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Abstract: FAT10, which is also known as diubiquitin, has been implicated to play important roles in
immune regulation and tumorigenesis. Its expression is up-regulated in the tumors of Hepatocellular
Carcinoma (HCC) and other cancer patients. High levels of FAT10 in cells have been shown to result in
increased mitotic non-disjunction and chromosome instability, leading to tumorigenesis. To evaluate
whether the aberrant up-regulation of the FAT10 gene in the tumors of HCC patients is due to
mutations or the aberrant methylation of CG dinucleotides at the FAT10 promoter, sequencing and
methylation-specific sequencing of the promoter of FAT10 was performed. No mutations were found
that could explain the differential expression of FAT10 between the tumor and non-tumorous tissues
of HCC patients. However, six single nucleotide polymorphisms (SNPs), including one that has not
been previously reported, were identified at the promoter of the FAT10 gene. Different haplotypes
of these SNPs were found to significantly mediate different FAT10 promoter activities. Consistent
with the experimental observation, differential FAT10 expression in the tumors of HCC patients
carrying haplotype 1 was generally higher than those carrying haplotype II. Notably, the methylation
status of this promoter was found to correlate with FAT10 expression levels. Hence, the aberrant
overexpression of the FAT10 gene in the tumors of HCC patients is likely due to aberrant methylation,
rather than mutations at the FAT10 promoter.

Keywords: FAT10; promoter; SNPs; expression; methylation

1. Introduction

FAT10, which is sometimes referred to as diubiquitin, was initially identified as one of the genes
at the major histocompatibility complex locus in human chromosome 6 [1]. It is an 18 kDa protein
and belongs to the ubiquitin-like modifiers (UBLs) family of proteins sharing 29% and 36% identity
with ubiquitin at the N-terminus and C-terminus, respectively. FAT10 was suggested to function in a
similar way as ubiquitin [2], in that it can act as a proteinaceous tag and target proteins for degradation
by the 26S proteasome via attaching itself to that protein [3]. Three types of enzymes, namely E1, E2,
and E3, are required for ubiquitination at three different steps. The similar process for FAT10 is called
FAT10ylation, in which UBA6 and UBE3Z or USE1 act as the E1 and E2 enzyme. The E3 enzyme for
FAT10 remains unknown [4,5]. Unlike ubiquitin, which is recycled from the degraded target proteins,
FAT10 was reported to be degraded together with its target, resulting in a relatively short half-life [3].
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Eukaryotic elongation factor 1A1 (eEF1A1) and UBE1 are examples for FAT10ylation, which will lead
to their proteasomal degradation [6,7]. It was also found that the degradation of FAT10 can be further
accelerated by its binding to the NEDD8 ultimate buster 1 long (NUB1L) protein [8], FAT10 forms a
thioester with E1-L2, and E1-L2 is necessary for FAT10 conjugation in cells [9].

An in vivo study found that FAT10 ‘knock-out’ mice displayed minimal phenotypic changes.
However, these mice are more sensitive to endotoxin challenge, and their lymphocytes are more
susceptible to spontaneous apoptotic death [10]. Interestingly, a recent study reported that FAT10
knock-out mice have a longer overall lifespan and an elevated metabolic rate. There was a preferential
use of fat for these mice, reduced circulating glucose and insulin levels, and an enhanced insulin
sensitivity in metabolic tissues [11].

FAT10 has been implicated to play important roles in immune regulation and tumorigenesis.
The cytokines IFN-γ and TNF-α were reported to up-regulate the expression of the FAT10
gene [1,12–14]. The FAT10 gene was also found to be up-regulated in the tumors of several cancers,
including gastrointestinal and gynecological cancers [15]. In cells expressing high levels of the FAT10
protein [16] or induced by IFN-γ and TNF-α [14], increased mitotic non-disjunction and chromosome
instability was observed, leading to tumorigenesis/malignancy [17]. Significantly, the interaction
between FAT10 and MAD2 was found to be important for malignancy [17]. The drug silibinin
was found to down-regulate FAT10, modulating IFN-γ/TNF-α-induced chromosome instability
and sensitivity to apoptosis [18]. Interestingly, FAT10 was reported to modify and up-regulate
the transcriptional activity of p53, the key guardian of the genome that plays an important role
in tumorigenesis [19].

Genetic variation at the 5’UTR and coding region of the FAT10 gene was reported [20] to be
associated with differential risk of Hepatocellular Carcinoma (HCC) in China.

The expression of the FAT10 gene was reported to be regulated by p53 [21] during the cell cycle [22].
The role of FAT10 in tumorigenesis is thus implicated by the observation of an abnormally high
expression of FAT10 in the tumors of several cancers [15], as well as increased mitotic non-disjunction
and chromosome instability in cells expressing high levels of FAT10 [16]. There have also been findings
that its expression is cell-cycle controlled [22] and positively regulated by TNF-α, a presumptive tumor
promoter [3,23], but negatively regulated by p53 [21], the “guardian-of-the-genome” [24].

