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Introduction
Nuclear pore complexes (NPCs) permit the exchange of me-

tabolites and macromolecules between the nuclear compart-

ment and the cytoplasm. They are embedded in the nuclear 

envelope (NE) and belong to the largest macromolecular as-

semblies of the cell. There are two modes of NPC assembly 

(Maul et al., 1972; Maul, 1977). The fi rst pathway leads to the 

insertion of NPCs into a closed NE. It represents the only path-

way of NPC formation in lower eukaryotes, and it allows the 

interphase cells of higher eukaryotes to double their NPC 

number between two mitoses (Maul et al., 1972). The “open 

mitotic mode” is a pathway that is only used in higher eukary-

otic cells, in which NPCs and NEs are disassembled during 

mitosis. The resulting soluble Nup subcomplexes and vesicu-

lar or reticulate membrane structures then reassemble upon 

mitotic exit, reforming an NPC-perforated NE around chromatin

(Maul, 1977; Drummond and Allen, 2004; Rabut et al., 2004; 

Burke et al., 2005).

The open mitotic mode is characterized by a synchronous 

assembly of the entire NPC population of a cell. It has been 

widely studied in cell culture systems (Maul, 1977; Buendia 

and Courvalin, 1997; Bodoor et al., 1999) and in an in vitro sys-

tem based on Xenopus laevis egg extracts (Newmeyer et al., 

1986; Finlay and Forbes, 1990; Macaulay and Forbes, 1996; 

Goldberg et al., 1997). Although most of the NPC structure 

might self-assemble through interactions between individual 

nucleoporins (Nups), assembly factors probably assist in 

this process. Importin β, for example, appears to act as a 

RanGTPase-regulated chaperone, which initially shields certain 

Nup complexes and releases them in proximity to chromatin 

(Zhang et al., 2002; Harel et al., 2003; Walther et al., 2003).

The actual pores within the NE can be considered prod-

ucts of local fusion between the inner nuclear membrane (INM) 

and the outer nuclear membrane (ONM). It is still unclear 

which mechanisms create them, but two scenarios can be envis-

aged as to how the special structure of the pore membrane 

forms during exit from an open mitosis. First, vesicles could 

fuse around preassembled, chromatin-attached NPC scaffolds 

and thereby create the pore membrane before, or concomitantly 

with, the closure of the NE. Alternatively, the assembly of NPCs 
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OM121 and gp210 were, until this point, the only 

known membrane-integral nucleoporins (Nups) of 
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 membrane. In an accompanying study (see Stavru et al. on 
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exist independently of POM121 and gp210, and we pre-

dicted that vertebrate NPCs contain additional membrane-

integral constituents. We identify such an additional 

membrane protein in the NPCs of mammals, frogs, insects, 

and nematodes as the orthologue to yeast Ndc1p/Cut11p. 

Human NDC1 (hNDC1) likely possesses six transmembrane 

segments, and it is located at the nuclear pore wall. 
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in telophase could follow principles similar to those in inter-

phase, i.e., the double membrane of the NE could form fi rst 

and, subsequently, be perforated by a local fusion between 

INM and ONM.

How new NPCs are inserted into a closed NE is still un-

clear, but, again, two strategies can be envisaged. First, a pre-

existing NPC could grow and then split into two daughter 

pores (Rabut et al., 2004). Intermediates of such a mechanism 

should be NPCs of higher than the standard eightfold rota-

tional symmetry. Indeed, NPCs with a rotational symmetry of 

up to 10-fold have been detected (Hinshaw and Milligan, 

2003). However, there is no evidence for 16-fold symmetrical 

intermediates, as predicted for a presplitting NPC or, indeed, 

for any other plausible combination of pre- and postsplitting 

symmetry. Furthermore, such pore splitting would also require 

a membrane fusion event, namely, between opposing sides of 

the parental pore membrane. In view of the massive NPC 

structure, the inaccessibility of the lipid bilayers at the pore 

membrane, and the wide diameter of the pore channel, it is 

diffi cult to imagine how a fusion could possibly occur at such 

a position.

Therefore, it appears more likely that a true de novo in-

sertion of NPCs into the NE occurs. Indeed, experiments using 

the NPC assembly inhibitor BAPTA indicate that such an in-

sertion does not require preexisting NPCs (Macaulay and 

Forbes, 1996).

A de novo insertion of NPCs into the NE must include a 

local fusion between INM and ONM to yield the actual pore. 

How this fusion comes about is still unknown. One complica-

tion is that INM and ONM are held �20–25 nm apart; hence, 

the fusion machinery needs to bring them into a suffi ciently 

close proximity to allow membrane fusion to occur. A sec-

ond complication is that the pore-forming fusion occurs at 

the luminal faces of INM and ONM. Therefore, it must use 

factors other than the classical fusion machineries of the se-

cretory pathway, which catalyze membrane fusions through 

the cytoplasmic sides of the target membranes. In analogy to 

membrane fusion events mediated by SNAREs or viral fusion 

proteins (Söllner, 2004), however, it appears likely that integral 

membrane proteins play a critical role. Possibly, these integral 

fusion factors remain stably associated with mature NPCs as 

membrane-integral Nups. Membrane-integral Nups probably 

fulfi ll several additional functions, e.g., the recruitment of other 

Nups to assembly sites at the nuclear membrane, as (static) an-

chors of (mature) NPCs within the NE, as part of the rigid NPC 

structure, and, if equipped with the Nup-typical phenylalanine-

glycine (FG)–rich repeats, as constituents of the permeability 

barrier of nuclear pores.

