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A B S T R A C T

Despite the impressive advancements achieved using deep-learning for functional brain
activity analysis, the heterogeneity of functional patterns and scarcity of imaging data
still pose challenges in tasks such as prediction of future onset of Post-Traumatic
Epilepsy (PTE) from data acquired shortly after traumatic brain injury (TBI). Foun-
dation models pre-trained on separate large-scale datasets can improve the performance
from scarce and heterogeneous datasets. For functional Magnetic Resonance Imaging
(fMRI), while data may be abundantly available from healthy controls, clinical data
is often scarce, limiting the ability of foundation models to identify clinically-relevant
features. We overcome this limitation by introducing a novel training strategy for our
foundation model by integrating meta-learning with self-supervised learning to improve
the generalization from normal to clinical features. In this way we enable generaliza-
tion to other downstream clinical tasks, in our case prediction of PTE. To achieve this,
we perform self-supervised training on the control dataset to focus on inherent features
that are not limited to a particular supervised task while applying meta-learning, which
strongly improves the model’s generalizability using bi-level optimization. Through
experiments on neurological disorder classification tasks, we demonstrate that the pro-
posed strategy significantly improves task performance on small-scale clinical datasets.
To explore the generalizability of the foundation model in downstream applications, we
then apply the model to an unseen TBI dataset for prediction of PTE using zero-shot
learning. Results further demonstrated the enhanced generalizability of our foundation
model.

© 2023 Elsevier B. V. All rights reserved.

1. Introduction

Deep learning based approaches have demonstrated suc-

cess in analyzing brain connectivity based on functional mag-

netic resonance imaging (fMRI) Gadgil et al. (2020); Ahmedt-
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Aristizabal et al. (2021), but the scarcity and heterogeneity of

fMRI data still pose challenges in clinical applications such as

predicting the future onset of Post-Traumatic Epilepsy (PTE)

from acute data acquired shortly after traumatic brain injury

(TBI) Akbar et al. (2022). Identification of subjects at high risk

of developing PTE can eliminate the need to wait for sponta-

neous epileptic seizures to occur before starting treatment and

enable the mitigation of risks to subjects whose seizures could
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result in serious injury or death. fMRI plays a vital role in

identifying biomarkers for PTE. The presence of lesions in TBI

patients can alter resting-state brain dynamics Palacios et al.

(2013). This will be reflected in fMRI data collected after in-

jury, which can therefore provide valuable biomarkers for PTE.

However, TBI datasets are usually characterized by high vari-

ability among subjects and limited numbers of subjects, pre-

senting a significant challenge for training of deep learning

methods to predict PTE. To tackle these challenges, we can em-

ploy a large pre-trained model. Developing a foundation model

pre-trained on large-scale datasets has been exceptionally suc-

cessful in natural language processing Radford et al. (2019)

and computer vision tasks Yu et al. (2023). Typically, founda-

tion models can generalize across domains and tasks, achieving

promising performance even in few-shot and zero-shot learning

scenarios. Foundation models are usually trained using a self-

supervised task Radford et al. (2019) involving extensive and

diverse datasets. In medical data, it is common to have a large

amount of healthy control data, while simultaneously facing a

scarcity of clinical data collected for any particular neurolog-

ical disorder. Simply aggregating all normal and clinical data

and applying self-supervised learning may cause limited gener-

alization and bias because of data imbalance and heterogeneity

in clinical features. This can in-turn lead to poor performance in

the group with clinical pathology Azizi et al. (2023). Since our

goal is to achieve superior performance on downstream clinical

tasks, it is crucial to learn how to generalize to useful clinical

features during the training of the foundation model.

To address the limited generalization, we adopt meta-

learning as a novel approach for developing foundation mod-

els that leverage features from large-scale normal datasets and

small-scale clinical datasets. Meta-learning has recently gained

tremendous attention because of its learning-to-learn mecha-

nism, which strongly increases the generalizability of models

across different tasks Zhang et al. (2019); Liu et al. (2020);

Finn et al. (2017) and has shown success in few-shot learn-

ing tasks. Meta-learning enhances the model’s generalization,

even when trained on smaller-scale datasets. One of the most

popular meta-learning algorithms, the Model Agnostic Meta-

Learning method (MAML) Finn et al. (2017), is a gradient-

based approach that uses a bi-level optimization scheme to en-

able the model to learn how to generalize on an unseen domain

during training. However, in the context of fMRI, the avail-

ability of diverse datasets is typically limited. Instead of learn-

ing to generalize from multiple source tasks to multiple target

tasks in MAML, Liu et al. (2020) propose a meta representa-

tion learning approach to learn generalizable features from one

source domain and improve the generalization to one target do-

main. To combine data acquired from healthy (control) popu-

lations with clinical data from patients, we consider a source

domain with abundant control data and a target domain with

limited clinical data during upstream training of the foundation

model. Through meta-learning Liu et al. (2020), the model is

enabled to generalize from control features to clinical features.

For downstream applications, we focus on a TBI/PTE dataset

characterized by extreme heterogeneity and scarcity of clinical

fMRIs, where traditional deep learning models often over-fit

and fail to generalize. Our goal is to apply the meta-learning

pre-trained model to this PTE dataset during downstream adap-

tation. By leveraging the learned generalization from normal to

clinical features, we aim to enhance the model performance on

this challenging clinical dataset.

