeline used for detecting potential 
RNA editing events from RNA-seq data has been provided 
and the details have been provided in the Materials and 
Methods section (Supplementary Figure S10). While the 
average number of editing event per cell line was found 
to be 18,949, there were a total of 1,04,904 editing events 
across the cell lines (Supplementary Figure S10).

Majority of RNA editing events, were found in 
Alu repeat region (97.12%) compared to non-Alu repeat 
(0.4%) and non-repeat regions (2.49%) (Figure 9A). We 
also found that the majority of the RNA editing events 
were present in the intronic regions (61.82%) followed 
by intergenic (34.91%), UTR (2.55%) and exonic regions 

(0.71%) (Figue 9A). A total of 75% of the base changes in 
the Alu repeat regions were of the types A > G and T > C 
(complementary base change of A > G), which are ADAR 
specific changes (Figure 9B) [77-79]. However, in non-
Alu repeat and non-repeat regions, both ADAR (A > G, T 
> C) and APOBEC (C > T, G > A) specific RNA editing 
events were found to occur relatively at higher frequency 
compared to other editing events (Figure 9B). While the 
ADAR-specific RNA editing events were seen more in 
general, it was interesting to note that exonic portions of 
the genome had higher percentages of APOBEC-specific 
RNA editing events (Figure 9C). However, other regions 
like intronic, intergenic and UTR had higher proportion 
of ADAR-specific RNA editing events (Figure 9C). Low 
prevalence of Alu repeats in exonic regions explain the 
reduced ADAR-specific RNA editing events and increased 

Figure 9: Distribution of editing events across the genome. A. Distribution of total editing events in different regions of the 
genome; left panel: in Alu repeat, non-Alu repeat and non-repeat regions and right panel: in exonic, UTR, intergenic and intronic regions. 
b. Distribution of different types of editing events in different regions of the genome (Alu repeat, non-Alu repeat and non-repeat). 
c. Distribution of RNA editing events across different portions of the genome (exonic, intronic, intergenic and UTR). D. Recurrence 
distribution of editing events in the six cell lines in all the edited sites (big circle) or in non-Alu repeat, non-repeat and Alu repeat regions or 
in exonic, UTR, intergenic and intronic regions (smaller hollow circles); e.g: 99,141 editing events were unique to one sample, 4,227 were 
in two samples etc. The color code at the bottom represents in how many cell lines an editing event will be present e.g. 1 represents that 
editing events are present in one of the six cell lines, 2 represents editing events to be present in two cell lines etc.
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APOBEC-specific RNA editing events. The maximum 
number of RNA editing events (94.5%) were unique to 
each cell line while a small proportion of them were found 
in multiple cell lines (Figure 9D). Among Alu repeat, 
non-Alu repeat and non-repeat regions, the percentage 
of unique RNA editing events were more or less similar 
(~94%) (Figure 9D). The percentage of recurrent (present 
in more than one cell line) editing events was maximum 
in UTR region (13.82%) followed by intergenic (7.81%), 
exonic (5.36%) and intronic (3.86%) regions (Figure 
9D). The list of all the editing events across the cell lines 
have been tabulated in Supplementary Table 8. Finally, 
validation by Sanger sequencing was performed and 8 out 
of 16 selected A to G RNA editing events got validated 
(Supplementary Figure S7A and S7B).

DIscUssION

In this study, we provide a comprehensive 
characterization of six most widely used GBM cell 
lines using WES and RNA-seq. Previous studies which 
characterize glioma cell lines using NGS fall short of 
comprehensive characterization [10-12]. In the first 
study, identification of SNVs and structural variations 
(copy number alterations and gene rearrangments) of 
one cell line (U87) was carried out from whole genome 
sequencing (WGS) [10]. In the second study, the authors 
performed WES of multiple cell lines of different tissue 
lineages including six GBM cell lines (SF-268, SF-295, 
SF-539, SNB-19, SNB-75 and U251) and identified indels 
and cancer-specific SNVs to understand the pharmaco-
genomic correlations between specific variants and 
sensitivity to various anti-cancer drugs [11]. In the third 
study, characterization of 675 human cancer cell lines 
was carried out to identify SNVs and gene fusion events 
from RNA sequencing data [12]. This study included 
22 cell lines which were glioma-derived of which three 
cell lines (T98G, LN229 and LN18) are characterized in 
the current study. In contrast, we have carried out both 
WES and RNA-seq of six most commonly used GBM 
cell lines (T98G, LN229, LN18, U87, U343 and U373). 
Further, an in-depth data analysis was performed to find 
overall genetic alterations that included SNVs, indels, 
transcriptome changes, gene fusions and RNA editing 
events. Moreover, we have validated various genetic 
alterations (SNVs, indels, gene fusion and RNA editing 
events) through Sanger sequencing and quantitative PCR 
based methods.