As the overexpression of FAT10 results in increased chromosome instability and plays a role in
oncogenesis, elucidating the mechanism behind its aberrant expression in the tumors of HCC patients
will facilitate the design of strategies to prevent its aberrant overexpression. We hypothesize that
aberrant up-regulation of the FAT10 gene in HCC tumor tissues may be a result of mutations or
aberrant methylation at the FAT10 promoter.

Mutations within the promoters of genes have been shown to result in the overexpression
of several genes in cancer cells. For example, a mutation of the CDE/CHR (cell cycle-dependent
element/cell cycle genes homology region) repressor elements at the survivin promoter was found to
result in the overexpression of survivin in some cancer cells [25]. Similarly, mutations of the hMSH2
gene in suspected cases of hereditary nonpolyposis colorectal cancer (HNPCC) and sporadic early
onset colorectal cancer patients were found to affect its promoter activity as well as the transcription
start site and the transcriptional factor binding site, resulting in a novel DNA-protein complex [26].
Hotspot mutations in the Telomerase reverse transcriptase (TERT) promoter gene, occurring in 15% of
patients with malignant pleural mesothelioma (MPM), was reported to up-regulate TERT in MPM [27].

Aberrant methylation at the promoters of genes may also account for the aberrant expression
of the genes involved in the tumorigenesis process. The hypermethylation of CG (CpG) islands in
the promoters of cancer-related genes is often associated with transcriptional inactivation [28–30].
Numerous publications demonstrated the involvement of DNA methylation in the silencing of
tumor-suppressor genes [31–35]. Nonetheless, numerous other studies have also documented the
reduced methylation of proto-oncogene promoter regions, suggesting a role for DNA hypomethylation
in the activation of proto-oncogenes [36–39].
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Since FAT10 is aberrantly overexpressed in the tumors of HCC and other cancer patients [15],
this study aims to evaluate whether the dysregulation of FAT10 expression in the tumor tissues of
HCC patients is due to mutations or aberrant methylation at the FAT10 promoter region 2.

2. Materials and Methods

2.1. Human Samples

All of the human samples were obtained in accordance with the guidelines and the approval
from the Institutional Review Board (IRB) of the National Cancer Centre of Singapore (NCCS) or the
Singapore General Hospital (SingHealth CIRB 2006/442/B).

2.2. Study Design

Figure 1 illustrates the design of this study.
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Figure 1. Study Design. Workflow of the project is presented, including the source of the patient
samples and the techniques employed.

2.3. Identification of Mutations/Polymorphisms at the FAT10 Gene Locus

A region of 1379 bp (−1066 upstream and +313 downstream of the transcriptional start site) of the
FAT10 promoter was sequenced to screen for mutations or polymorphisms in the tumor and adjacent
non-tumorous liver tissues from 37 HCC patients and 39 DNA samples from healthy people in the
Singapore Chinese population with informed consent from the patients/volunteers and prior approval
from the NCCS Institutional Review Board (SingHealth CIRB Ref 2006/442/B). This region of the
promoter was selected, as it conferred the maximum promoter activity [21].

In addition, we sequenced the same region in the lymphoblastoid cell lines from three global
populations, including 37 Chinese (CH), 31 European-American (EA), and 32 African-American
(AA) from American Type Culture Collection (ATCC). Genomic DNA was isolated using the
DNeasyTM Tissue Kit (QIAGEN, Singapore). Primers for sequencing the 1379 bp fragment of the
FAT10 promoter were designed according to the reference sequence AL031983 from Genbank using
Primer Premier version 5.00 (Premier Biosoft International, Palo Alto, CA, USA). The primers used
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were F-5'ACTAATAGAGGTGGTTCCTTA (forward primer) and R-5′ CTCTCCCCAACTCTTGAAAGT
(reverse primer). PCR reaction was carried out as follows: 95 ◦C for 15 min, then 30 cycles at 94 ◦C
for 30 s, followed by 55 ◦C for 45 s and an extension at 72 ◦C for 1 min, followed by a final extension
at 72 ◦C for 5 min. Sequencing was performed using the ABI PRI 3100 Genetic Analyzer (Applied
Biosystems, Singapore).

To identify somatic mutations, genetic variants of the tumor and adjacent non-tumorous liver
tissues were compared. Polymorphisms were identified by comparing genetic variants in HCC patients
versus healthy, Singaporean Chinese population controls. Haplotype frequencies were estimated using
the program Arlequin [40], which is based on the expectation maximization (EM) algorithm [41].