Self-supervised learning has shown the ability to improve the

generalization of features in foundation models Ortega Caro

et al. (2023); Thomas et al. (2022); Azizi et al. (2023). In con-

trast to fully-supervised tasks such as classification or segmen-

tation, self-supervised tasks are typically designed to learn in-

trinsic features that are not specific to a particular task Taleb

et al. (2020). Contrastive self-supervised learning applied to

fMRI classification has demonstrated the ability to prevent

over-fitting on small medical datasets and address high intra-

class variances Wang et al. (2022). For our foundation model,

we apply contrastive self-supervised learning, known to be ef-

fective in representation learning Azizi et al. (2023), to the con-

trol data (the source domain in the meta-learning framework) to

learn more generalizable features.
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We propose a novel training strategy for the foundation

model: Meta Transfer of Self-supervised Knowledge (MeTSK),

which harnesses meta-learning to facilitate the transfer of self-

supervised features from large-scale control to scarce clinical

datasets. This training strategy is designed to enhance the foun-

dation model’s capacity to generalize from normal features to

clinical features, which will also facilitate the generalization to

new and unseen clinical features in downstream applications.

The proposed network architecture consists of a feature extrac-

tor that learns general features from both source (control) and

target (clinical) domains, and source and target heads to learn

domain-specific features for the source and target domain, re-

spectively. The bi-level optimization strategy is applied to learn

generalizable features using a Spatio-temporal Graph Convo-

lutional Network (ST-GCN) Gadgil et al. (2020) as the back-

bone model. To further validate the generalization improvement

achieved by MeTSK, we adopt domain similarity, representing

the least amount of work required to transform features into a

different domain, as our generalization metric. A larger domain

similarity implies that the features are more transferable. Our

experimental results demonstrate the effectiveness of MeTSK

on neurological disorder classification tasks by improving both

inter-domain and intra-domain generalization. This finding un-

derscores the potential of MeTSK in effectively bridging the

gap between normal and clinical datasets.

Beyond the typical approach of fine-tuning the entire founda-

tion model for downstream adaptation, linear probing is a cru-

cial method for evaluating the quality of features learned by

the foundation model Chen et al. (2020a); Kumar et al. (2022).

Linear probing involves freezing the parameters of a pre-trained

model and training a linear classifier on the output. The intu-

ition behind linear probing is that good features should be lin-

early separable between classes Chen et al. (2020a). For our

downstream application, we perform linear probing on the PTE

prediction task. We apply our foundation model trained using

MeTSK to directly generate features for the PTE fMRI data

without any fine-tuning. We then input these features to a lin-

ear classifier and achieved superior classification performance

compared to using functional connectivity features as input. In

summary, our contribution is two-fold:

• We propose a novel training strategy for developing a

foundation model for fMRI data by learning how to gener-

alize from control to clinical features;

• We address the heterogeneity and scarcity of clinical fMRI

data by improving the generalization of the model through

the integration of meta-learning and self-supervised learn-

ing.

2. Related Work

2.1. Foundation Models for fMRI

Foundation models pre-trained on large-scale data have

shown remarkable performance in tasks including image and

video generation Yu et al. (2023), speech recognition Ruben-

stein et al. (2023), and medical question answering Singhal

et al. (2023). Recently, Thomas et al. (2022) adapted sev-

eral prominent models in natural language processing includ-

ing BERT Devlin et al. (2018) and GPT Radford et al. (2019),

to learn the dynamics of brain activity in fMRIs. The mod-

els are trained on massive fMRI data from 11,980 experimental

scans of 1,726 individuals across 34 datasets. A self-supervised

task is adopted during training. The trained model is then

fine-tuned on benchmark mental state decoding datasets and

achieved improvements compared to the same model trained

from scratch. BrainLM Ortega Caro et al. (2023) is a recently

published foundation model for brain activity dynamics trained

on 6,700 hours of fMRI recordings. The model consists of a

Transformer-based Vaswani et al. (2017) masked auto-encoder

architecture adapted from BERT Devlin et al. (2018) and Vision

Transformer Dosovitskiy et al. (2020). During pre-training,

BrainLM incorporates a self-supervised task that predicts the

masked segments of time series in fMRI data, which is similar

to the pre-training task in Thomas et al. (2022). They fine-tuned

the model to predict metadata variables acquired from the UK

BioBank dataset Allen et al. (2014) and achieved superior per-

formance. In contrast to previous work that developed founda-

tion models for fMRI using extensive datasets comprising vast
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fMRI recordings, we propose a training strategy for a founda-

tion model with relatively limited data and focus on improving

the generalization of the model to downstream clinical applica-

tions.

2.2. Prediction of Post-Traumatic Epilepsy

Survivors of Traumatic Brain Injury (TBI) often experience

significant disability due to their injuries Parikh et al. (2007).

These injuries can lead to a range of physical and psycholog-

ical effects, with some symptoms appearing immediately and

others developing over time. Post-traumatic epilepsy (PTE)

refers to recurrent and unprovoked post-traumatic seizures oc-

curring after 1 week Verellen and Cavazos (2010). Identifying

individual prognostic markers for PTE is crucial Engel Jr et al.

(2013), as it can reduce the time and cost for TBI patients to

begin clinical trials and decrease the risk of severe injury or

death due to seizures. The prediction and prevention of PTE

development remains a significant challenge. Animal studies

in adult male Sprague-Dawley rats have shown the potential of

MRI-based image analysis in identifying biomarkers for PTE

Immonen et al. (2013); Pitkänen et al. (2016). These studies in-

dicate the involvement of the perilesional cortex, hippocampus,

and temporal lobe in PTE Pitkänen and Bolkvadze (2012). De-

spite progress, brain imaging is still not fully leveraged in PTE

biomarker research. Various human neuroimaging studies have

provided insights into TBI Dennis et al. (2016); Farbota et al.

(2012); Kim et al. (2008) and epilepsy Li et al. (2009); Mo et al.