We particularly focus on the genetic alterations in 
cell lines which have potential roles in carcinogenesis. 
From the total SNV data, we have carried out analysis to 
unearth cancer-specific alterations. Further, we compared 
the mutation spectrum of GBM cell lines with that of 
GBM tissue samples reported by other groups [8, 9] and 
this revealed various genes altered in GBM scenario to 
be altered in these cell lines also. Although Klijn et al. 

have uncovered SNVs from RNA-seq data, analysis of 
SNVs from whole exome sequencing data will be more 
comprehensive as it will cover vast majority of all the 
protein coding genes. SNV data of genes not expressed 
or expressed at low levels in RNA copy numbers will be 
missed out from RNA-seq data. We have also carried out 
indel analysis from WES. Functional importance of genes 
altered by mutation like TP53, MLL3, BRCA2, NF1 etc. 
has been investigated. Important emphasis has also been 
given to hTERT promoter mutation status through Sanger 
sequencing as this particular mutation is predominant 
among GBM patients. We have checked the gene 
expression levels in GBM cell lines with respect to normal 
brain samples and we have found good concordance with 
GBM tumor tissue microarray data. Moreover, we also 
analyzed both RNA-seq and WES data to find out potential 
RNA editing events. Further, we compared these editing 
events with normal brain editome data to find out editing 
events occurring in diseased condition. To our knowledge, 
such a comprehensive study of genetic alterations in GBM 
cell lines has not been carried out till now.

Among indels and cancer-specific SNVs reported 
previously to be present in GBM tumor tissues [8, 9], the 
most frequent alterations were observed in TP53, PTEN, 
TCHH and MLL3. Further, mutations in EGFR, NF1and 
PDGFRA were found in some of the cell lines. Chromatin 
modifier genes like MLL3, ATRX, MLL4, SETD2 and 
SRCAP were seen to be mutated. The six GBM cell lines 
were seen to harbor mutations in 19 DNA repair related 
genes. However, none of the genes in BER or MMR 
pathways were observed to be mutated in any of the 
cell lines. Global gene expression profiling followed by 
pathway analysis of p53 mutant vs p53 wild-type cell lines 
revealed p53 regulated processes like cell differentiation, 
neuron development, cell adhesion, cell proliferation 
and apoptosis to be significantly enriched. Interestingly, 
none of the cell lines showed mutation in IDH1 gene. 
Our study also revealed that U87, T98G, LN229, U343, 
U251, and U373 cell lines harbor promoter activating 
mutations in the hTERT genes with a concomitant up 
regulation of hTERT transcript levels. No mutation was 
found in LN18 and SVG and hTERT mRNA levels were 
also found to be low in these cell lines. A comparison of 
the differentially regulated genes in the cell lines with 
that of GBM tumor transcriptome data derived from 
TCGA gave a concordance of ~73% suggesting that the 
transcriptomic make up of these cell lines closely resemble 
that of GBM tumor tissues. A total of over three hundred 
gene fusion events were identified in the six cell lines 
using three different tools and five such fusions came up to 
be common in all three tools. Two gene fusions, NUP93-
CYB5B and STX17-NR4A3, were in-frame fusions both 
of which were present in LN18 cell line. Validation of 
NUP93-CYB5B fusion using Sanger sequencing revealed 
the exact fusion junction as predicted by PRADA. The 
targeting of CBP to the mitochondrial outer membrane 
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by NUP93-CYB5B fusion protein is likely to result 
in the acetylation of proteins like VDACs, ACS-1 and 
CPT-1 which may provide metabolic advantage to the 
cells. While ACS1 and CPT1 are involved in fatty acid 
metabolism and transport into mitochondria respectively, 
VDACs help in ATP transport out of mitochondria [73, 
80]. Further, β-oxidation of fatty acids in the mitochondria 
results in increased energy production in the cancer cells 
with the resultant increased proliferation [73]. Indeed, 
inhibition of fatty acid synthesis or its transport into 
mitochondria results in growth inhibition and increased 
apoptosis [73, 74]. Hence, we predict that CBP-mediated 
acetylation of these proteins with resultant stabilization is 
likely to provide survival advantage to the cancer cells. 
Further, RNA editome analysis revealed numerous RNA 
editing events across the cell lines. As observed by others, 
we found majority of RNA editing events in Alu repeat 
region present both in intronic and intergenic regions, 
while its significance is not known yet [81]. We also found 
significant RNA editing events in the UTR region, in 
particular 3’UTR, which is likely to alter miRNA binding 
leading to the alteration of the gene expression pattern 
which may contribute to transformation and other cancer 
cell properties [82].