Given the striking conservation of general NPC architec-

ture, it would be very surprising if the integration of yeast and 

animal NPCs into the NE traced back to different evolutionary 

origins. Nevertheless, thus far it appeared that NPCs from yeast 

and vertebrates are equipped with completely different sets of 

membrane-integral Nups. POM121 and gp210 (Gerace et al., 

1982; Hallberg et al., 1993) have, so far, been the only known 

membrane-integral constituents of vertebrate NPCs, but they 

are both absent from fungi.

The yeast S. cerevisiae possesses three membrane-

integral Nups: Pom152p, Pom34p, and Ndc1p (referred to as 

Cut11p in Schizosaccharomyces pombe). Pom152p and Pom34p 

are not essential, and they lack obvious orthologues in higher 

eukaryotes (Wozniak et al., 1994; Miao et al., 2005). In con-

trast, Ndc1p is essential (Thomas and Botstein, 1986; Winey 

et al., 1993; Chial et al., 1998; West et al., 1998). It is, however, 

not only a Nup but also a constituent of spindle pole bodies 

(SPBs), which are the NE-embedded form of centrosomes that 

is typical of yeast.

Nuclear pore and SPB membrane exhibit analogous topo-

logical features. Nevertheless, NPCs and SPBs represent dis-

tinct structures, apparently sharing just a single component, 

which is Ndc1p (Chial et al., 1998). Ndc1p is required for in-

serting newly formed SPBs into the NE, and this function is 

clearly essential for the viability of yeast (Winey et al., 1993; 

West et al., 1998). So far, however, a role for Ndc1p in NPC 

biogenesis is only indicated by genetic interactions with Nic96p 

and by the ndc1-39 mutant, which, at the nonpermissive tem-

perature, fails to properly incorporate Nup49p into otherwise 

functional NPCs (Lau et al., 2004). It is still unclear if the 

function of Ndc1p in NPC biogenesis goes beyond anchoring 

individual Nups to the NPC scaffold. However, if it had a 

 fundamental function in NPC biogenesis, then it should be con-

served across eukaryotic kingdoms and should also be present 

in those eukaryotes that have an open mitosis and, thus, lack 

NE-embedded SPBs. 

In the accompanying study (see Stavru et al. on p. 477 of 

this issue), we report the observation that functional mammalian 

NPCs can assemble in cells that are devoid of gp210 and se-

verely depleted of POM121. This suggested that, to date, at least 

one crucial membrane-integral Nup of mammals must have es-

caped detection. We confi rm this assumption and demonstrate 

that metazoan NPCs contain an additional constituent, which is 

orthologous to yeast Ndc1p. Depletion of human NDC1 (hNDC1) 

from HeLa cells causes severe NPC-assembly defects. Loss of 

NDC1 function in Caenorhabditis elegans also causes severe 

phenotypes, but it is not ultimately lethal. This leads to the con-

clusion that none of the membrane-integral Nups is essential un-

der all conditions for NPC biogenesis, and points to an extreme 

fl exibility and robustness of the NPC assembly process.

Results
Identifi cation of Ndc1p orthologues 
in higher eukaryotes
So far, POM121 and gp210 were the only known membrane-

 integral Nups found in vertebrates. In the accompanying study 

(Stavru et al., 2006), however, we report the surprising fi nding 

that both nucleoporins are not limiting to, and are even dispens-

able in, NPC biogenesis. Although the formal possibility exists 

that peripheral membrane proteins shape the pore membrane 

to its characteristic topology and serve as primary anchors 

for the NPC, it appears more likely that Nups with membrane-

spanning segments fulfi ll this function. In the latter case, a 

 crucial component of vertebrate NPCs must so far have 

escaped identifi cation.
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Figure 1. Multiple alignment of selected NDC1 orthologues. Predicted TMSs (1–6) are indicated in red, luminal loops are indicated in blue, 
and cytoplasmic parts remained uncolored. Cytoplasmic localization of the NH2 and COOH termini, as well as the luminal localization of loops 
1, 3, and 5, is supported by experimental evidence (see Fig. 3 and Fig. 4 A, as well as Fig. S3). Residues were shaded in black when identical 
and in gray when similar in >40% of the sequences. hs, H. sapiens; xl, X. laevis; dm1 and dm2, D. melanogaster NDC1 variants 1 and 2; 
ce, C. elegans; sc, S. cerevisiae; sp, S. pombe; nc, N. crassa; at, A. thaliana; cn, C. neoformans. Fig. S3 is available at http://www.jcb.
org/cgi/content/full/jcb.200601001/DC1. 
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In search of the missing component, we reasoned that a 
membrane-integral constituent of yeast NPCs might have an as 

yet unidentifi ed orthologue in higher eukaryotes. Searches with 

S. cerevisiae Pom152p or Pom34p did not yield any convincing 

hits. However, we found Ndc1p orthologues not only in other 

ascomycetous fungi (e.g., Pichia pastoris, Yarrowia lipolytica, 

Aspergillus nidulans, and Neurospora crassa) but also in basidio-

mycetes (e.g., Ustilago maydis, Cryptococcus neoformans) and 

viridiplantae (e.g., Pinus taeda, Solanum demissum, Arabidopsis 
thaliana, Oryza sativa, and Chlamydomonas reinhardtii), as 

well as in nematodes (e.g., C. elegans), insects (e.g., Drosophila 
elanogaster), cnidarians (e.g., Hydra magnipapillata), tunicates 

(e.g., Ciona intestinalis), amphibians (e.g., X. laevis), fi sh (e.g., 

Fugu rubripes), birds, and mammals (Fig. 1 and Fig. S1, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200601001/DC1). 