To evaluate the functionality of mutations/SNPs at the FAT10 promoter region, PCR site-directed
mutagenesis as previously described [42] was employed to mutate the putative specific sites according
to the haplotypes inferred for the HCC patients and non-HCC individuals using primers as shown
in Figure 2. The PCR fragments with different mutated sites to represent the different haplotypes
were inserted into a linearized vector where the various polymorphs of the FAT10 promoter drive the
β-galactosidase (β-gal) reporter gene and the CMV promoter drives the enhanced green fluorescent
protein (EGFP) gene to normalize for differences in promoter activity [21]. FAT10 promoter activity
was analyzed as described previously [21]. All constructs were verified by sequencing to exclude
PCR-induced nucleotide misincorporations prior to use.
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2.4. Determination of FAT10 Gene Expression in HCC Patients

Total cellular RNA was isolated from 13 HCC patients using an RNeasy mini-kit (Qiagen).
The quantitation of FAT10 and β-actin transcript levels was performed as previously reported [22].
Quantitative real-time PCR was performed on cDNA products using the RotorGene real-time PCR
machine (Corbett Research, Sydney, Australia) and the QuantiTect SYBR Green RT-PCR kit (Qiagen).
FAT10 and β-actin copy numbers were estimated from the threshold amplification cycle numbers
using software supplied with the RotorGene real-time PCR machine. Results are expressed as relative
FAT10 transcript levels normalized against β-actin transcript levels.

2.5. Determination of the Methylation Status at the FAT10 Promoter Using Methylation-Specific Sequencing

To determine the methylation status of the FAT10 promoter in HCC patients, genomic DNA from
a tumor and an adjacent non-tumorous liver were treated with sodium bisulfite, as described [43].
All of the cytosine (C) in the genomic DNA would be converted to thymidine (T) by bisulfite treatment
except for cytosines that are methylated. Primers were then designed according to the template whose
C was converted to T. A half-nest PCR was utilized for this experiment because of the low amount of
template. Primer F-sense-A 5’ TTATTTTTTGTGTTTGATAGTATGT with reverse primer FAT (+26)-R
5′ TCACATACTTCTCTCCTCAA were used in the initial PCR reaction, which comprises 95 ◦C for
15 min, followed by 25 cycles of 94 ◦C for 30 s, 55 ◦C for 45 s, and 72 ◦C for 50 s, followed by a final
extension at 72 ◦C for 5 min. Thereafter, 5 µL of the initial PCR product was used as a template to
perform a second round of PCR with forward primer F-sense-A 5’TTATTTTTTGTGTTTGATAGTATGT
and reverse primer R-antisense-A 5’ ATCTTTATCTATTAAAACCACCTAA in a 50-µL reaction volume
with the following PCR conditions: 95 ◦C for 15 min, followed by 30 cycles at 94 ◦C for 30 s, 53 ◦C for
45 s, and 72 ◦C for 45 s, followed by a final extension at 72 ◦C for 5 min. The PCR product was then
sequenced. Kappa statistics [44] were then employed to determine if the methylation status correlates
significantly with FAT10 expression.

2.6. Evaluation of the FAT10 Promoter Activity when the CG Nucleotides are Methylated

The previously described pFAT10-EGFP construct [21], in which the FAT10 promoter drives the
β-galactosidase (β-gal) reporter gene while the constitutive cytomegalovirus (CMV) promoter drives
the enhanced green fluorescent protein (EGFP) reporter gene, was utilized as a template to amplify
the FAT10 promoter. The forward primer (5’-GTAAGGAGAAAATACAGCATCA-3’) was designed to
anneal to the vector region immediately upstream of the FAT10 promoter, while the reverse primer
(5’-AATTGGATCCGCCAGAAACCAGAGACAGAA-3’) anneals to the 3’ end of the FAT10 promoter,
and contains the BamHI restriction enzyme site and a 4-bp (‘AATT’) sequence 5’ upstream of the
BamHI site to facilitate more efficient restriction digestion. This region of the FAT10 promoter was then
amplified using the Qiagen® Multiplex PCR kit (Qiagen), according to the manufacturer’s instruction.
The cycling condition was as follows: 95 ◦C for an initial 15 min followed by 25 cycles at 95 ◦C for 45 s,
55 ◦C for 45 s, and at 72 ◦C for 90 s, followed by a final extension at 72 ◦C for 10 min. The amplified
product was purified using a QIAquick® PCR Purification Kit (Qiagen). Half of the amplified product
was treated with the CpG Methylase (M.SssI, New England Biolabs) and S-adenosylmethionine (SAM)
to methylate the seven CpG sites at the FAT10 promoter, while the other half of the PCR product
remained unmethylated or mock-methylated.