(2019); Sollee et al. (2022), but fMRI-based PTE prediction is

limited.

Clinical and research studies in epilepsy often include both

anatomical (MRI, CT) and functional (PET, EEG, MEG, ECoG,

depth electrodes, fMRI) mapping. While epileptogenic zones

can be found in almost any location in the brain, the tempo-

ral lobe and the hippocampus are the most common sites caus-

ing focal epileptic seizures Sollee et al. (2022). Multimodal

MRI and PET imaging has been used to predict the laterality

of temporal lobe epilepsy Pustina et al. (2015); Sollee et al.

(2022). Extensive changes in brain networks due to epilepsy

were reported using PET, fMRI, and diffusion imaging Li et al.

(2009); Pitkänen et al. (2016); Pustina et al. (2015); Akrami

et al. (2021); Sollee et al. (2022). Recent studies employing

machine learning to identify potential PTE biomarkers Rocca

et al. (2019); Akrami et al. (2021, 2022) have primarily fo-

cused on pairwise correlation patterns in resting fMRI signals.

However, the heterogeneity of PTE functional activity and data

scarcity often lead to over-fitting and limited generalization in

deep-learning approaches. Here we similarly focus on the use

of only fMRI in PTE prediction, but with the novel use of a

foundation-model approach for this problem.

3. Methods

Here we introduce our proposed strategy, MeTSK, which im-

proves the generalization of self-supervised fMRI features from

a control dataset to a clinical dataset. Assume there exists a

source domain (healthy controls) S with abundant training data

XS and a target domain (clinical) T , where the training data

XT is limited. A feature extractor f (ϕ), a target head hT (θt),

and a source head hS(θs) are constructed to learn source fea-

tures hS( f (XS; ϕ); θs) as well as target features hT ( f (XT ; ϕ); θt),

where ϕ, θt, and θs are model parameters. The overall frame-

work of MeTSK and the foundation model pipeline is illustrated

in Fig. 1.

3.1. Feature Extractor: ST-GCN

We adopt a popular model for fMRI classification, ST-

GCN Gadgil et al. (2020), as the backbone architecture to ex-

tract graph representations from both spatial and temporal in-

formation. A graph convolution and a temporal convolution

are performed in one ST-GCN module shown in Fig. 2, fol-

lowing the details in Gadgil et al. (2020). The feature extrac-

tor includes three ST-GCN modules. The target head and the

source head share the same architecture, which consists of one

ST-GCN module and one fully-connected layer.

To construct the graph, we treat brain regions parcellated by

a brain atlas Glasser et al. (2016) as the nodes and define edges

using the functional connectivity between pairs of nodes mea-

sured by Pearson’s correlation coefficient Bellec et al. (2017).

We randomly sample sub-sequences from the whole fMRI time
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Head

Target
Head
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Meta-training
loss

Source
Domain

Self-supervised
Loss

Outer Loop Update

Meta-validation
loss

Target
Domain 

Meta-
training

Meta-
validation

MeTSK

Upstream
Downstream

Foundation
Model

Zero-shot    Features

ClassifierClassification
Results
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Fig. 1. An illustration of the proposed MeTSK strategy for upstream training and downstream applications. In MeTSK, two optimization loops are involved
in training. The inner loop only updates the target head, while the outer loop updates the source head and feature extractor. For downstream applications,
we directly apply the pre-trained foundation model without any fine-tuning and generate zero-shot features for the downstream dataset. The zero-shot
features are then used to train a simple classifier and generate final classification results.

series to increase the size of training data by constructing multi-

ple input graphs containing dynamic temporal information. For

each time point in each node, a feature vector of dimension Ci

is learned. So for the r-th sub-sequence sample from the n-

th subject, the input graph X(n,r)
i to the i-th layer has a dimen-

sion of P × L × Ci, where P is the number of brain regions or

parcels (nodes), L is the length of the sampled sub-sequence,

and C0 = 1 for the initial input. In ST-GCN, a graph convo-

lution Kipf and Welling (2016), applied to the spatial graph at

time point l in the i-th layer, can be expressed as follows.

X(n,r,l)
i+1 = D−1/2(A + I)D−1/2X(n,r,l)

i WCi×Ci+1 (1)

where A is the adjacency matrix consisting of edge weights de-

fined as Pearson’s correlation coefficients, I is the identity ma-

trix, D is a diagonal matrix such that Dii =
∑

j Ai j + 1, and W

is a trainable weight matrix. We then apply 1D temporal con-

volution to the resulting sub-sequence of features on each node.

A voting strategy is applied to combine predictions generated

from different sub-sequences.

3.2. Meta Knowledge Transfer

We introduce a bi-level optimization strategy to perform

gradient-based update of model parameters Finn et al. (2017);

Liu et al. (2020). The model first backpropagates the gradients

through the target head only in several fast adaptation steps,

and then backpropagates through the source head and feature

extractor. Each step in a nested loop is summarized as follows:

Outer loop (M iterations): Step 1. Initialize the target

head and randomly sample target meta-training set XTtr and

meta-validation set XTval from XT , where XTtr

⋂
XTval = ∅,

XTtr

⋃
XTval = XT .

Step 2. Inner loop (k update steps): Only target head pa-

rameters θt are updated using optimization objective LT (see

below) for the target task. The parameter α is the inner loop

learning rate, and θ j
t is the target head parameter at the j-th up-

date step.

θ
j+1
t = θ

j
t − α∇θ j

t
LT (hT ( f (XTtr ; ϕ

i); θ j
t )) (2)

Step 3: After the inner loop is finished, freeze the target

head and update feature extractor parameters ϕ and source head

parameters θs. The target loss LT and source loss LS are de-

fined in the following section. The parameter β is the outer loop

learning rate, and λ is a scaling coefficient.