Thus, a comprehensive alteration landscape that 
includes cancer specific SNVs, indels, transcriptome 
profile, gene fusions and RNA editing events is generated 
from whole exome and RNA sequencing data for six GBM 
cell lines. Since these cell lines are routinely used for in 
vitro and in vivo studies by glioma biologists, our study 
would be of great help to the scientific community.

MAtErIALs AND MEtHODs

cell lines used

The cell lines used are glioblastoma (GBM) cell 
lines U87, U343, U251, U373, LN18, LN229 and T98G 
and immortalized human astrocytic cell lines SVG [83] 
and IHA (NHA-E6/E7-hTERT) [84]. U343, LN18, IHA 
and SVG were obtained from the laboratory of Dr. A. 
Guha, University of Toronto, Canada. U87, T98G, U251, 
LN229 and U373 were obtained from Sigma Aldrich 
(Saint Louis, Missouri, USA). All cell lines were cultured 
in Dulbecco’s Modified Eagles’ Medium containing 10% 
Fetal Bovine Serum at 37ºC and 5% CO2.

DNA isolation, quantification and library 
preparation for whole exome sequencing

DNA was isolated from 5 million cells for each cell 
line using Qiagen DNA Minikit (Catalog no. 51306) for 
obtaining good quality protein and RNA free genomic 
DNA. The concentration of DNA was determined using 

Quant-iT™ PicoGreen® dsDNA Assay Kit (Catalog 
no. P11496) where the standard curve was obtained 
from increasing dilutions of lambda DNA (Stock = 
500 ng/μl). DNA library was prepared using TruSeq 
Library Preparation kit (Catalog no. RS-122-2001) as 
per manufacturer’s guidelines. DNA was sheared using 
Covaris sonicator (S220) and the library was prepared. 
The obtained DNA library was quantified using Agilent’s 
Biolanalyzer. Next, DNA libraries (one for each sample) 
were taken in batches of six and pooled together for 
exome enrichment using Truseq Exome Enrichment kit 
(Catalog no. FC-121-1008). Finally the exome libraries 
were quantified by real-time qPCR using Illumina adapter 
specific primers for library quantification.

RNA isolation, quantification and library 
preparation for whole RNA sequencing

Cells were harvested using Tri Reagent® (Sigma, 
Catalog no. T9424) and RNA were extracted using the 
standard Chloroform-Isopropanol method. The RNA 
samples were checked for quality and quantity using 
Agilent’s Bioanalyzer. The library for sequencing was 
prepared using TrueSeq RNA sample preparation kit as 
per the manufacturer’s guidelines (Catalog no. RS-122-
2001). The library was then quantified using Agilent’s 
Bioanalyzer as well as real-time qPCR.

