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ABSTRACT

Genetically modified organisms (GMOs) can be gen-
erated to model human genetic disease or plant dis-
ease resistance, and they have contributed to the ex-
ploration and understanding of gene function, physi-
ology, disease onset and drug target discovery. Here,
PertOrg (http://www.inbirg.com/pertorg/) was intro-
duced to provide multilevel alterations in GMOs. Raw
data of 58 707 transcriptome profiles and associ-
ated information, such as phenotypic alterations,
were collected and curated from studies involving
in vivo genetic perturbation (e.g. knockdown, knock-
out and overexpression) in eight model organisms,
including mouse, rat and zebrafish. The transcrip-
tome profiles from before and after perturbation were
organized into 10 116 comparison datasets, includ-
ing 122 single-cell RNA-seq datasets. The raw data
were checked and analysed using widely accepted
and standardized pipelines to identify differentially
expressed genes (DEGs) in perturbed organisms. As
a result, 8 644 148 DEGs were identified and de-
posited as signatures of gene perturbations. Down-
stream functional enrichment analysis, cell type anal-
ysis and phenotypic alterations were also provided
when available. Multiple search methods and ana-
lytical tools were created and implemented. Further-
more, case studies were presented to demonstrate
how users can utilize the database. PertOrg 1.0 will
be a valuable resource aiding in the exploration of
gene functions, biological processes and disease
models.

INTRODUCTION

Experimentation on humans for biomedical research is fre-
quently unfeasible and/or unethical; therefore, model or-
ganisms are often studied using technologies that perturb
normal function, such as mutagenesis, RNA interference
and drug treatment (1). A genetically modified organism
(GMO) is any organism whose genotype has been altered
using genetic engineering techniques. GMOs can be gener-
ated to model human genetic disease or plant disease re-
sistance and have been improving the exploration and un-
derstanding of gene function, physiology, disease onset and
drug target discovery. GMOs can also be applied directly
for food use (e.g. GM soybeans) or to make food additives
(e.g. aspartame, an artificial sweetener) (2). Characteriza-
tion of GMOs is needed for a better understanding and
exploration of GMOs. To characterize GMOs, phenotypes
can be qualitatively described, and gene expression profiles
can be quantitatively measured. High-throughput sequenc-
ing technologies, e.g. microarray, RNA-seq and single-cell
RNA-seq (scRNA-seq), allow a quantitative evaluation of
gene expression and cell type composition to enable the
comparison of model organisms before and after modifica-
tion.

An increasing number of studies have reported high-
throughput data of genetically modified model organisms,
and the raw data generated are deposited in databases such
as GEO and ArrayExpress (3,4). Some databases, such as
KnockTF, LINCS and GPA (no longer accessible), were
developed to deposit data on differentially expressed genes
(DEGs) in human cell lines following genetic perturbations
(5–7). However, 2D in vitro cell cultures do not fully recapit-
ulate living tissue (e.g. immune cells are not present); there-
fore, they cannot mimic the natural structures of tissues in
vivo. They are also unable to determine the organism’s phe-
notype. A centralized data portal focusing on genetic per-
turbations in vivo for multiple model organisms could help
better and more accurately understand the multilevel alter-
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ations induced by genetic perturbations and further make
full use of GMOs.

In this study, we introduced a user-friendly database,
named Perturbing the Organisms (PertOrg) (http://www.
inbirg.com/pertorg/), which provides a comprehensive re-
source of transcriptomic datasets from studies involving in
vivo genetic perturbation (e.g. knockdown, knockout and
overexpression) in eight model organisms, including mouse,
rat and zebrafish. A total of 10 116 genetic perturbation
datasets, among which 122 are scRNA-seq datasets, were
manually curated. The raw data were checked and anal-
ysed using widely accepted and standardized pipelines, and
8 644 148 DEGs associated with gene perturbations were
identified. Downstream changed functions/pathways/cell
types as well as altered phenotypes are also provided when
available. It is expected that this service will contribute to
the understanding of gene functions, complex diseases and
GMOs and is aimed at becoming a valuable resource for the
research community.

MATERIALS AND METHODS

Workflow of PertOrg

The workflow of PertOrg 1.0 is presented in Figure 1. The
methods employed to construct the database and the in-
structions for using the web server are described below.