{θi+1
s , ϕ

i+1} = {θis, ϕ
i} − β(∇θis,ϕiLS(hS( f (XS; ϕi); θis))

+∇ϕiλLT (hT ( f (XTval ; ϕ
i); θkt )))

(3)

The target head, source head and feature extractor are updated

in an alternating fashion. The target head is first trained on XTtr

in the inner loop. In the outer loop, the feature extractor and

source head are trained to minimize the generalization error of

the target head on an unseen set XTval as well as to minimize the

source loss. In this way, the feature extractor encodes features

beneficial for both domains and the source head extracts fea-

tures from the source domain that enable generalization to the

target domain.

3.3. Contrastive Self-supervised Learning

To further boost the generalizability of features, we apply

a graph contrastive loss You et al. (2020) to perform a self-
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Fig. 2. An illustration of the ST-GCN model architecture. Spatial graph convolution is first applied to the spatial graph at each time point. Then temporal
convolution performs 1D convolution along the resulting features on each node. Multiple sub-sequences are randomly sampled from the whole time series
as input graphs for training.

supervised task on the source domain. We randomly sample

sub-sequences X(n,r1), X(n,r2) (r1 , r2) from the whole fMRI

time series for subject n as the input graph features Gadgil

et al. (2020), which can be viewed as an augmentation of input

graphs for ST-GCN. X(n,r1) and X(n,r2) should produce similar

output graph features even though they contain different tem-

poral information. The graph contrastive loss enforces simi-

larity between graph features extracted from the same subject

and dissimilarity between graph features extracted from differ-

ent subjects Chen et al. (2020b), so that the model learns invari-

ant functional activity patterns across different time points for

the same subject and recognizes inter-subject variances. A co-

sine similarity is applied to measure the similarity in the latent

graph feature space You et al. (2020).

LS =
1
N

N∑
n=1

− log
exp (sim(X̃S, n, n)/τ)∑N

m=1,m,n exp (sim(X̃S, n,m)/τ)
(4)

sim(X, n,m) =
(X(n,r1))⊤X(m,r2)

∥X(n,r1)∥ · ∥X(m,r2)∥
(5)

where X̃S = hS( f (XS; ϕ); θs) is the generated graph representa-

tion, τ is a temperature hyper-parameter, and N is the total num-

ber of subjects in one training batch. By minimizing the graph

contrastive loss on the source domain, the model produces con-

sistent graph features for the same subject and divergent graph

features across different subjects, which may be related to latent

functional activities that reveal individual differences, and such

features are generalizable across domains.

The optimization objective LT of the target domain depends

on the target task. In a classification task with class labels YT ,

we adopt the Cross-Entropy loss. The total loss for the proposed

strategy, MeTSK, is

Lmeta = LS + λLT

LT = −
∑

classes

YT log(hT ( f (XT ; ϕ); θt))
(6)

3.4. Domain Similarity

To evaluate the generalization of learned features, we mea-

sure the distance between features extracted from differ-

ent domains using domain similarity Cui et al. (2018); Oh

et al. (2022). We first compute the Earth Mover’s Distance

(EMD) Yu and Herman (2005), which is based on the so-

lution to the Monge-Kantorovich problem Rachev (1985), to

measure the cost of transferring features from the source to

target domain. We define X̄S = Flatten(
1
N
∑N

n=1 X̃S), X̄T =

Flatten(
1
N
∑N

n=1 X̃T ) as the flattened vectors of the output graph

features averaged over all subjects, and then define Bs and Bt

as the set of bins in the histograms representing feature distri-

bution in X̄S and X̄T , respectively. Domain similarity (DS) is

defined in Eq. 7 and Eq. 8. A larger domain similarity indicates

better transferability and generalizability from the source do-

main to the target domain because the amount of work needed

to transform source features into target features is smaller.

DS = exp (−γEMD(X̄S, X̄T )) (7)
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EMD(X̄S, X̄T ) =

∑|Bs |

i=1
∑|Bt |

j=1 fi, jdi, j∑|Bs |

i=1
∑|Bt |

j=1 fi, j
,

s.t. fi j ≥ 0,
|Bt |∑
j=1

fi j ≤
|X̄S ∈ Bs(i)|
|X̄S|

,

|Bs |∑
i=1

fi j ≤
|X̄T ∈ Bt( j)|
|X̄T |

,

|Bs |∑
i=1

|Bt |∑
j=1

fi j = 1

(8)

where Bs(i) is the i-th bin of the histogram and |Bs| is the to-

tal number of bins, |X̄S ∈ Bs(i)| is the number of features in

Bs(i), |X̄S| is the total number of features, di, j is the Euclidean

distance between the averaged features in Bs(i) and Bt( j), fi, j

is the optimal flow for transforming Bs(i) into Bt( j) that mini-

mizes the EMD. Following the setting in Cui et al. (2018), we

set γ = 0.01.

4. Datasets

In this section, we introduce the datasets used to build the

foundation model. The HCP Van Essen et al. (2013) and

ADHD Bellec et al. (2017) datasets described below are used

during the upstream training of the foundation model, the

ABIDE dataset Craddock et al. (2013) is used in the ablation

study of the proposed MeTSK strategy. We then introduce the

PTE dataset that is used for evaluation of downstream perfor-

mance.