Cluster generation and sequencing

10 picomoles of each pooled exome or RNA library 
was taken, the strands were denatured and finally subjected 
to cluster generation on the flow-cell in the c-Bot system 
using TruSeq PE Cluster kit (Catalog no. PE-401-3001). 
The flow cell was finally subjected to two rounds of 
sequencing (for Read1 and Read2) and the results were 
obtained as intensity files. Sequencing was conducted on 
Illumina HiScanSQ using Truseq SBS V3 technology for 
100 and 50 base pair paired-end reads for exome and RNA 
sequencing respectively (Catalog nos. FC-401-3001 and 
FC-401-3002 respectively).

cDNA conversion

For cDNA conversion, 2 µg good quality RNA was 
used per reaction. Applied Biosystems™ High Capacity 
cDNA Reverse Transcription kit (Part no. 4368813) was 
used. The cDNA strand synthesis was carried out in Biorad 
S1000™ Thermal Cycler.

PCR amplification and Sanger sequencing

Genomic DNA or cDNA was taken as template 
for PCR amplification. Thermo Scientific’s DyNAmo 
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(Catalog no. F-416) reagent was used as amplification 
buffer along with primer of interest. Biorad S1000™ 
Thermal Cycler was used for PCR amplification.

Primer sequences have been provided in 
Supplementary Table S9. A schematic representation of 
the PCR strategy used for amplification of the promoter 
region of hTERT has been given (Supplementary Figure 
S8).

Real-time qPCR quantification

Thermo Scientific’s DyNAmo (Catalog no. F-416) 
reagent was used for this purpose with cDNA from good 
quality RNA used as template. Applied Biosystems™ 
7900HT Fast Real-Time PCR system was used. GAPDH 
was used as internal control. Primer sequences have been 
provided in Supplementary Table S9.

Data analysis pipelines

Whole exome sequencing analysis

We have carried out 100 bp paired-end sequencing 
for this purpose.
Alignment and Recalibration

The sequencing output in the form of base intensity 
files was converted to fastq format and subsequently de-
multiplexed using bcl2fastq [85]. Next, BWA or Burrows 
Wheeler Aligner version 0.6.2 was used to align the 
reads to the human reference genome hg19 i.e., Human 
Genome Reference Consortium build 37 (GRCh37) [86]. 
Post-alignment, we obtained the ‘.sam’ file which was 
converted to binary format or ‘.bam’ files using Samtools 
0.1.18 [87]. For co-ordinate sorting and duplicate removal, 
Picard 1.73 was used [88]. Read re-alignment, required 
for properly calling indels, was done using GATK 2.7-
2 module IndelRealigner [89]. The same tool’s module 
called BaseRecalibrator was used for base recalibration.
Variant Calling

The detection of Single nucleotide variants (SNVs) 
and indels (small insertions/deletions) was carried out 
using GATK’s module called UnifiedGenotyper [89]. 
Finally, variant annotation was done using Oncotator 
v.4.2.2 [17].
Filtering for Cancer-specific SNVs

To filter out cancer-specific SNVs from total SNVs, 
the SNVs obtained from GATK UnifiedGenotyper was 
passed through stringent filteration steps (Supplementary 
Figure S9). SNVs with ESP6500 frequency ≥ 0.00009 
were removed as SNVs having no disease consequences 
[90]. Similarly, in the next step, SNVs with 1000 
genomes database frequency ≥ 0.0005 were eliminated 
[91]. The SNVs obtained at this step were divided into 

those reported in COSMIC database versus those not 
reported in the same [18]. The SNVs present in COSMIC 
were considered as single nucleotide changes that may 
have possible role in carcinogenesis and hence cancer-
specific SNVs. Those SNVs not present in COSMIC were 
compared with the SNVs obtained from GBM TCGA 
exome sequencing data [8, 9]. Those SNVs present in 
the TCGA data were taken to be cancer-specific changes 
while SNVs not present in the above database were taken 
up for the following steps of filtration. SNVs with data 
set frequency, i.e. frequency of occurrence among the 
samples tested, ≥ 0.5 were eliminated. Finally the above 
SNVs were compared with dbSNP build 137 to remove 
potential single nucleotide polymorphisms [92]. Hence, all 
mutations obtained from the previous step, those obtained 
as present in COSMIC database and those which came up 
as already reported GBM-specific changes as per TCGA 
were combined to form the cancer-specific SNVs set. The 
rest of the SNVs were considered as non-specific.