Data collection and processing

We searched the GEO (3) and ArrayExpress (4) databases
to retrieve genetic perturbation studies in model organisms
using the keywords ‘knockout, knockdown, overexpression,
knockin, transgenic, shRNA, siRNA, RNAi, CRISPRi,
CRISPRko and CRISPRedit’. The search results were fur-
ther manually checked to determine whether they met the
criteria, i.e. contained data from both before and after
genetic perturbation. Relevant information was also col-
lected, including phenotypic alterations when available. In
a study, the samples, which could be grouped into ‘con-
trol’ (before perturbation) and ‘case’ (after perturbation),
were organized into one perturbation dataset. This pro-
cess was double-checked by at least two researchers. We
further downloaded most of the metadata in raw format,
such as expression profiles annotated by probe IDs and raw
RNA sequencing data. For microarray data, the expres-
sion profiles from GEO were downloaded using the R pack-
age GEOquery (8), and the processed profiles in ArrayEx-
press were downloaded using ftp links. For RNA sequenc-
ing data, compressed FASTQ files were mainly downloaded
from the European Nucleotide Archive (9) and DNA Data
Bank of Japan (10). Customized workflows for different li-
brary strategies of experimental studies were adopted and
are described below:

(i) Microarray data: For the convenience of downstream
analysis, the probe identifiers of each transcriptome
profile were converted to Entrez Gene IDs. Multiple
probes matched to the same Entrez Gene ID were
merged using the average expression values. Then, log2
transformation was performed on those gene expres-
sion profiles that were not transformed before. Differ-

ential expression analysis was performed using limma
(v3.52.1) (11).

(ii) RNA-seq data: Reference genomes and annotations of
eight model organisms were obtained from the RefSeq
database (12). Then, after the md5 check and quality
control by fastp (v0.23.1) (13), alignments were per-
formed by HISAT2 (v2.2.1) (14). Furthermore, fea-
tureCounts (v2.0.1) (15) was used to estimate gene
expression levels. DESeq2 (v1.36.0) (16) or edgeR
(v3.38.1) (17) was used for DEG analysis of samples
with or without replicates, respectively.

(iii) scRNA-seq data: scRNA-seq data from two dif-
ferent protocols, 10X Genomics and Smart-Seq2,
were analysed using different pipelines (18,19).
For 10X Genomics, we used CellRanger (v6.0.2)
(https://support.10xgenomics.com/single-cell-gene-
expression/software/pipelines/latest/what-is-cell-
ranger) and its built-in reference genome to identify
the barcode of each cell as well as the unique molecular
identifier (UMI) to construct a matrix of UMI counts
for each sample. For Smart-Seq2, the bulk RNA-seq
analysis pipeline described above was applied. We
used SCTransform (v0.3.3) (20) to normalize the
count matrix, and Harmony (v0.1.0) (21) was applied
to integrate the profiles in the dataset. A series of
analyses were further performed using Seurat (v4.1.1)
(22), including visualization, clustering and DEG
analysis. Annotation of the cell types was performed
by scType (23). All analyses mentioned above were
based on default parameters to build a relatively
standard analysis pipeline.

For each PertOrg dataset, we performed differential ex-
pression analysis and identified DEGs using a threshold P-
value <0.05. If >1000 DEGs were found, we selected only
the top 1000 DEGs ranked by absolute log2 fold change for
downstream analysis.

Enrichment analyses

We performed enrichment analyses including upstream reg-
ulatory information and downstream functional analysis
using the R package ClusterProfiler 4.0 (24). The upstream
regulatory transcription factor-target gene information was
extracted from TRRUST (version 2) (25). For downstream
functional analysis, Gene Ontology (GO) (26) and KEGG
pathway (27) enrichment analysis of DEGs and gene set en-
richment analysis (GSEA) of each PertOrg dataset based
on fold changes (28) were performed. Moreover, we in-
vestigated differential cell type markers derived from the
CellMarker (29) and PanglaoDB (30) databases in mouse
datasets. For the overlapping analysis of DEGs from Per-
tOrg datasets, or with user-submitted gene sets, the signifi-
cance was determined using a hypergeometric test.