The EGFP reporter gene from the pEGFP-1 construct (Clontech) was also amplified
using a forward primer (5’-CGCCTTCTCCAGGGATCCA-3’) that contains a BamHI site and
anneals at the multiple cloning site upstream of the EGFP gene, and the reverse primer
(5’-GAGTTTGGACAAACCACAACT-3’) that anneals to the 3’ end of the EGFP gene downstream of
the poly A region of the EGFP gene. The amplification condition for the EGFP gene is similar to the
amplification of the FAT10 promoter. The EGFP PCR product was also purified using the QIAquick®

PCR Purification Kit.
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Both the methylated and unmethylated FAT10 promoter, as well as the EGFP amplified products,
were digested with the BamHI restriction enzyme and purified using the QIAquick® PCR Purification
Kit. Ligation of the FAT10 promoter (methylated/unmethylated) with the EGFP reporter was
then performed, and the ligated product was separated from the unligated product through gel
electrophoresis. Only the ligated product was isolated and purified using the QIAquick® Gel Extraction
Kit (Qiagen) according to the manufacturer’s protocol.

To evaluate the activity of the methylated and unmethylated FAT10 promoters, the methylated/
unmethylated FAT10 promoter-EGFP reporter fusion fragments were transfected into Hep3B cells
using the siPORT™ Amine Transfection Agent (Ambion, Forster City, CA, USA) and the EGFP reporter
activities evaluated.

2.7. Statistical Analysis

Fisher’s exact test was employed to evaluate the differences in allele or haplotype frequencies
among the populations, as well as between the age-matched HCC and non-HCC individuals.
The Student’s t-test was used to test the difference in the β-galactosidase activity between the constructs
carrying the wild-type haplotype and other haplotypes in the FAT10 promoter. Similarly, Student’s
t-test was also applied to identify the difference in promoter activity between the methylated and
unmethylated groups.

3. Results

3.1. Only Polymorphisms, not Mutations, Were Identified in the ~1.3 kb Region of the FAT10 Promoter

To evaluate whether mutations/polymorphisms at the FAT10 promoter could account for the
aberrant overexpression of FAT10 in the tumors of HCC patients, we sequenced approximately 1.3 kb
of the FAT10 promoter in the tumor, and paired non-tumorous tissues from 37 Chinese HCC patients
and 39 normal healthy Chinese individuals of a similar age. No difference in the sequence of the 1.3 kb
of the FAT10 promoter examined was observed between the tumor tissues and adjacent non-tumorous
tissues, suggesting that within the 1.3 kb region, there are no mutations that could account for the
differences in the expression between the tumor and adjacent non-tumorous tissues.

Nonetheless, we identified six single nucleotide polymorphisms (SNPs) in this region (Table 1).
All of these SNPs have been previously reported in the dbSNP database. Two of these SNPs are
located in exon I, while the other four SNPs were found upstream of exon I. We examined the allele
frequencies of all six SNPs in three populations, namely the Chinese (CH), European-Americans (EA),
and African-Americans (AA), as well as Singapore Chinese HCC patients (HCC) compared with
non-HCC Singapore Chinese individuals of similar age (non-HCC) (Table 1). Three SNPs (three, five,
and six) had a high minor allele frequency of greater than 10% in at least one population, while the
others were of low allele frequency (<5%) in all of the populations examined. The three major SNPs
and low-frequency SNP4 (5’UR-169C > T) were observed in both the DNA of HCC samples and the
age-matched non-HCC samples (Table 1). However, the low-frequency SNP1 was observed only in the
HCC patients; SNP2 was not observed in either the HCC or age-matched non-HCC individuals in the
local population (Table 1).

From the genotype data of these six SNPs, a total of 10 haplotypes were inferred from the different
populations using an expectation maximization (EM) algorithm in the ArlequinTM software program
(Figure 3). Haplotypes I and II occurred at high frequencies in all of the populations examined, with
haplotype I occurring at the highest frequency in the CH population, while haplotype II occurred at
the highest frequency in the EA population (Figure 3). Haplotype III occurred at a relatively high
frequency in the AA population (27%), but at a low frequency in the CH population (1%), and was
not observed in the EA population. Haplotype V occurred at a low frequency in both the CH and AA
populations, but was not observed in the EA population, while haplotypes IV, VII, and X were only
observed at a low frequency in the AA (<10%) population, but not in the other populations. Haplotype
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VI only occurred at a low frequency in the CH population, while haplotypes VIII and IX were observed
only in the EA population. These observations suggest that the profiles of haplotypes at the FAT10
promoter region differ in different populations. The profiles of the haplotypes of SNPs at the FAT10
promoter region between the HCC patients and non-HCC patients of similar age were also different,
although the difference was not statistically significant (Fisher’s exact test, p > 0.05) (Figure 3. A total of
eight haplotypes were inferred from the five SNPs observed in these samples, six of which (I, II, III, IV,
V, and VII) were common to the haplotypes observed in the three populations (Figure 3). Four of the
common haplotypes (I, II, III, and V) occurred in both the HCC and non-HCC individuals, although
there were slight differences in the allele frequencies between the HCC and non-HCC individuals.
Haplotypes IV, VII, and XI were only observed in the HCC patients, while haplotype XII was only
observed in the non-HCC individuals.
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Figure 3. Haplotype of SNPs at the FAT10 promoter region in three ethnic populations. The six single
nucleotide polymorphisms are schematically represented at the top panel. TSS: transcription start site.
The frequencies of the haplotype of SNPs at the FAT10 promoter region as predicted in silico are shown
at the lower panel. CH: Chinese, EA: European-American, and AA: African-American.