RNA sequencing analysis

We have carried out 50 bp paired-end sequencing 
for this purpose.
Transcriptome analysis

The whole RNA sequencing data was aligned 
using PRADA tool [65]. Duplicate removal was carried 
out using Picard 1.73 [88]. The RNA-seq reads were 
counted over gene exons using HtSeq [93]. Genes were 
annotated as per Gencode Version 19 annotation file [55]. 
We used the DESeq size factor correction to account for 
differences in sequencing depth between the samples. For 
differentially expressed gene identification between GBM 
cell lines compared to normal brain tissue samples (from 
TCGA), we used DESeq with p-adjusted cut-off of 0.05 
[94].
Gene fusion analysis

Analysis of potential gene fusions in each cell line 
from RNA sequencing data was carried out using three 
different tools - PRADA, FusionMap and TopHat-Fusion. 
1) PRADA: Pipeline for RNA sequencing Data Analysis 
[65]. PRADA aligns RNA sequencing reads to a composite 
reference database comprising of whole genome reference 
sequence (hg19) and reference transcriptome sequence 
(Ensembl64) using BWA. To filter out potential gene 
fusions, the following criteria were used- -mm 3 -junL 
40 -minmapq 30. 2) FusionMap: RNA-seq reads for each 
cell line was aligned using PRADA-Preprocess-bi tool 
and the aligned reads were then fed into FusionMap [63]. 
The following parameters were used for fusion calling - 
MinimalFusionAlignmentLength = 25 FusionReportCutoff 
= 1 NonCanonicalSpliceJunctionPenalty = 2 MinimalHit 
= 2 MinimalRescuedReadNumber = 1. 3) TopHat-Fusion: 
The RNA-seq data was mapped using TopHat2 with the 
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following options -r 0 -p 14 -no-coverage-search -mate-
std-dev 80 -max-intron-length 100000 -fusion-min-dist 
100000 -fusion-anchor-length 13 -fusion-search -keep-
fasta-order -bowtie1. Using the mapped RNA-seq data, 
fusion transcript candidates were filtered by tophat-fusion-
post [64].
RNA editing events

RNA-seq data from each cell line was used to 
identify RNA editing events following a rigorous and 
robust pipeline (Supplementary Figure S10) [95, 96]. 
The RNA-seq reads were aligned to reference genome 
(hg19) and transcriptome (Ensembl64) using PRADA-
Preprocess-bi tool. Next, variants were called using 
GATK’s UnifiedGenotyper with options stand_call_
conf of 0 and stand_emit_conf of 0 [89]. The total 
variants obtained were then filtered to remove potential 
polymorphisms by comparing with dbSNP [92], 1000 
genomes database [91] and ESP6500 [90]. First six 
bases of each read were discarded to remove artificial 
mismatches caused by random-hexamer priming. The 
editing events present in Alu regions were separated out. 
The editing events present in non-Alu regions were then 
subjected to further steps to filter out spurious changes- 
1) each editing event were to be represented by atleast 
3 reads containing altered nucleotide with a minimum 
frequency of altered nucleotide being 0.1; 2) any site 
present in simple repeats were removed; 3) any candidate 
change present within 4 bps of known splice junction 
were removed; 4) sites present in homopolymer runs of 
≥ 5 bps were removed; and, 5) sites located in regions 
having high similarity to sequences present in other parts 
of the genome (found out using BLAT) were removed. 
Editing events present in non-Alu regions along with those 
found in the Alu regions were compared with normal brain 
editome data to eliminate editing events which have no 
carcinogenic consequences [96]. Events obtained from 
above step were compared with SNVs obtained from 
whole exome sequencing data of each corresponding 
sample to remove RNA editing events that are wrongly 
called due to presence of sample-specific genetic 
variations. This gives GBM cell-line specific RNA editing 
events.
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