Database implementation

The web server was built using technologies such as Ng-
nix and uwsgi. Django and MySql were used for back-end
data exchange, and Bootstrap 4 and Jquery were used for
front-end visualization. Statistical analyses were performed
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Figure 1. Workflow of PertOrg: First, data from studies involving in vivo genetic perturbation were manually collected and curated from GEO and Array-
Express. The data were then organized as genetic perturbation datasets and analysed for DEGs and functional enrichment. The results were deposited in
the user-friendly database, and tables and plots were provided for users.

using Python packages such as Pandas (v1.3.5), NumPy
(v1.21.2), SciPy (v1.7.3) and GSEApy (v0.10.8). Data visu-
alizations were carried out via several approaches, such as a
volcano plot, heatmap, bubble chart, bar chart, UMAP and
t-SNE.

RESULTS

Database usage

Three data retrieval methods, including quick search, ad-
vanced search and browse, were developed for accessing
PertOrg 1.0 (Figure 2). For the rapid retrieval of genetic
perturbation datasets, PertOrg provides a quick search
method on the home page. Via the quick search form, the
user can enter a keyword of gene perturbation, e.g. gene
name (Slc39a8), perturbation type (knockout), tissue (kid-
ney), phenotype (anaemia) or data type (scRNA-seq). The
datasets with information containing the keyword are pre-
sented on the ‘Result’ page. In addition, PertOrg offers an
advanced search on the search page for users to acquire per-
turbation datasets from different aspects. Users can input

one or a list of genes (IDs or names) in the form and si-
multaneously select other feature (i.e. ‘organism’, ‘tissue’,
‘perturbation type’, ‘data type’ and ‘phenotype’) options to
perform a more precise search. Perturbation datasets meet-
ing the criteria are listed on the ‘Result’ page. Moreover, the
list of perturbation datasets can be viewed in an interactive
table on the ‘Browse’ page. Users can customize filters using
‘perturbation type’, ‘data type’, ‘tissue type’ and ‘organism’.

After clicking the PertOrg ID on the ‘Result’ or
‘Browse’ page, the user will be redirected to the detailed
information page for this dataset (Figure 3). The de-
tailed information page contains the available perturba-
tion information, altered phenotypes, differential genes,
enriched upstream transcription factors, enriched down-
stream functions/pathways and differential cell type mark-
ers by genetic perturbations. The perturbation informa-
tion includes gene information, perturbation type, tissue
type, data source and external links to some well-known
databases, such as the NCBI Entrez Gene database (31), En-
sembl (32) and KnockTF (5), when available. In the ‘differ-
ential genes’ section, DEGs induced by genetic perturbation
are listed in the table; volcano plots, heatmaps and boxplots
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Figure 2. Contents of PertOrg: On the home page, users can conduct quick searches via the keyword of genetic perturbation. On the search page, users can
perform more advanced searches by filtering one or more features of the perturbation dataset. On the ‘Result’ page, datasets meeting the criteria will be
listed in a table. On the ‘Browse’ page, users can browse datasets filtering by perturbation type, data type, tissue type and organism. Three analytical tools
were implemented: differential gene overlapping analysis helps to investigate the perturbation datasets that are significantly enriched in the user-given gene
set by hypergeometric testing; dataset enrichment analysis helps to identify the perturbation datasets in which the user-given gene set is overrepresented;
and dataset overlapping analysis shows the common functions and DEGs of the found perturbation datasets in the ‘Result’ page. Statistical graphics are
also presented to visualize the distribution of datasets, perturbation type and DEGs on the statistics page.

are also provided for the users. For the mouse dataset, cell
type markers that are also up/downregulated genes are se-
lected in the table. Furthermore, for the scRNA-seq dataset,
the single-cell clustering analysis will generate the cell clus-
tering plot, cell ratio, cluster marker genes and differential
genes in clusters. In a cell clustering plot, users can select
different resolutions and different types (t-SNE or UMAP).
For the mouse scRNA-seq dataset, plotting by inferred cell
type is also provided when available. Users can search genes
for expression in different clusters. The cell ratio plot shows
the ratio of cells in each cluster for the case (after perturba-
tion) and control (before perturbation) conditions. More-
over, cluster marker genes and DEGs in clusters are also
listed in the table, and violin plots are provided for visual-
ization.

Analytical tools

PertOrg provides three practical analytical tools, including
differential gene overlapping analysis and dataset enrich-
ment analysis on the ‘Analysis’ page and dataset overlap-
ping analysis on the ‘Result’ page. These tools enable users
to compare their gene signatures with PertOrg datasets or
to compare retrieved PertOrg datasets (Figure 2).