NDC1 was, thus, an excellent candidate for constituting a widely 

conserved membrane anchor of NPCs.

NDC1 also localizes to NPCs 
in higher eukaryotes
hNDC1 was previously identifi ed in a proteomics screen as NE 

transmembrane protein 3 (Net3; Schirmer et al., 2003). To de-

termine its intracellular localization at a higher resolution, we 

expressed NH2- and COOH-terminal GFP fusions of hNDC1 

in HeLa cells (Fig. S2, available at http://www.jcb.org/cgi/

content/full/jcb.200601001/DC1). At low or moderate expression 

levels, a clear colocalization with NPCs was observed, suggest-

ing that NDC1 is also a Nup in human cells. 

To localize the endogenous hNDC1, we raised antibodies 

against two regions of the protein and used them for immuno-

fl uorescence on HeLa cells. For both sets of antibodies, a clear 

NPC staining was evident (Figs. 2 and 3). In Fig. 2, we used 

 either mAb414, which recognizes several FG repeat Nups 

(Sukegawa and Blobel, 1993), or the fl uorescently labeled 

Impβ45–462 fragment (Kutay et al., 1997) to decorate NPCs, and 

we observed conspicuous colocalization with the hNDC1 signal.

As already mentioned, we identifi ed Ndc1 orthologues in 

numerous other eukaryotes and, hence, wanted to know if local-

ization at NPCs represents a general feature of NDC1 family 

members. Therefore, we raised antibodies against X. laevis 

NDC1, against the more widely expressed isoform of the two 

D. melanogaster paralogues (variant 1; Fig. 1), and against 

C. elegans NDC-1. Again, colocalization with the respective 

nuclear pore markers, i.e., X. laevis Nup62, D. melanogaster 

TPR, or mAb414, was observed (Fig. 2). NDC1 is, thus, a 

widely conserved constituent of NPCs.

Topology of hNDC1
hNDC1 clearly behaves like an integral membrane protein; it 

fractionates with membranes and withstands membrane extrac-

tion at pH 12.0 (unpublished data). The number and orientation 

of the transmembrane segments (TMSs) determine which parts 

of hNDC1 are exposed to the cytoplasmic/NPC side of the 

membrane and, hence, are available for interaction with other 

Nups. Therefore, we decided to resolve its topology. An in silico 

analysis was used to generate a topology model (see Materials 

and methods), which was subsequently tested experimentally. 

The model predicted six putative TMSs and cytoplasmic expo-

sure for the NH2 and COOH termini, as well as for loops 2 

and 4, whereas loops 1, 3, and 5 are predicted to face the lumen 

of the NE (Fig. 1 and Fig. 4 B). 

In agreement with the model, we found the COOH-

 terminal domain (NDC1292–674), as well as the extreme NH2 and 

COOH termini, to be accessible for antibodies from the cyto-

plasmic side of the membrane (for data and experimental 

 description see Fig. 3 and Fig. S3, available at http://www.jcb.

org/cgi/content/full/jcb.200601001/DC1). In contrast, antibod-

ies against loop 5 recognized their epitope only when the inter-

nal membranes had been solubilized by Triton X-100 (Fig. 3). 

This is expected, if loop 5 is located in the lumen of ER or NE.

In a second set of experiments, we introduced N-glycosylation 

sites (NGSs) into loops 1, 3, or 5. Indeed, we observed the 

Figure 2. Animal NDC1 proteins localize to NPCs. Antibodies were raised 
against NDC1 from H. sapiens, X. laevis, D. melanogaster (variant 1), and 
C. elegans, and then affi nity purifi ed and used to localize NDC1 in human 
HeLa cells, D. melanogaster Schneider cells, X. laevis XL177 cells, or cells 
isolated from C. elegans. The following NPC markers were used: mAb414, 
antibodies against D. melanogaster TPR, anti–X. laevis Nup62, and the 
fl uorescently labeled importin β45–462 fragment. Optical sections through 
the nuclear equator and the nuclear surface are shown.
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 selective glycosylation of these sites, when in vitro translation 

was performed in the presence of RER membranes (Fig. 4 A). 

As this modifi cation occurs only in the RER lumen (Nilsson 

and von Heijne, 1993), one can conclude that loops 1, 3, and 5 

are indeed luminal. This experiment also indicates that NDC1 

is initially integrated into RER membranes before its assembly 

into NPCs. Such intermediates in the RER can indeed be 

 detected microscopically, when GFP-tagged hNDC1 is over-

expressed (Figs. S2 and S3).

The experimental data, thus, support the topology model, 

at least for the human member of the NDC1 family. Its 

�45-kD COOH-terminal domain (NDC1292–674), which in-

cludes the most conserved part of this protein (Fig. 1), is 

therefore entirely extraluminal and available for interactions 

with other Nups.

EM localization of hNDC1
In the next step of our analysis, we used postembedding 

 immunogold EM to localize the conserved COOH-terminal 

 domain of hNDC1. The antibodies gave a very specifi c labeling 

along the NE, with >95% of the gold decorating NPCs (see 

representative EM images in Fig. 5 B). The positions of the gold 

labels are consistent with the assumption that the COOH-

 terminal domain resides within the body of the NPC proper and 

is part of the NPC scaffold.