4.1. Foundation Model Datasets

HCP dataset: The healthy control data for the foundation

model is drawn from the Human Connectome Project (HCP)

S1200 dataset Van Essen et al. (2013). The HCP database in-

cludes 1,096 young adult (ages 22-35) subjects with resting-

state-fMRI data collected at a total of 1200 time-points per ses-

sion. The preprocessing of fMRI follows the minimal prepro-

cessing procedure in Gadgil et al. (2020); Glasser et al. (2013).

Finally, the brain was parcellated into 116 Regions of Inter-

est (ROIs) using the Automated Anatomical Labeling (AAL)

atlas in Tzourio-Mazoyer et al. (2002). The AAL atlas was

defined based on brain anatomy. It divides the brain into 116

regions, including 90 cerebrum regions and 26 cerebellum re-

gions. These 116 regions form the nodes of our graph. The

fMRI data were reduced to a single time-series per node by av-

eraging across each ROI.

ADHD-Peking: The Attention-Deficit/Hyperactivity Disor-

der (ADHD-200) consortium data from the Peking site Bellec

et al. (2017) includes 245 subjects in total, with 102 ADHD

subjects and 143 Typically Developed Controls (TDC). To in-

vestigate the scenario where clinical data is scarce, we use only

the subset of the larger ADHD database that was collected

from the Peking site. We use the preprocessed data released

on (http://preprocessed-connectomes-project.org/

adhd200/). During preprocessing, the initial steps involve dis-

carding the first four time points, followed by slice time and

motion correction. The data is then registered to the Montreal

Neurological Institute (MNI) space, processed with a bandpass

filter (0.009Hz - 0.08Hz), and smoothed using a 6 mm Full

Width at Half Maximum (FWHM) Gaussian filter. The fMRI

data consisted of 231 time points after preprocessing. As a fi-

nal step, the ADHD-Peking data were re-registered from MNI

space to the same AAL atlas as for the HCP subjects, and the

average time-series computed for each ROI.

ABIDE-UM: The Autism Brain Imaging Data Exchange

I (ABIDE I) Craddock et al. (2013) collects resting-

state fMRI from 17 international sites. Similar to the

ADHD dataset, we use only the subset of data from

the UM site, which includes 66 subjects with Autism

Spectrum Disorder (ASD) and 74 TDCs (113 males and

27 females aged between 8-29). We downloaded the

data from http://preprocessed-connectomes-project.

org/abide/, where data was pre-processed using the C-PAC

pre-processing pipeline Craddock et al. (2013). The fMRI data

underwent several preprocessing steps: slice time correction,

motion correction, and voxel intensity normalization. The data

was then band-pass filtered (0.01–0.1 Hz) and spatially regis-

tered to the MNI152 template space using a nonlinear method.

All fMRIs have 296 time points. As a final step, the ABIDE-

UM data were re-registered from MNI space to the same AAL

http://preprocessed-connectomes-project.org/adhd200/
http://preprocessed-connectomes-project.org/adhd200/
http://preprocessed-connectomes-project.org/abide/
http://preprocessed-connectomes-project.org/abide/
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atlas as for the HCP subjects, and the average time-series com-

puted for each ROI.

4.2. Downstream Clinical PTE Dataset

We use the Maryland TBI MagNeTs dataset Gullapalli

(2011) for downstream performance evaluation. All subjects

suffered a traumatic brain injury. Of these we used acute-phase

(within 10 days of injury) resting-state fMRI from 36 subjects

who went on to develop PTE and 36 who did not Gullapalli

(2011); Zhou et al. (2012). The dataset was collected as a part

of a prospective study that includes longitudinal imaging and

behavioral data from TBI patients with Glasgow Coma Scores

(GCS) in the range of 3-15 (mild to severe TBI). The individual

or group-wise GCS, injury mechanisms, and clinical informa-

tion is not shared. The fMRI data are available to download

from FITBIR (https://fitbir.nih.gov). In this study, we

used fMRI data acquired within 10 days after injury, and seizure

information was recorded using follow-up appointment ques-

tionnaires. Exclusion criteria included a history of white mat-

ter disease or neurodegenerative disorders, including multiple

sclerosis, Huntington’s disease, Alzheimer’s disease, Pick’s dis-

ease, and a history of stroke or brain tumors. The imaging was

performed on a 3T Siemens TIM Trio scanner (Siemens Medi-

cal Solutions, Erlangen, Germany) using a 12-channel receiver-

only head coil. The age range for the epilepsy group was 19-65

years (yrs) and 18-70 yrs for the non-epilepsy group.

Pre-processing of the MagNeTs rs-fMRI data was per-

formed using the BrainSuite fMRI Pipeline (BFP) (https:

//brainsuite.org). BFP is a software workflow that pro-

cesses fMRI and T1-weighted MR data using a combination of

software that includes BrainSuite, AFNI, FSL, and MATLAB

scripts to produce processed fMRI data represented in a com-

mon grayordinate system that contains both cortical surface ver-

tices and subcortical volume voxels Glasser et al. (2013). As

described above, the pre-processed data were then mapped to

the same AAL atlas as used with the other datasets. Regional

time-series were then generated for each of the 116 parcels by

averaging over the corresponding region of interest.

5. Experiments and Results

5.1. Upstream Results

We first trained the foundation model using the proposed

MeTSK strategy on the HCP data (healthy controls) and

ADHD-Peking data (clinical data). To investigate the effective-

ness of MeTSK, we designed an experiment for an upstream

task that performs ADHD v.s. TDC classification. We evaluate

different strategies and compare their effectiveness in enhancing

the generalization from a healthy dataset to a clinical dataset.