Although no significant difference in the haplotype distribution was observed between HCC
patients and normal individuals (Fisher’s exact test, p > 0.05) (Figure 4A), there were three
low-frequency haplotypes that were only found in HCC patients (haplotypes IV, VII, and XI) and one
(haplotype XII) that was only observed in normal individuals (Figure 4A). More samples may need to
be examined before any conclusions can be drawn.
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Table 1. Profile of allele frequency of single nucleotide polymorphisms (SNPs) at the FAT10 promoter.

No. ID SNP Name Transcription Factor Binding Sites Population n Allele Frequency (%) Pairwise Differences Fisher‘s Exact p-Value

1 rs11962004 5'UR -914 G>C

G C G C CH EA AA
Age-matched

non-HCC HCC

Octamer-binding factor 1 CH 37 98.6 1.4 1.0 4.9 × 10−2 0.5
EA 31 98.4 1.6 0.1

TCF11/KCR-F1/Nrf1 AA 32 90.6 9.4
homodimers Age-matched nonHCC 39 100.0 0.0 1.0

HCC 56 99.1 0.9

2 rs115899746 5'UR -876 G>A

G A G A CH EA AA
Age-matched

non-HCC HCC

GATA-binding factor 2 CH 37 100.0 0.0 1.0 0.1 1.0
EA 31 100.0 0.0 0.2

Hepatic nuclear factor 1 AA 32 95.3 4.7

Age-matched nonHCC 39 100.0 0.0 1.0
HCC 56 99.1 0.9

3 rs362513 5'UR -616 T>C

T C T C CH EA AA
Age-matched

non-HCC HCC

CH 37 74.3 25.7 0.1 0.2 0.6
Myocyte enhancer EA 31 58.1 41.9 1.5 × 10−0.3

factor AA 32 84.4 15.6

Age-matched nonHCC 39 69.2 30.8 0.6
HCC 56 73.2 26.8

4 rs189072824 5'UR -169 C>T

C T C T CH EA AA
Age-matched

non-HCC HCC

HMG box-containing protein 1 CH 37 74.3 25.7 1.0 1.0 1.0
TEF-1 related muscle factor EA 31 58.1 41.9 1.0

HMGI(Y) AA 32 84.4 15.6
POU-factor Tst/Oct-6 Age-matched nonHCC 39 98.7 1.3 1.0

Octamer-binding factor 1 HCC 56 99.1 0.9

5 rs362535 e1 82 A>G

A G A G CH EA AA
Age-matched

non-HCC HCC

Egr-1/Krox-24/NGFI-A CH 37 87.8 12.2 3.9E-03 0.1 0.8
Brn-2, POU-III protein EA 31 100.0 0.0 0.1

class RBP-Jkappa/CBF1 AA 31 96.8 3.2 0.5

Age-matched nonHCC 39 89.7 10.3 0.3
HCC 56 83.9 16.1
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Table 1. Cont.

No. ID SNP Name Transcription Factor Binding Sites Population n Allele Frequency (%) Pairwise Differences Fisher‘s Exact p-Value

6 rs2272991 e1 104 A>G

A G G C CH EA AA
Age-matched

non-HCC HCC

PPAR/RXR heterodimers CH 37 86.5 13.5 0.1 1.0 × 10−4 1.0
EA 31 96.8 3.2 3.3 × 10−0.8

Gut-enriched Krueppel-like AA 32 56.3 43.8
factor Age-matched nonHCC 39 87.2 12.8 0.5

HCC 56 83.0 17.0
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We proceeded to experimentally evaluate whether the SNPs at the FAT10 promoter may alter
FAT10 promoter activity. The inferred haplotype of SNPs (Figure 4A) at the FAT10 promoter in HCC
versus non-HCC patients of a similar age were recapitulated using PCR site-directed mutagenesis
and cloned into the β-galactosidase reporter construct. The activity of the FAT10 promoter with the
different haplotypes was then evaluated in Hep3B cells by analyzing the β-gal reporter gene activity
after transfection. In this study, Hep3B cells, which do not express p53, were selected to facilitate our
understanding of the role of the various haplotypes of polymorphisms on FAT10 promoter activity
without the interaction of p53, which has been reported to modulate FAT10 gene expression/promoter
activity [21]. As shown in Figure 4B, there are significant differences (p < 0.01) between the various
mutated haplotypes and the wild-type haplotype GGTCAA. Interestingly, haplotypes III, V, and VII
(GGTCAG, GGTCGG, and GATCAG) result in significantly higher FAT10 promoter activity, while
haplotypes II, IV, XI, and XII (GGCCAA, CGTCAG, GGTTGG, and GGCTAA) mediate significantly
lower FAT10 promoter activity. From these data, changing SNPs six, five, or two generally results
in significantly higher FAT10 promoter activity. The only exception is when one or two of these are
simultaneously changed with either one or four, as observed in haplotypes IV and XI. These haplotypes
resulted in significantly lower FAT10 promoter activity. Changing SNPs three and four was observed
to result in significantly lower FAT10 promoter activity. These results suggest that polymorphisms
within the FAT10 promoter may alter FAT10 promoter activity and expression.