Mitotic modifi cation of hNDC1
Sequence analysis of the conserved COOH-terminal domain 

of NDC1 predicted several consensus phosphorylation sites 

for mitotic kinases. Because mitotic phosphorylation plays a 

key role in disassembling NPCs (Onischenko et al., 2005), it 

was tempting to assume that a mitotic modifi cation of NDC1 

might contribute to this disassembly process. Such modifi -

cations often change the mobility of protein species in SDS 

gels, and, indeed, immunoblots revealed a prominent slow-

 migrating NDC1 species that was specifi c for HeLa cells 

arrested in M phase (Fig. S4, available at http://www.jcb.org/

cgi/content/full/jcb.200601001/DC1). We are currently inves-

tigating the nature of these modifi cations and their positions 

within the NDC1 sequence.

Figure 3. Membrane topology of endogenous hNDC1 probed with anti-
hNDC1 antibodies. (A) HeLa cells were fi xed with paraformaldehyde and 
permeabilized with 0.05% digitonin, which perforates the plasma mem-
brane but leaves ER and NE intact. Nuclear or luminal epitopes, hence, 
remain inaccessible for antibodies. Yet, antibodies clearly recognized the 
COOH-terminal domain of NDC1 under these conditions (top). The 
COOH terminus of NDC1 is, therefore, extraluminal, i.e., exposed to cyto-
plasm or the central pore channel. The procedure was verifi ed by two 
 internal controls; as expected, mAb414 also recognized NPCs from the 
cytoplasmic side, whereas recognition of TPR, which is located on the 
 nuclear NPC side, required complete permeabilization of internal mem-
branes by 0.25% Triton X-100. Detection of bound primary antibodies 
was carried out with Alexa Fluor 488 anti–rabbit (for anti-NDC1), Alexa 
Fluor 647 anti–mouse (for mAb414), and Alexa Fluor 568 anti–guinea 
pig (for anti-TPR). Images were taken by confocal laser scanning microscopy. 
(B) Analysis was analogous to Fig. 3 A, the difference being that an anti-
body against loop 5 of NDC1 was used. Loop 5 is inaccessible from the 
cytoplasm and recognized by the antibody only after dissolving internal 
lipid bilayers with Triton X-100. 

Figure 4. hNDC topology probed by N-glycosylation site tagging. (A) In-
dicated forms of hNDC1 were translated in vitro in the presence of 
[35S]methionine and signal recognition particles, and subsequently de-
tected by autoradiography. NGSs introduced into loops 1, 3, or 5 were in-
deed effi ciently glycosylated, provided that RER membranes were present 
during translation. As N-glycosylation activity is RER-luminal, loops 1, 3, 
and 5 must also be luminal. (B) Scheme of the proposed membrane 
 topology of human NDC1.
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Depletion of hNDC1 from human cells 
causes a severe NPC assembly defect
Having established that all tested metazoan NDC1 proteins are 

constituents of NPCs, we wanted to elucidate the consequences 

of a loss of NDC1 function. For this we used the RNAi ap-

proach to knockdown hNDC1 in human cell lines (Elbashir 

et al., 2001). The four different siRNA duplexes that were effi -

cient (see Materials and methods) all gave a similar phenotype 

(Fig. 6 and not depicted). The reduction of NDC1 correlated 

with a proportional loss of the NPC signal for the mAb414-

 reactive FG repeat Nups, or for Nup88, which anchors Nup214 

and Nup358 to NPCs (Bernad et al., 2004). Therefore, the 

 assembly defects caused by the NDC1 depletion might not be 

restricted to the vicinity of the pore membrane, but extend to 

NPC structures that are distant from the pore membrane.

There is, apparently, highly selective pressure against 

NDC1-depleted cells. This is indicated by the observation that 

the fraction of cells that showed signifi cant depletion of the tar-

get protein was consistently smaller in hNDC1 knockdowns 

than in parallel RNAi experiments against POM121 or gp210.

To address the question of whether eukaryotes can assem-

ble at least rudimentary NPCs without NDC1, we switched the 

model organism and analyzed NDC-1 genetically in C. elegans.

Loss of NDC-1 function in C. elegans
Database searches pointed to the C. elegans ndc-1 −/− strain 

(tm1845), generated by S. Mitani at the Japanese C. elegans de-

letion consortium. The strain carries a mutation at the B0240.4 

locus, which is predicted to disrupt the ORF of ceNDC-1 just 

after the second membrane-spanning segment. If expressed, the 

resulting deletion would still comprise �25% of the protein se-

quence, but would lack all parts of the protein that are conserved 

and potentially exposed toward the NPC.

The mutant strain has so far been propagated only in the het-

erozygous form because the phenotype of the homozygous mutant 

is so severe that it was initially listed as sterile or lethal. However, 

we were able to detect rare cases of homozygous mutant worms 

that not only developed until adulthood but also produced a few 

offspring. The homozygous mutant ndc-1 −/− genotype was 

 confi rmed by single-worm PCR (not depicted), as well as by 

immuno blots showing that the ceNDC-1 protein is, indeed, absent 

in homozygous mutant worms (Fig. 7). We have now maintained 

these homozygotes for >15 generations and can therefore exclude 

the possibility that their survival is only attributable to a maternal 

ceNDC-1 mRNA pool inherited from a heterozygous progenitor.

Immunofl uorescence also confi rmed the absence of the 

ceNDC-1 protein from the mutant worms (unpublished data). 