For comparison, we designed (i) a baseline model using a

ST-GCN with a supervised task directly trained on the ADHD-

Peking data (Baseline),(ii) a ST-GCN model fine-tuned on

ADHD-Peking data after pre-training on HCP data (FT), (iii) a

model performing multi-task learning on HCP data and ADHD-

Peking data simultaneously (MTL), and (iv) the proposed strat-

egy, MeTSK. We incorporated MTL and FT methods for com-

parison in order to investigate whether MeTSK is superior to

traditional approaches in terms of generalization to ADHD data.

For the MTL implementation, we simply remove the inner loop

in MeTSK and use all the training data to update the target head.

Both heads and the feature extractor are updated simultaneously

in one loop. We compared several baseline methods: a Lin-

ear Support Vector Machine (SVM), a Random Forest Classi-

fier (RF), a Multi-Layer Perceptron (MLP) consisting of three

linear layers, an LSTM model for fMRI analysis Gadgil et al.

(2020), and a model combining a transformer and graph neural

network (STAGIN) Kim et al. (2021). For the SVM, RF, and

MLP, the inputs are flattened functional connectivity features,

calculated using the Pearson’s correlation coefficient between

fMRI time-series across pairs of brain regions defined in the

AAL atlas. LSTM and STAGIN, on the other hand, utilize raw

fMRI time-series as their input.

We use 5-fold cross-validation to split training/testing sets

on ADHD-Peking data and use all HCP data for training. For

meta-learning, the ADHD training set in each fold is further

divided into a meta-training set XTtr of 157 subjects and a meta-

validation set XTval of 39 subjects. Model performance is eval-

uated on the test ADHD data set using the average area-under-

https://fitbir.nih.gov
https://brainsuite.org
https://brainsuite.org
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Table 1. A comparison of mean AUCs and ACCs of 5-fold cross-validation on ADHD data using different methods: baseline, fine-tuning, multi-task
learning, the proposed strategy MeTSK, and other baseline methods.

Method HCP ADHD-Peking AUC ACC
SVM ✗ ✓ 0.6182 ± 0.0351 0.6086 ± 0.0412
RF ✗ ✓ 0.6117 ± 0.0503 0.6102 ± 0.0564
MLP ✗ ✓ 0.6203 ± 0.0468 0.6092 ± 0.0507
LSTM Gadgil et al. (2020) ✗ ✓ 0.5913 ± 0.0510 0.5652 ± 0.0539
STAGIN Kim et al. (2021) ✗ ✓ 0.5638 ± 0.0468 0.5279 ± 0.0511
Baseline (ST-GCN) ✗ ✓ 0.6215 ± 0.0435 0.6171 ± 0.0556
FT ✓ ✓ 0.6243 ± 0.0483 0.6367 ± 0.0501
MTL ✓ ✓ 0.6518 ± 0.0428 0.6316 ± 0.0513
MeTSK (ours) ✓ ✓ 0.6981 ± 0.0409 0.6775 ± 0.0443

the-ROC-curve (AUC) and classification accuracy (ACC) as

evaluation metrics as shown in Table 1. MeTSK achieved the

best mean AUC of 0.6981, which is a significant improve-

ment compared to the baseline model trained only on ADHD

data. MeTSK also surpassed the performance of fine-tuning and

multi-task learning, providing evidence for overcoming limited

generalization. The results from upstream training demonstrate

that the MeTSK strategy possesses a clear capability to enhance

generalization from healthy data to clinical data.

5.2. Downstream Results on PTE Dataset

For the downstream application we performed zero-shot

evaluation on the PTE dataset. This involved initially extracting

features from the PTE dataset using the pre-trained foundation

model without any further fine-tuning. These extracted features

are “zero-shot” features, as they are generated directly from

the model trained on different datasets. Subsequently, we input

these zero-shot features into a classifier to differentiate between

PTE and non-PTE subjects, thereby assessing the model’s abil-

ity to generalize and apply learned patterns to the downstream

clinical applications.

Training a foundation model with only self-supervised learn-

ing is a typical approach. To compare different pre-training

strategies for the foundation model, we also pre-trained a ST-

GCN model on both HCP and ADHD-Peking datasets using

only the proposed contrastive self-supervised learning (SSL).

From this pre-trained SSL model, we again generated zero-

shot features for PTE data. We also compared our proposed

foundation model to a large pre-trained fMRI model, as de-

tailed in Thomas et al. (2022). This model involves pre-

training a Generative Pretrained Transformer (GPT) Radford

et al. (2019) on extensive datasets comprising 11,980 fMRI runs

from 1,726 individuals across 34 datasets. During pre-training,

the GPT model performs a self-supervised task to predict the

next masked time point in the fMRI time-series. Their pre-

trained model is publicly available at https://github.com/

athms/learning-from-brains. We directly applied their

pre-trained model to generate zero-shot PTE features.

Finally, we compare the zero-shot features generated from

different foundation models with functional connectivity fea-

tures extracted from raw fMRI data. We employed the same

machine learning classifiers as used in the upstream experi-

ments, including a linear SVM, RF, and MLP. The same 5-fold

cross-validation was applied and AUCs for PTE v.s. non-PTE

classification were computed.

The zero-shot features generated by the foundation model

pre-trained using the MeTSK strategy achieved the best perfor-

mance among all features in every classifier, as shown in Table

2, indicating superior generalization of the foundation model on

the heterogeneous PTE dataset. The zero-shot features gener-

ated by the SSL model also achieved better performance than

functional connectivity features, owing to the generalizable

knowledge learned from upstream datasets. However, Thomas

et al. (2022) achieved the worst performance, possibly because

this pre-trained model needs further fine-tuning to boost its op-

timal performance. Notably, the best performance achieved by

Linear SVM suggests that these zero-shot features are linearly

separable. This outcome not only demonstrates MeTSK’s abil-

https://github.com/athms/learning-from-brains
https://github.com/athms/learning-from-brains
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ity to produce discriminative features for an unseen dataset like

PTE but also highlights its potential in enhancing feature learn-

ing for clinical diagnostic purposes.