Differential gene overlapping analysis helps to find pertur-
bation datasets in which DEGs are significantly enriched
in the user-given gene set via hypergeometric testing on the
‘Analysis’ page. It can also allow users to search DEGs in
PertOrg. Users first submit a list of DEGs classified as up-
or downregulated. Then, these genes are mapped to the
relevant datasets filtered by organism, and hypergeomet-
ric tests are performed successively. Qualified datasets are
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Figure 3. Detailed information page: Users can view details of the perturbation information, altered phenotypes, differential genes, enriched
functions/pathways, differential cell type markers by genetic perturbation and single-cell RNA clustering analysis, including the cell ratio, cell markers
and differential genes in clusters when available. A volcano plot, heatmap, bubble chart, bar chart, UMAP and t-SNE are provided for visualization.
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sorted by P-value to obtain the most significant perturba-
tion datasets. Furthermore, by clicking on the dataset ID in
the result table, Venn diagram(s) and overlapping genes are
shown on the detailed information page.

Dataset enrichment analysis helps to identify the pertur-
bation datasets in which the user-given gene set is overrep-
resented on the ‘Analysis’ page. Users submit a set of genes,
and the tool iterates the submitted gene set over all Per-
tOrg datasets of that organism via the GSEA algorithm.
Available datasets will be returned and sorted by enrich-
ment score. When one of the resulting datasets is clicked,
a section to display the GSEA results will be found on the
detailed information page.

Dataset overlapping analysis will be provided on the ‘Re-
sult’ page if >1 perturbation dataset is searched. The over-
lapping downstream gene perturbation DEGs will be shown
in a network that contains a maximum of 10 perturbations
with more DEGs. Common GOs/pathways of related per-
turbed genes will also be listed.

Statistics and download

PertOrg 1.0 collected 58 707 bulk and single-cell tran-
scriptome profiles, and 10 116 comparison datasets, in-
cluding 122 scRNA-seq datasets, were organized and anal-
ysed. These datasets were focused on genetic perturbation
in vivo in eight model organisms, including Mus musculus,
Arabidopsis thaliana, Drosophila melanogaster, Danio re-
rio, Saccharomyces cerevisiae, Caenorhabditis elegans, Rat-
tus norvegicus and Escherichia coli. A total of 3958 dif-
ferent perturbed genes (protein-coding genes, microRNAs
and long noncoding RNAs) were involved across 491 tissue
types. A total of 8 644 148 DEGs associated with gene per-
turbations (e.g. knockdown, knockout and overexpression)
were identified. For different organisms, mice have the most
perturbation datasets, while for perturbation types, most
datasets are of knocked out types (Figure 2). On the statis-
tics page, interactive charts are provided. For example, the
histogram of the number of samples shows that most per-
turbation datasets have four to eight samples.

Moreover, PertOrg provides downloads of summary in-
formation (e.g. perturbated gene, perturbation type, tissue
type, data source, data type and organism) for all genetic
perturbation datasets in ‘csv’ format. PertOrg also offers
the ‘gmt’ file of DEGs from all datasets. In addition, dif-
ferential gene expression analysis results (e.g. P-value and
fold change) and gene expression profiles of each PertOrg
dataset can also be downloaded. Finally, all results in tables
can be exported from the interactive HTML table, and all
interactive plots can be downloaded in PNG format.

Data submission

Although an increasing number of perturbation datasets
are expected to be collected, many available datasets could
still be missed. Therefore, users are encouraged to submit
their datasets that meet PertOrg criteria for future integra-
tion. PertOrg allows users to submit perturbed genes, per-
turbation types, tissue types, data types and organisms, as
well as a link to their data sources on the ‘Submit’ page.
Once the submission is received, data will be carefully eval-
uated and further processed using our standard procedures

in PertOrg, as described in the ‘Materials and Methods’ sec-
tion. Finally, the dataset and the corresponding analysis re-
sults will be included in the future release of PertOrg.

Case studies

Two case studies investigating genetic perturbation-induced
alterations are presented to demonstrate how users can uti-
lize the database.

Case study 1: memory impairment-related genetic perturba-
tion. In the quick search or advanced method, we can
search ‘memory impairment’ as a phenotype. As a result,
nine PertOrg datasets and three perturbed genes, including
Creb1, Adnp and Jade2, were found (Supplementary Table
S1). When the ‘Overlapping analysis’ button at the bottom
of the ‘Result’ page was clicked, common features of those
nine datasets were displayed. We found that these three per-
turbed genes were all involved in the process of ‘neuron
projection morphogenesis’ (Supplementary Table S2). De-
ficiency of Adnp has been reported to cause brain disorders
in both mice and humans, and Adnp-knockout mice have
been used as disease models of brain disorders (33).