In addition, it revealed a signifi cantly reduced mAb414 signal 

of the NE, as compared with wild-type worms. However, this 

staining for FG repeat–containing Nups was not completely 

lost, indicating that rudimentary NPCs can assemble and persist 

in the absence of ceNDC-1 (Fig. 8).

Figure 5. hNDC1 is a central component of NPCs. (A) An immunoblot 
of total HeLa cells probed with affi nity-purifi ed antibodies raised against 
the COOH-terminal domain of hNDC1 (hNDC1292–674). Typical of a 
 multimembrane-spanning protein, hNDC1 migrates faster on SDS-gels 
than expected from its calculated molecular mass (76 kD). (B) HeLa cells 
were fi xed in 2% formaldehyde + 0.1% glutaraldehyde, embedded into 
LR white and processed for postembedding immunogold-labeling as  de-
scribed previously (Krull et al., 2004). hNDC1 was detected by the anti-
bodies characterized in A. Arrows in the representative EM images point 
at two neighboring NPCs in cross section. Bar, 50 nm. C, cytoplasmic; 
N, nuclear side of the NE.

Figure 6. Depletion of hNDC1 from HeLa cells causes se-
vere NPC assembly defects. HeLa cells were transfected 
with hNDC1-specifi c siRNAs and analyzed 96 h later 
by double immunofl uorescence with indicated antibody 
combinations. Depletion of hNDC1 from transfected 
cells (arrows) resulted in a proportional decrease in 
mAb414 and Nup88 stain.
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Consistent with the assumption that these rudimentary 

NPCs are functionally impaired, we observed a very high em-

bryonic and larval mortality rate for the homozygote ndc-1 −/− 
(tm1845) mutant. The few surviving individuals developed very 

slowly until adulthood, and most of them remained sterile. 

These phenotypes culminated in a strongly reduced brood size 

(Table I and Fig. S5, available at http://www.jcb.org/cgi/ content/

full/jcb.200601001/DC1). The surviving homozygous animals 

displayed additional pleiotropic phenotypes (unpublished data), 

such as the “clear” phenotype, which indicates the failure of 

properly developing internal structures and organs. Homozygous 

adults were smaller than the heterozygote ndc-1 −/− (tm1845) 
mutants or wild-type worms. This also held true for the eggs 

and embryos.

To prove that these phenotypes were indeed the conse-

quences of the ndc-1 mutation, in the ndc-1 −/− (tm1845) ho-

mozygous background we generated a transgenic worm that 

expresses NDC-1::GFP from the endogenous ndc-1 promoter. 

The NDC-1::GFP fusion protein was detectable by anti–ceNDC-1 

antibodies (Fig. 7) and localized to NPCs (Fig. 9). Because we 

had introduced the NDC-1::GFP fusion in the form of an extra-

chromosomal array, which typically gives a mosaic expression, 

the GFP signal was not observed in all cells of the embryos. 

Nevertheless, expression of the transgene complemented the 

ceNDC-1 loss-of-function phenotypes and dramatically im-

proved fertility of the homozygous ndc-1 −/− (tm1845) mutant 

(Fig. S5 and Table I). The phenotypes of the ndc-1 −/− 
(tm1845) strain, therefore, are caused by the ceNDC-1 gene 

 disruption and are not the consequences of secondary mutations.

Discussion
Ndc1p in NPCs and SPBs
The fungal SPBs and NPCs share Ndc1p as a common compo-

nent, and both reside within giant pores of the NE that originate 

from local fusions between INM and ONM. Ndc1p is clearly 

required for SPB insertion into the NE, and this alone explains 

why the Ndc1 gene is essential. The question as to whether 

Ndc1p is also essential for NPC assembly remained unresolved 

so far.

SPBs and NPCs are distinct structures; therefore, Ndc1p 

must cooperate with distinct sets of components to create either 

nuclear or SPB pores (Araki et al., 2006). The SPB- and NPC-

relevant interactions of Ndc1p even appear to be in competition, 

as indicated by the observation that the deletion of the 

 membrane-integral Nup POM152 suppresses SPB assembly 

Figure 7. Immunoblot analysis of the ndc-1 −/− (tm1845) C. elegans 
mutant. Total protein extracts from wild-type worms, the homozygous 
ndc-1(tm1845) strain, and ceNDC1::GFP rescue strain were prepared and 
analyzed by immunoblotting with affi nity-purifi ed antibodies against 
ceNDC-1 and antibodies against lamin B, which served as a loading control.

Figure 8. Reduced mAb414 signal at NPCs of homozy-
gous ndc-1 −/− (tm1845) mutant C. elegans embryos. 
Wild-type embryos or embryos lacking ceNDC-1 were 
stained in parallel with mAb414 (green) and anti-laminB 
(red). Note that NPCs of the mutant embryos stain only 
weakly with the NPC marker mAb414. The increased 
mAb414 signal outside the NE suggests that a signifi cant 
proportion of FG repeat Nups failed to assemble into 
NPCs. The smaller size and altered morphology of the 
mutant embryos is probably a secondary effect of im-
paired NPC function.