We proceeded to determine whether there is any association between the haplotype of SNPs
and the differential expression of FAT10 in the tumors of HCC patients. Of the 37 patients that we
genotyped, 20 displayed haplotype I, and were homozygous for the major allele of all six SNPs;
meanwhile, five displayed haplotype II, in which SNP3 was the alternative C-allele. We did not
examine the other patients, because there were heterozygous SNPs and the phase of the haplotype
could not be determined with certainty. As evident in Figure 4C, although it was not statistically
significant due to the small number of samples with the particular haplotype, the ratios of FAT10
expression in the tumor and non-tumor tissues of patients with haplotype II (5.64± 3.06) was generally
lower than those carrying haplotype I (7.14 ± 2.34). This observation is consistent with the FAT10
promoter reporter assay, as shown in Figure 4B. A possible explanation for this observation is that
the change from the T to the C allele in SNP3 between haplotypes I and II abolished the binding of
the myocyte enhancer factor, resulting in a decrease in the expression of the gene. These data suggest
that the different haplotypes of the SNPs affected the differential FAT10 expression in the tumors of
the HCC patients. It would be interesting to determine whether the different haplotypes of the SNPs
might influence the prognosis of the HCC patients.

3.2. Differential Methylation at the FAT10 Promoter Was Observed between Tumor and Adjacent Normal Liver
Tissues of HCC Patients

A total of seven CG dinucleotides (CG-1 to CG-7) reside in the region from −975 to +209 bp of the
FAT10 promoter, which showed the highest promoter activity (Figure 5). All of these CG dinucleotides
reside upstream of the TSS (transcription start site). In order to evaluate the effect of DNA methylation
on FAT10 expression, methylation-specific sequencing was utilized to evaluate the methylation status
of different CG dinucleotides in the FAT10 promoter region.

Tumor and adjacent non-tumorous liver tissue samples from 13 HCC patients were used in this
study. As evident in Figure 5, except for patients 6, 10, and 11, the methylation status of the other
10 HCC patients generally correlated with their transcript expression levels. Less methylation in the
tumor tissues is correlated with the higher expression of FAT10 in the tumor tissues (patients 2, 3,
4, 7, 8, 9, 12, and 13). Conversely, as evident in patient 1, a higher methylation in the HCC tumor is
correlated with lower FAT10 transcript expression. Likewise, no significant differential methylation
was observed in patient 5, in whom FAT10 was not found to be differentially expressed in the tumors
compared with the adjacent normal tissues. Utilizing kappa statistics [44], the methylation status was
found to inversely correlate significantly with FAT10 expression (κ value = 0.628).
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Figure 4. Haplotype of SNPs at the FAT10 promoter region in HCC patients and non-HCC individuals,
and the FAT10 promoter activity mediated by the various haplotypes. (A) The frequencies of the
haplotype of SNPs at the FAT10 promoter region, as predicted in silico. HCC: hepatocellular
carcinoma patients, non-HCC: individuals of a similar age who have not been diagnosed with
HCC; (B) Normalized β-galactosidase activity of the various FAT10 promoters carrying the different
haplotypes in Hep3B cells. Data represent the mean and standard errors from four independent
experiments. ** denotes significant difference (p < 0.01) between the various FAT10 promoter haplotypes
and wild-type haplotype (I); (C) Fold difference in the normalized FAT10 transcript expression
(as determined using reverse-transcription, real-time PCR) in the tumour versus non-tumorous liver
tissues of HCC patients with haplotypes I and II.
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Figure 5. Correlation between the methylation status at the FAT10 promoter and FAT10 transcript
expression in HCC patient tissues. The seven CG dinucleotides are schematically represented at the top
panel. TSS: Transcription Start Site. The bottom panel shows the correlation between the methylation
status and the fold difference in FAT10 transcription expression between the tumor and non-tumorous
liver tissue of each HCC patient. The last column shows the sum of the scores of either the fully
methylated (score = 2) denoted by , half methylated (score = 1) denoted by }, and unmethylated
(score = 0) denoted by #.