To gain further insights and improve the interpretability of

the zero-shot PTE features from MeTSK, we computed a fea-

ture importance map derived from the positive SVM coeffi-

cients. In a linear SVM, each feature in each ROI is assigned

a coefficient, indicating its significance in the decision-making

process of the model. The higher the absolute value of a coef-

ficient, the more impact that feature has on the model’s predic-

tions. We derived the coefficients for features of each ROI from

the trained SVM and visualized these coefficients in the form of

a feature importance map overlaid on the brain, which is shown

in Fig. 3. Through observing the feature importance map, we

can identify and interpret the most significant brain regions for

PTE classification, which are mainly located in the temporal

lobe. Given that epilepsy most commonly occurs in the tem-

poral lobe, these significant brain regions identified from the

zero-shot features offers potentially meaningful insights into the

prediction of PTE. Interestingly, the other areas of high feature

importance are in primary sensory (visual and somatomotor)

regions.

5.3. Implementation Details

Upstream: To optimize model performance, we follow the

training setting in Gadgil et al. (2020) for the ST-GCN model.

We generate one meta-training batch by randomly selecting an

equal number of samples from each class. The batch size is

32, both for the meta-training and the meta-validation set. We

use an Adam optimizer Kingma and Ba (2014) with learning

rate β = 0.001 in the outer loop, and an SGD optimizer Ketkar

(2017) with learning rate α = 0.01 in the inner loop. The num-

ber of inner loop update steps is 25. We set the hyper-parameter

λ = 30 and the temperature parameter τ = 30 to adjust the scale

of losses following Liu et al. (2020); You et al. (2020). Since

contrastive loss converges slowly Jaiswal et al. (2020), a warm-

up phase is applied to train the model only on HCP data using

the graph contrastive loss for the first half of total training steps.

Downstream: We use the pre-trained feature extractor for

generating zero-shot features. The generated features are graph-

level representations, having a two dimensional feature matrix

at each node (brain region). We averaged the features along

the first dimension and applied Pinciple Component Analysis

(PCA) to reduce the dimensionality before feeding the features

into classifiers. The MLP used in the experiments consists of

three linear layers, with hidden dimensions of 32, 16, 16. The

SSL model trained on both HCP and ADHD-Peking data used

the same contrastive loss. In our comparative analysis with

another foundation model for fMRI Thomas et al. (2022), we

flatten the brain signals at each time-point and input the whole

time-series without masking into the pre-trained GPT model.

This generates a feature embedding for each time-point, which

is then averaged within each time-point and fed into classifiers.

We follow the other detailed settings of the pre-trained GPT

model in Thomas et al. (2022). We ran 100 iterations of strati-

fied cross-validation on the PTE data for each method.

6. Ablation Study and Generalization Analysis

6.1. Experiments on ABIDE-UM

To investigate the robustness of our proposed pre-training

strategy, MeTSK, across various clinical datasets, we also con-

ducted experiments using the ABIDE-UM dataset as the tar-

get clinical dataset during upstream training. The same meth-

ods were compared and same experimental settings were ap-

plied to the ABIDE-UM data as for ADHD-Peking. We per-

formed ASD v.s. TDC binary classification using the same 5-

fold cross-validation. As shown in Fig. 4, the performance on

the ABIDE-UM dataset aligns with our findings for the ADHD-

Peking dataset, with MeTSK consistently achieving the high-

est mean AUC among all compared methods. The results on

ABIDE-UM illustrate MeTSK’s applicability in different clini-

cal datasets. When the downstream clinical task shares more

similarities with ASD features or other clinical features, the

training strategy of the foundation model can be adjusted to

leverage different clinical features, demonstrating the flexibil-

ity of MeTSK in accommodating varying clinical datasets.
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Table 2. Downstream results using 5-fold cross-validation: Mean and std of AUCs for PTE classification using zero-shot features generated from different
foundation models as well as functional connectivity features.

Zero-shot Features Connectivity Features
MeTSK SSL Thomas et al. (2022)

SVM 0.6415 ± 0.0312 0.5972 ± 0.0492 0.5369 ± 0.0451 0.5697 ± 0.0477
RF 0.5392 ± 0.0553 0.5253 ± 0.0486 0.4814 ± 0.0664 0.5081 ± 0.0612
MLP 0.5813 ± 0.0504 0.5216 ± 0.0329 0.5278 ± 0.0643 0.5111 ± 0.0402

Fig. 3. Feature importance map of zero-shot PTE features shown as color-coded ROIs overlaid on the AAL atlas.
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Fig. 4. AUCs of 5-fold cross-validation on the ABIDE-UM dataset: a comparison of baseline (ST-GCN), fine-tuning (FT), multi-task learning (MTL), and
other baseline methods.
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6.2. Ablation Study of MeTSK

We examine the individual contributions of self-supervised

learning and meta-learning to the model performance during

upstream training on both target clinical datasets (ADHD-

Peking, ABIDE-UM) in this section. To explore the effect of

meta-learning, we designed an experiment using only the tar-

get (clinical) dataset in meta-learning (MeL). This approach

involves removing the source head and the source loss during

bi-level optimization. The target head is first trained on the

ADHD/ABIDE meta-training set in the inner loop, followed by

feature extractor learning to generalize on a held-out validation

set in the outer loop. Our results, as shown in the last two rows

of Table 3, reveal that the mean AUC improved from 0.6215

to 0.6562 for ADHD classification, and from 0.6085 to 0.6675

for ASD classification without source domain knowledge. This

finding is consistent with an increased generalization achieved

by meta-learning on the clinical datasets.