Table I. Complementation of ndc-1 −/− (tm1845) phenotypes 
by NDC-1::GFP

Incubation time 
on plate at 20°C

ndc-1 −/− 
(tm1845)

ndc-1−/− (tm1845) NDC-1::GFP

2 d 0–13 eggs 19 to 93 eggs

3 d 0–32 eggs
 0 larvae

35 to >160 eggs and larvae

4 d 0–32 eggs
  0–8 larvae

numerous adult hermaphrodites

10 L2/L3 larvae of each strain were singled out and grown at 20°C. The 
offspring per plate were counted at the indicated times. The variability in 
ndc-1−/− (tm1845) NDC-1::GFP worms is attributable to the mosaic expres-
sion of the transgene and germline silencing of the extrachromosomal array 
from which the transgene is expressed.
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 defects that are caused by certain Ndc1p mutations (Chial et al., 

1998). The extreme sensitivity of yeast cells to any change in 

Ndc1p dosage (Chial et al., 1999) indicates how delicate the 

equilibria in these interactions might be.

NDC1 in higher eukaryotes
We identify metazoan orthologues to Ndc1p and show that they 

constitute an integral component of NPCs in mammals, amphib-

ians, insects, and nematodes. Metazoan NDC1 is presumably 

fully dedicated to its function at NPCs because metazoa lack NE-

 embedded SPBs. NDC1 is now the third known membrane-integral 

Nup in vertebrate NPCs, and its presence may be one possible 

 explanation as to why NPCs can still form in the virtual absence of 

POM121 and gp210, which are the other two integral constituents 

(Stavru et al., 2006). The crucial contribution of NDC1 to the 

NPC assembly process is indicated by the severe NPC biogenesis 

defects that occurred when the protein was either depleted by 

RNAi or when the ORF had been disrupted genetically.

NPC assembly: a robust 
and fault-tolerant process
The biogenesis of NPCs is a very elaborate process. It requires 

not only the self-assembly of �700 individual polypeptide 

chains (representing multiple copies of the �30 different Nups) 

into a single giant protein complex but also a local fusion be-

tween INM and ONM to create the actual pore, as well as the 

implantation of the NPC scaffold into this pore. NPCs are es-

sential structures, and their failure to assemble would be lethal. 

Therefore, it is not surprising that the assembly process is ro-

bust and fault tolerant. This resistance toward disturbances be-

comes particularly apparent in the fact that more than half of the 

yeast Nups can be singly deleted without causing deleterious 

defects (Rout and Aitchison, 2001). For most deletions of such 

nonessential Nups, however, synthetic–lethal interactions with 

loss-of-function alleles of other Nups have been found (Doye 

et al., 1994; Aitchison et al., 1995; Miao et al., 2005). This illus-

trates that many of the crucial protein–protein interactions are 

backed by more than one player. Such inherent fl exibility prob-

ably contributes greatly to the intrinsic fault tolerance of the 

NPC assembly process.

Based on experiments in the X. laevis egg extract system, 

a different explanation for the fi delity of assembling an NPC- 

perforated NE has been given, namely a surveillance of the pro-

cess by a POM121-dependent checkpoint system (Antonin 

et al., 2005). For several reasons, we view this concept with some 

caution. Bona fi de checkpoints allow active intervention into 

those cellular processes that could result in uncorrectable errors 

(Murray and Hunt, 1993). The mitotic spindle checkpoint, for 

example, reduces the probability of an uncorrectable aneuploidy 

by delaying sister chromatid segregation until each of the chro-

mosomes is properly attached to the mitotic spindle. Nuclei en-

closed by a pore-free membrane, however, are not uncorrectable 

dead-end products. Instead, NPCs can still be integrated into 

them at later time points (Macaulay and Forbes, 1996). In addi-

tion, the great number of NPCs, which become embedded into 

an NE, should make the nuclear assembly process tolerant 

against occasional failures to assemble individual NPCs. 

Considering further that all crucial checkpoints, such as the DNA 

damage and mitotic spindle checkpoints, are disabled during 

the early cell cycles in the developing X. laevis embryo (Murray 

and Hunt, 1993), we fi nd it hard to understand why an NPC 

 assembly checkpoint should be kept in operation. Finally, we 

observed that POM121-depleted human cells formed functional 

NPCs and showed no uncoupling between NE formation and 

NPC assembly (Stavru et al., 2006).

Multiple membrane-integral Nups
Consistent with the concept of redundancy and robustness, NPCs 

appear not to rely on just a single anchor within the NE. Instead, 

they typically contain several membrane-integral Nups (e.g., 

three different ones in either yeast or mammals). Genomic data 

indicate that two of them, gp210 and NDC1, are evolutionary 

conserved (Mans et al., 2004). The fact that both are found in 

metazoans as well as in plants, clearly suggests that they evolved 

before the unikont/bikont bifurcation, which is considered as the 

oldest time point of a major evolutionary diversifi cation of known 

eukaryotes (Richards and Cavalier-Smith, 2005). Primordial 

NPCs were therefore probably equipped with both gp210 and 

NDC1. However, it appears that some lineages (e.g., all fungi) lost 

gp210, whereas other lineages (e.g., Dictyostelium discoideum 

or other protozoa) lost NDC1 from their genomes. This brings us 

to the unexpected conclusion that none of the integral Nups is—

generally and in all cellular settings—essential for NPC assem-

bly and function. This also explains why the nematode C. elegans 

can live, although miserably, in the absence of NDC1, why many 

mammalian cell types, such as fi broblasts, assemble fully func-

tional NPCs without gp210, and why POM121 can be depleted 

from human cells without deleterious defects.

Do membrane-integral Nups play 
a direct role in the nuclear pore–forming 
membrane fusion?
How could membrane proteins of very different topology 

and domain structure possibly substitute for each other?