To experimentally demonstrate whether the methylation of the CG dinucleotides will result
in lower FAT10 promoter activity, the entire FAT10 promoter region was methylated in vitro using
SssI methylase (M.SssI, New England Biolabs) and ligated upstream of the EGFP gene. The FAT10
promoter (methylated/unmethylated)-EGFP fusion was then transfected into the Hep3B cells, and
the FAT10 promoter activity was evaluated by quantitating the EGFP protein levels. As evident in
Figure 6, the methylated FAT10 promoter mediated a significantly lower (>three-fold) reduction in
EGFP reporter activity compared with the unmethylated promoter.

Hence, methylation may play a role in the regulation of the FAT10 expression level.
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Figure 6. Activity of the FAT10 promoter that has been methylated in vitro versus the promoter that
has not been methylated. The FAT10 promoter that has either been methylated with M.SssI or mock
methylated (unmethylated) is fused with the enhanced green fluorescent protein (EGFP) reporter
protein and transfected into Hep3B cells. The FAT10 promoter activity expressed through EGFP protein
levels is determined. Figure shows the mean and standard error from four (methylated) and five
(unmethylated) independent experiments. *** denotes a significant difference (p < 0.001) in activity
between the unmethylated and methylated FAT10 promoter.

4. Discussion

4.1. No Mutations at the FAT10 Promoter Were Observed

The overexpression of FAT10 has been observed in the tumors versus the adjacent non-tumorous
tissues of HCC and gastrointestinal and gynecological cancers [15]. The high level of the FAT10 protein
in cells was reported to increase mitotic non-disjunction and chromosome instability [16], leading to
tumorigenesis/malignancy [17] through the interaction of FAT10 with the mitotic checkpoint protein,
MAD2 [17]. Therefore, one of the main objectives of this study was to elucidate the mechanism behind
the aberrant expression of FAT10 in the tumor tissues of HCC patients. Since mutations found in
the promoter region had been correlated with the overexpression of genes in cancer cells [25,45],
we sequenced ~1.3 kb of the FAT10 promoter region from a tumor and the adjacent non-tumorous liver
tissues of 37 HCC patients to screen for mutations. However, no mutations were identified within
the 1.3-kb region of the FAT10 promoter, suggesting that the difference in FAT10 expression levels
between the HCC tumor and adjacent non-tumorous tissues cannot be accounted for by mutations
within the 1.3-kb region of the FAT10 promoter. However, this process did not rule out mutations
upstream of this region, accounting for the differential expression between the tumor and adjacent
non-tumorous tissues.

Nonetheless, although no mutations were found in the tumor of HCC patients that may account for
differential FAT10 expression between the tumor and the adjacent non-tumorous tissues, we identified
polymorphisms in both the tumor as well as the adjacent non-tumorous tissues of the HCC patients.
As these polymorphisms were found in both the tumor and the adjacent non-tumorous tissues, they are
unlikely to account for the differential FAT10 expression that was observed. Nevertheless, these SNPs
may affect the basal FAT10 expression and account for the differences in the basal FAT10 expression
among different individuals.

Polymorphisms in the promoters of genes have previously been demonstrated to affect promoter
activity and hence gene expression [46–49]. Since high FAT10 has been associated with increased
chromosomal instability [16], and chromosomal instability is one of the hallmarks of cancer, it raises
the possibility that individuals with polymorphisms that result in high FAT10 promoter activity and



Genes 2018, 9, 319 14 of 18

expression may have higher risks of having cells with unstable chromosome numbers, leading to a
higher risk of developing cancer.

A total of six polymorphisms were identified. Two of the six SNPs were found to be monomorphic
in normal individuals, and occur at a low frequency in the HCC patients. Polymorphisms within the
FAT10 gene locus were reported [20] to be associated with a risk of HCC in Chinese patients. This
Chinese study primarily focused on polymorphisms at the 5’ UTR, coding, and 3’ UTR regions of
the gene, and did not examine most of the polymorphisms at the FAT10 promoter region, except
for two SNPs (rs362535, rs2272991) at the 5’ UTR region. While they reported that the alternative
alleles of these two SNPs were significantly associated with decreased HCC risk, our data did not
show any significant difference. Further study with a larger cohort may be necessary to resolve these
different observations.

While seven haplotypes can be inferred from the six SNPs identified in the HCC patients, only five
haplotypes can be inferred from the five SNPs that were found in the normal individuals (Figure 4A).
Three of the seven haplotypes are found exclusively in HCC patients, while one haplotype exists only
in normal individuals (Figure 4A). Despite these differences, Fisher’s exact test showed no statistically
significant differences between the SNPs or haplotypes of the HCC patients and normal individuals
(p > 0.05). As those SNPs and haplotypes that are different between the HCC patients and normal
individuals occur at very low frequency, more samples need to be examined before a conclusion can
be made. The haplotypes of the SNPs in this study cannot be compared with those from the study by
Yuan et al. [20], since their study focused on haplotypes from exonic SNPs, while our study focused on
haplotypes from promoter SNPs.