Case study 2: immune response induced by genetic pertur-
bation. On the analysis page, to explore the immune re-
sponse induced by genetic perturbation, we searched ‘cd8a’
in the upregulated gene box and selected the organism
‘mouse’. As a result, 307 PertOrg datasets were found (Sup-
plementary Table S3). After clicking the scRNA-seq dataset
‘Pertg06961’ in the results table, the detailed information
page showed that 68 DEGs induced by knockout of Ptpn11
were involved in the biological process ‘regulation of T cell
activation’ (Supplementary Table S4). In the ‘differential
cell type markers’ section, we found that many immune cells
were ‘upregulated’, as inferred from differentially expressed
cell type markers (Supplementary Table S5). Moreover, the
expression of cd8a was found to be upregulated by Ptpn11
knockout in both overall cells and ‘immune system cells’
in single-cell cluster analysis (Supplementary Figure S1).
It has been reported that Ptpn11 inhibition triggers anti-
tumor immunity by enhancing the function of CD8 cyto-
toxic T cells (34). Similar results were also observed in the
bulk RNA dataset ‘Pertg06178’ by Klf14 knockout. Klf14
has been found to play a role in regulatory T-cell differenti-
ation (35).

CONCLUSIONS AND FUTURE EXPANSIONS

GMOs have been widely used as models in biomedical re-
search. Some GMOs, however, are produced for human
consumption. Therefore, understanding the effect of GMOs
by genetic perturbation is useful for studying gene functions
and biological processes but also benefits human health
and disease prevention. An increasing amount of transcrip-
tomic data have been generated from studies involving ge-
netic perturbations in model organisms. However, the data
are unorganized and sparsely distributed, which poses a
large barrier for knowledge mining. In PertOrg 1.0, these
data were manually collected and processed by the unified
methods so that they could be compared and analysed. As a
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result, 10 116 datasets were organized in the current version.
PertOrg provides multilevel (i.e. gene, pathway, cell type and
phenotype) alterations induced by genetic perturbations.
Compared with other related databases, such as KnockTF,
GPA and LINCS, PertOrg 1.0 has three novel features: first,
PertOrg has the largest number of datasets from multiple in
vivo perturbed model organisms; second, the phenotype in-
formation is manually collected and shown in the detailed
information page when available; and third, single-cell anal-
yses on 122 scRNA-seq datasets are included. Further plans
are in place to regularly update the database with newly
published data every 3 months. Integrating in vivo and in
vitro data may help to gain deep knowledge of alterations
induced by genetic perturbation, e.g. from cellular interac-
tions among different cell types or intrinsic properties of a
cell line. Therefore, in vitro gene perturbation datasets, in-
cluding human datasets, will also be integrated and com-
pared with PertOrg datasets. Moreover, other omic data,
such as genomics and proteomics, will be included. Other
perturbation types, including drug treatment and external
stimulation in vivo, are also scheduled for inclusion in the
next version of PertOrg. Because the analysis of raw tran-
scriptomic data is a time- and space-consuming process,
PertOrg 1.0 does not currently support online analysis of
user data. However, an in-house pipeline is scheduled to
be developed to help users analyse their data using our
standard procedures and to integrate the results with Per-
tOrg datasets. Finally, additional analytical tools integrat-
ing gene–pathway–cell–phenotype–drug–disease will be de-
veloped and implemented.

In summary, we present PertOrg as a comprehensive re-
source of multilevel alterations induced in model organisms
by in vivo genetic perturbation. PertOrg 1.0 allows users
to link in vivo perturbed genes with DEGs, pathways, cell
types, tissues and phenotypes to interrogate gene function,
tissue development and phenogenesis. Moreover, PertOrg
1.0 is expected to help explore disease models and mech-
anisms and to assess therapeutic targets and potential gene
therapy. As the most comprehensive GMO database avail-
able, we believe that PertOrg 1.0 will be a valuable resource
for both bioscientists and bioinformaticians.

DATA AVAILABILITY

PertOrg 1.0 is freely available online at http://www.inbirg.
com/pertorg/, and there is no login requirement.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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