Figure 9. Localization of the ceNDC1::GFP rescue protein. Figure shows 
analysis of the homozygous ndc-1 −/− (tm1845) strain rescued by an 
extrachromosomal array that allows expression of a ceNDC-1::GFP 
fusion. Adult hermaphrodites were mounted on a slide and imaged by 
differential interference contrast or conventional fl uorescence microscopy 
in the GFP channel. The NDC-1::GFP fusion shows the expected NPC 
stain. However, because of the extrachromosomal array, it is not expressed 
in every cell. 
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One  possible explanation would be that membrane-integral Nups 

act at the nuclear membrane only as nucleation sites for attracting 

soluble Nups, which then self-assemble further and form the 

entire rigid scaffold of the pore complex. Their presumed, and 

apparently redundant, role in creating the membranous pore is, 

however, diffi cult to comprehend. The integration of an NPC 

into a closed NE requires a fusion between the luminal faces of 

ONM and INM, which have a distance of 20–25 nm. For fusion, 

this distance needs to be bridged. gp210 had been an excellent 

candidate for this function in the vertebrate system because it 

has such a giant luminal domain. However, fusion clearly also 

occurs in the absence of gp210. Therefore, we now face the puz-

zling problem that none of the remaining membrane-integral 

Nups possesses any signifi cant luminal parts: the luminal loops 

of NDC1 are so short that they will hardly protrude from the 

membrane. For POM121, it is even unlikely that any part is ex-

posed to the lumen. A possible solution to the problem is that 

soluble luminal components bridge the distance between INM 

and ONM. Possibly, they use the luminal loops of NDC1 or the 

luminal domain of gp210 as docking sites.

Studies in viral systems and in the secretory pathway 

have clearly established that a controlled membrane fusion 

requires energy (Söllner, 2004). In all of the cases character-

ized so far, it is conformational energy stored in fusion-

 promoting proteins that forces the opposing lipid bilayers to 

such a short distance that they can eventually coalesce. Viral 

fusion proteins can release their conformational energy only 

once, and such a single-use fusion factor would be suffi cient 

to explain NPC biogenesis in yeast. In higher eukaryotes with 

open mitosis, however, the situation is more complex. NE and 

NPC disassemble here once per cell cycle and, subsequently, 

reassemble from the existing membrane and protein components. 

Of course, the still elusive fusion factor could be degraded 

and resynthesized during every cell cycle and, in this case, it 

might not remain associated with mature NPCs. This would 

explain why no such activity has been found so far. Otherwise, 

multiple cycles of NPC formation and disassembly would 

 require an additional recycling machinery, which converts the 

fusion factor from a postfusion to a prefusion conformation. 

Such recycling machinery would have to reside in the lumen 

of the NE, and it will be very interesting to see whether it 

 exists or whether nuclear pore formation relies on “disposable” 

fusion proteins.

Materials and methods
Homology searches and analysis
Ndc1p orthologues were identifi ed by BLAST from public databases. 
cDNAs comprising the coding regions of human, mouse, D. melanogaster, 
X. laevis, and C. elegans NDC1 were obtained from the German Resource 
Center for Genome Research or amplifi ed from total RNA by RT-PCR. 
Coding regions were verifi ed by DNA sequencing.

Multiple alignments were performed with the ClustalW algorithm 
(Thompson et al., 1994). Membrane-spanning segments were predicted 
by combining the results of different algorithms and the hydrophobicity 
profi les of the respective sequences. The multiple alignments of predicted 
TMSs were manually corrected.

The orientation of the TMSs was predicted from the constraints (a) 
that the cytoplasmically fl anking region of a membrane anchor is typically 
more positively charged than the luminally fl anking one (Hartmann et al., 
1989) and (b) that adjacent TMSs must have opposite orientation.

The complete coding sequences of NDC1 were given the following 
accession numbers (available from GenBank/EMBL/DDBJ): Mus 
musculus, DQ141695; Homo sapiens, DQ141696; D. melanogaster 
(variant 1), DQ141697; and X. laevis, DQ191159.

Antibody production
Antibodies were newly raised in rabbits or guinea pigs against the following 
protein fragments: hNDC1242–264 (anti–loop 5), hNDC1292–674 (anti–COOH-
terminal domain), dmNDC1268–578, ceNDC-1315–457, hPOM121448–660, 
 human gp2101,828–1,887, xNDC1280–660, and dmTPR1,168–1,177.

Antibodies against human Nup62, Nup358, Nup96, and Nup107 
(Hase and Cordes, 2003) have been described earlier. All polyclonal anti-
bodies were affi nity purifi ed on their respective antigen columns. The 
mAb against X. laevis p62 was also previously described (Cordes et al., 
1995). mAb414 was obtained from Eurogentec, and the mAb against 
Nup88 was obtained from BD Bioscience. The antibody against 
C. elegans lamin was a gift from G. Krohne (Biozentrum, Universität 
 Würzburg, Würzburg, Germany).

Cell culture
Human HeLa cells were maintained in DME low glucose supplemented 
with 10% FCS, 1× nonessential amino acids (Sigma-Aldrich), 100 U/ml 
penicillin, and 100 μg/ml streptomycin.

X. laevis XL-177 cells were cultivated in 65% Leibovitz’ L-15 (Sigma-
Aldrich) supplemented with L-glutamine, 15% FCS, 100 U/ml penicillin, 
and 100 μg/ml streptomycin.

D. melanogaster S2 cells were obtained from the American Type Cul-
ture Collection (ATCC CRL-1963) and cultivated in D. melanogaster serum-
free medium supplemented with 100 U/ml penicillin, 100 μg/ml streptomycin, 
and L-glutamine, according to the manufacturer’s instructions.