From in silico analyses, all of the polymorphisms observed at the FAT10 promoter either remove an
existing putative transcription factor binding site, introduce a new putative transcription factor binding
site, or change a putative binding site to another (Table 1). Experimentally, we demonstrated that
the different haplotypes of FAT10 polymorphisms resulted in significantly different FAT10 promoter
activity compared with the wild-type haplotypes (Figure 4B). Interestingly, it seems that changing
SNP3 and/or SNP4 generally resulted in lower FAT10 promoter activity, while changing SNP2, SNP5,
and/or SNP6 generally resulted in higher FAT10 promoter activity. The exceptions are when these
SNPs are changed simultaneously with either SNP1 or SNP4 (haplotype IV and XI), which then resulted
in significantly lower FAT10 promoter activity. Although significant, the changes observed with the
different haplotypes was less than twofold, unlike the differential expression observed between the
HCC tumor and adjacent non-tumorous tissues, which could be more than five-fold. Consistent with
the promoter reporter assays, we also observed that the differential FAT10 expression in the tumors
of HCC patients with haplotype I is slightly higher (7.14 ± 2.34) than the tumors of HCC patients
with haplotype II (5.64 ± 3.06). These results suggest that although individuals with different FAT10
promoter haplotypes may have different basal levels of FAT10 expression, these differences may not
be large enough to modify the risk of the individuals to develop HCC or have cells with different
chromosome stability potential. This is consistent with our observation of no statistically significant
differences between the SNPs or haplotypes of the HCC patients and normal individuals (p > 0.05).

4.2. Differential Methylation May Account for the Differences in FAT10 Gene Expression between HCC Tumor
and Adjacent Non-Tumorous Tissues

CG dinucleotides are present in the regulatory regions of many genes [50]. In normal cells,
the cytosines in the CG dinucleotides generally remain unmethylated [50]. However, in the promoter
sequences of genes associated with certain cancers or inherited diseases, more CG dinucleotides at the
promoter region were found to be methylated [51]. The methylation status in the DNA of humans
and other mammals plays an important role in determining whether some genes are expressed or
not. Abnormal DNA methylation plays an important role in other developmental diseases as well.
Abnormal increases or decreases in DNA methylation are often observed in human cancers, and may
contribute to their development [28,51].
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Seven CG sites were observed to reside in the FAT10 promoter region. In order to study the
correlation between the methylation status of these CG dinucleotides and the aberrant expression of
FAT10 in HCC patients [15], we performed methylation-specific sequencing to screen the methylation
status of these CG dinucleotides at the FAT10 promoter in 13 HCC patients. We found that generally,
higher FAT10 expression is correlated significantly with reduced methylation of the CGs at the FAT10
promoter (κ value = 0.628) (Figure 5). The exceptions were patients 6, 10, and 11, whereby although
the HCC tumor tissues had higher FAT10 expression, the methylation status of the tumor was either
more in the tumor (P6), or was no different from the adjacent normal tissues (P10 and 11). It is possible
that the differential methylation of other unexamined sites correlates with the FAT10 expression in
these patients. Nonetheless, the in vitro methylation of this region of the FAT10 promoter results in
lower FAT10 promoter activity (Figure 6), which is consistent with the above observations.

Curiously, although the promoters of most genes are generally hypomethylated in adult tissues,
the adjacent non-tumorous tissues of HCC patients seem to display hypermethylation at the FAT10
promoter, while the tumorous tissues seem to be hypomethylated. One possible explanation for this
observation is that the adjacent non-tumorous tissues of HCC are generally cirrhotic, and cirrhosis
may have resulted in the hypermethylation of the FAT10 promoter. The progression from a cirrhotic
liver to a tumorous liver may then change the methylation status of the FAT10 promoter to activate the
FAT10 gene. This hypothesis remains to be examined.

Future studies could validate these observations in additional cell lines, as well as additional
healthy volunteers/HCC patient samples, and determine the contribution of non-genetic factors.
It would also be pertinent to address whether the polymorphisms or differential methylation at the
FAT10 promoter would modulate the response of the FAT10 promoter to inflammatory cytokines,
including TNFα or IFNγ. As the expression of the FAT10 gene was reported to be regulated by p53 [21],
it would also be interesting to evaluate whether p53 differentially modulates FAT10 expression in
cells with different haplotypes of polymorphisms, or a different methylation status at its promoter.
Importantly, the association between the FAT10 promoter and HCC pathogenesis can be further
clarified, and the role of DNA methyltransferases in modulating the promoter activity of FAT10 can
be elucidated.

5. Conclusions

In summary, although no mutations were identified at the FAT10 promoter in the tumor of
HCC patients, polymorphisms at this promoter was identified, which mediated differential FAT10
promoter activities. Notably, the methylation status at this promoter correlated significantly with
FAT10 expression levels as well as differential promoter activity. Thus, epigenetics (methylation) play
an important in regulating the expression of FAT10.
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