Furthermore, to assess the contribution of self-supervised

learning, we compared the impact of using a self-supervised

task versus a sex classification task on the HCP dataset. Fine-

tuning, multi-task learning, and MeTSK were implemented us-

ing sex classification (female vs male) as the source task. The

same 5-fold cross-validation method was applied to compare

the average AUC. As detailed in Table 3, all three methods:

FT, MTL, and MeTSK, showed a degraded performance when

transferring knowledge from the sex classification task. This

suggests that the sex-related features of the brain may be less

relevant to ADHD/ASD classification, negatively affecting the

model’s performance.

6.3. Generalization Analysis Using Domain Similarity

To further investigate the generalization enabled by MeTSK,

domain similarity was computed to evaluate the generalizabil-

ity from control data (source) to clinical data (target) as well

as from the training set to the testing set of target data. We

conducted domain similarity analysis on both ADHD-Peking

and ABIDE-UM datasets to further validate the robustness and

versatility of MeTSK. Fig. 5 illustrates that the self-supervised

source features have a higher similarity with the target fea-

tures, indicating better inter-domain generalizability and thus

improved performance on the target classification task. More-

over, compared to the baseline, both intra-ADHD-class/intra-

ASD-class and intra-TDC-class domain similarities between

the training and testing sets of ADHD/ABIDE data are in-

creased by MeL. This enhancement provides evidence to ex-

plain the improved classification performance on training with

only target data achieved by meta-learning. By applying meta-

learning, not only the inter-domain generalization of features

is boosted, but also the effect of heterogeneous data within the

same domain is alleviated.

7. Discussion and Conclusion

Our proposed strategy opens up new possibilities for en-

abling data-efficient generalization to downstream applications

and handling extremely heterogeneous and scarce datasets that

eluded traditional deep-learning approaches. According to Ku-

mar et al. (2022), fine-tuning can distort good pre-trained fea-

tures and degrade downstream performance under large distri-

bution shifts. So unlike the common fine-tuning methods used

in other foundation model approaches for fMRI analysis Or-

tega Caro et al. (2023); Thomas et al. (2022), we explored

zero-shot features and linear probing for downstream adapta-

tion, which achieved superior performance on the challenging

PTE prediction task. Despite the improvements achieved, ex-

citing future work still remains to be explored. We trained the

foundation model on one healthy control dataset and one clini-

cal dataset, an approach that is sensitive to the cost of data col-

lection and expert annotation. Without these constraints, multi-

ple datasets could be combined to learn generalizable functional

activity patterns from a diverse span of subjects and clinical

conditions.

To tackle the heterogeneity and scarcity of fMRI data, we

propose a novel training strategy for developing a foundation

model by learning from both clinical and healthy fMRI data.

We integrate meta-learning with self-supervised learning to im-

prove the generalization from normal features to clinical fea-
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Table 3. Ablation study on ADHD-Peking and ABIDE-UM dataset. The FT, MTL, and MeTSK methods are compared for two cases - transferring features
from (i) a self-supervised source task and (ii) a sex classification source task, respectively. The last two rows are models trained only on target clinical data:
a meta-learning model without source task and a baseline model.

Dataset ADHD-Peking ABIDE-UM
Source Task Self-supervision Sex Classification Self-supervision Sex Classification
FT 0.6213 ± 0.0483 0.6150 ± 0.0497 0.6368 ± 0.0454 0.6071 ± 0.0742
MTL 0.6518 ± 0.0428 0.6377 ± 0.0512 0.6345 ± 0.0663 0.6240 ± 0.0711
MeTSK 0.6981 ± 0.0409 0.6732 ± 0.0579 0.6967 ± 0.0568 0.6786 ± 0.0749
MeL 0.6562 ± 0.0489 0.6675 ± 0.0505
Baseline 0.6215 ± 0.0435 0.6051 ± 0.0615
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Fig. 5. A comparison of the domain similarity between HCP self-supervised features (HCP-SSL, from Baseline ST-GCN trained on HCP data with a
self-supervised task) and ADHD/ASD classification features (ADHD-CLS, ABIDE-CLS, from Baseline trained using all ADHD/ABIDE data), the domain
similarity between HCP sex classification features (HCP-CLS, from Baseline trained on HCP data with a sex classification task) and ADHD-CLS/ABIDE-
CLS, the intra-class (ADHD; TDC and ASD; TDC) domain similarities between training and testing set of ADHD/ASD data from Baseline and MeL (a
meta-learning model trained only on target data), respectively.

tures during upstream training, and thus enhance the general-

ization to other unseen clinical features in a downstream task

for predicting post-traumatic epilepsy. Specifically, we perform

a self-supervised task on the healthy control dataset and apply

meta-learning to transfer self-supervised knowledge to the clin-

ical dataset. To explore the generalizability of the foundation

model to a post-traumatic epilepsy (PTE) dataset, we compared

zero-shot features generated by different foundation models for

PTE classification. The features from MeTSK demonstrated the

best performance. Additionally, the interpretation of the zero-

shot PTE features may contribute to our understanding of PTE,

offering insights into the identification of PTE via functional

brain activity patterns in different brain regions. To summarize,

the improved generalization of our foundation model in predict-

ing PTE is attributed to: (i) the application of meta-learning,

which bolsters the model’s generalization to clinical features,

and (ii) the use of self-supervised features that are inherently

more task-agnostic and more generalizable.
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