All cell culture products were obtained from Invitrogen, unless other-
wise stated. Synchronized HeLaS3 cells were a gift of B. Petrova (Zentrum 
für Molekulare Biologie der Heidelberg, Heidelberg, Germany).

C. elegans work
Worm cultures were maintained using standard techniques (Brenner, 
1974). The heterozygous ndc1 −/− (tm1845) strain was obtained from 
S. Mitani at the Japanese C. elegans deletion consortium (Tokyo Women’s 
Medical University School of Medicine, Tokyo, Japan). To select for homo-
zygous ndc-1 −/− (tm1845) mutants, sick-looking hermaphrodites were 
singled out on plates. Most animals died without generating any offspring. 
The remaining animals had few offspring. The animals were selfed for at 
least 15 generations. Single-worm PCRs were performed on homozygous 
and heterozygous animals to confi rm the homozygosity of the mutants. The 
NDC-1::GFP fusion was created by cloning the genomic copy of ndc-1, 
 including the putative promoter region into pPD95.81 (Fire et al., 1990). 
This reporter construct (20 ng/μl) was coinjected with 80 ng/μl pRF4 
(rol-6(su1006)) into the gonads of ndc1(tm1845) homozygous worms. 
 Extrachromosomal arrays were selected by the rol phenotype, and the ability 
of NDC-1::GFP to rescue the ndc-1 −/− (tm1845) phenotype. NDC-1::GFP 
was visualized with an epifl uorescence microscope (Axioplan 2; Carl Zeiss 
MicroImaging, Inc.). Images were collected with an Axiocam (Carl Zeiss 
MicroImaging, Inc.) and the contrast was adjusted with Photoshop (Adobe). 
Pictures of worm plates were taken with a digital camera (Coolpix; Nikon) 
mounted onto the binocular.

RNAi
Transfection of cultured human cells with siRNAs was carried out essen-
tially as previously described (Hase and Cordes, 2003). Annealed siRNAs 
were purchased from Dharmacon. Antisense strands were complementary 
to nucleotides 1,915–1,935, 405–425, or 1,569–1,596 of the hNDC1 
ORF. In addition, we performed RNAi with stealth siRNAs (Invitrogen), 
whose sense strand modifi cation is thought to reduce nonspecifi c effects. Its 
antisense strand was complementary to nucleotides 1,085–1,109 of the 
hNDC1 ORF. For each of these four siRNAs, we observed the same corre-
lation between hNDC1 knockdown and depletion of mAb414-reactive 
Nups from the NE. Fig. 6 shows results with the stealth oligo duplex.

DNA transfections
DNA transfections for expression of EGFP-tagged NDC1 were performed 
with Fugene6 (Roche), according to the manufacturer’s instructions. Cells 
were analyzed 24–60 h after transfection.

Immunofl uorescence and microscopy
For immunofluorescence, cultured cells were washed briefly with PBS, 
fi xed for 4 min in 3% paraformaldehyde that was freshly dissolved in PBS, 
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washed in PBS, quenched with 50 mM NH4Cl in PBS for 5 min, perme-
abilized with 0.25% Triton X-100 in PBS, and blocked for at least 30 min 
in 1% BSA, 10% goat serum, and 0.1% Triton X-100. Primary antibodies 
were applied for 60 min in blocking buffer. Nonbound antibodies were 
washed off with PBS. Alexa Fluor–labeled secondary antibodies were pur-
chased from Invitrogen. The secondary antibodies and the DNA stain 
Hoechst 33342 were applied for 30–60 min in blocking solution, followed 
by extensive washing and mounting in Vectashield (Vector Laboratories). 
Immunofl uorescence on C. elegans embryos was performed after freeze-
fracturing and formaldehyde fi xation.

Confocal microscopy was performed with a laser scanning micro-
scope (model SP2; Leica) using 405-, 488-, 561-, or 633-nm laserlines for 
excitation. All pictures were taken at 22–25°C with Leica PlanApo Oil 
 objectives (100×, 1.4 NA, and 63×, 1.32 NA); for pictures involving the 
405-nm laser, lambda blue objectives were used. Images were assembled 
in Photoshop (version CS) or Illustrator (version CS; Adobe).

Elucidation of the topology of hNDC1
For in vitro translation, the hNDC1 coding region was cloned downstream 
of a T7 promoter. The following NGSs were inserted: SSNGTS after resi-
due 155 of hNDC1 (NGS-loop 3), SSNGTS after residue 253 (NGS-loop 5). 
The glycosylation site SSNGTS inserted after residue 61 in loop 1 was not 
glycosylated, probably because it is too close to the membrane (Nilsson 
and von Heijne, 1993). However, when extended to the sequence T S G S G-
N S S N G S G T , it was glycosylated to 70–80%.

Online supplemental material
Fig. S1 shows the evolutionary conservation of NDC1. Fig. S2 shows 
EGFP-tagged hNDC1 is targeted to NPCs. Fig. S3 shows the membrane 
topology of hNDC1 probed by epitope tagging. Figure S4 shows that 
hNDC1 is heavily modifi ed during mitosis. Fig. S5 shows that NDC-1::GFP 
rescues the high mortality and sterility phenotype of the ndc-1 −/− 
(tm1845) allele. Online supplemental material is available at http://www.
jcb.org/cgi/content/full/jcb.200601001/DC1.
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