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Starčič Erjavec M and Kreft ME (2021)
The Role of Innate Immune System in
the Human Amniotic Membrane and
Human Amniotic Fluid in Protection

Against Intra-Amniotic
Infections and Inflammation.
Front. Immunol. 12:735324.

doi: 10.3389/fimmu.2021.735324

REVIEW
published: 21 October 2021

doi: 10.3389/fimmu.2021.735324
The Role of Innate Immune System in
the Human Amniotic Membrane and
Human Amniotic Fluid in Protection
Against Intra-Amniotic Infections
and Inflammation
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Intra-amniotic infection and inflammation (IAI) affect fetal development and are highly
associated with preterm labor and premature rupture of membranes, which often lead to
adverse neonatal outcomes. Human amniotic membrane (hAM), the inner part of the
amnio-chorionic membrane, protects the embryo/fetus from environmental dangers,
including microbial infection. However, weakened amnio-chorionic membrane may be
breached or pathogens may enter through a different route, leading to IAI. The hAM and
human amniotic fluid (hAF) respond by activation of all components of the innate immune
system. This includes changes in 1) hAM structure, 2) presence of immune cells, 3) pattern
recognition receptors, 4) cytokines, 5) antimicrobial peptides, 6) lipid derivatives, and 7)
complement system. Herein we provide a comprehensive and integrative review of the
current understanding of the innate immune response in the hAM and hAF, which will aid
in design of novel studies that may lead to breakthroughs in how we perceive the IAI.

Keywords: human amniotic membrane, placenta, intrauterine infection, innate immune system, antimicrobial
activity, bacteria, preterm birth
INTRODUCTION

Amniotic membrane (AM) serves as a wall of an embryo/fetal annex, and is the innermost
component of the fetal membrane (i.e. amnio-chorionic membrane) that envelops the amniotic
fluid (AF) with the developing embryo/fetus (1). The evolutionary need for AM is thought to
emerge concurrently with the transition of animals from water to land (2). The membrane of the so-
called amniotic egg provided protection from dryer environment, while allowing the necessary gas
exchange (3). These egg-laying animals are ancestors to today’s clade Amniotes, which comprises of
reptiles, birds and mammals. Though there are significant differences between the AM and AF of
these animals, its main functions remain the same: to provide nourishment, homeostatic
environment and protection from physical, chemical and biological stress to the fetus (4–7).
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HUMAN AMNIOTIC MEMBRANE

Human AM (hAM), originates from the embryo and forms a
multilayer structure that is between 0.02 and 0.5 mm thick (8–10).
Human AF (hAF) is in direct contact with a monolayer of hAM
epithelial cells (hAEC), which are attached to the basement
membrane that borders on the compact layer of hAM. Next is
the fibrous layer with hAM mesenchymal stromal cells
(hAMSC), and finally the spongy layer of hAM, which adheres
the human chorionic membrane (hCM) composed of reticular
layer, basement membrane and chorion trophoblast cells (9, 10).

At term a subpopulation of hAEC expresses embryonic stem
cell surface markers, such as tumor rejection antigens 1-60
(TRA1-60) and TRA1-81 (11–13), stage-specific embryonic
antigens 3 and 4 (SSEA-3, SSEA-4) (11, 13, 14), and also some
transcription factors characteristic for stem cells, such as OCT-4,
NANOG, SOX-2 and SOX-3 (11, 12, 15, 16). Similarly, a
subpopulation of hAMSC also expresses some of the
pluripotency markers, namely TRA-1-61, TRA1-81 (17), OCT-
3 (18), OCT-4 (17–19), SSEA-3, SSEA-4 (17, 20), SOX-2 and
NANOG (19, 20). Moreover, hAEC and hAMSC are capable of
differentiation into all three germ layers, namely ectoderm,
mesoderm and endoderm (15, 17, 21).

Besides the nourishment and homeostatic functions, the cells
of the hAM provide an extensive immune defense against the
potential pathogens. hAM cells and cells involved in the immune
response secrete a vast array of protective molecules including
lipids, peptides, and proteins that comprise up to 25% of all
identified proteins found in the hAF (22). Overall, a large
number of identified molecules and complexes related to
immune defense (22) appear redundant, but offer a possibly
synergistic protection against various pathogens (22, 23).

At first, hAEC and hAMSC have been considered to be
immune privileged, but it has been shown that they are able to
elicit immune responses under certain conditions (24–26). The
anti-inflammatory activity of hAM-derived cells has been well
documented. hAM-derived cells and their conditioned medium
block differentiation and maturation of monocytes into dendritic
cells or inflammatory M1 macrophages (27–32). Moreover,
when the M1 macrophages are cultured with hAMSC or their
conditioned medium, their expression of co-stimulatory proteins
CD80, CD86 and CD40, decreases. The hAMSC and their
conditioned medium have been shown to shift differentiation
of monocytes (under M1 differentiation conditions) towards the
anti-inflammatory M2 phenotype and they also reduce the pro-
inflammatory cytokine secretion interleukin (IL)-1a, IL-1b, IL-
12, IL-8, tumor necrosis factor alpha (TNFa), macrophage
inflammatory protein (MIP)1a, MIP1b, monokine induced by
gamma interferon, regulated on activation, normal T expressed
and secreted (RANTES), interferon-gamma inducible protein
(IP)-10) by the M2 macrophages, while increasing the secretion
of the anti-inflammatory cytokine IL-10 (32).

The hAEC inhibit neutrophil (33) and macrophage migration
by secretion of the migration inhibitor factor (MIF) (34), while
the hAMSC reduce neutrophil migration (35). The hAEC and
hAMSC have also been shown to inhibit NK cell cytotoxicity and
reduce IFN-gamma expression in a dose-dependent manner (36).
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The versatile nature of hAM-derived cells is well demonstrated
by their ability to induce immunosuppression as well as
immunostimulation. Namely, when hAM-derived cells are co-
cultured with unstimulated allogenic peripheral blood
mononuclear cells (PBMCs) at low concentrations, they have
been shown to stimulate PBMCs proliferation (25, 30, 37).
Similarly, the co-culture of T lymphocytes with low
concentrations of hAM-derived cells led to induction of
proliferation in T lymphocytes (25, 31). Therefore, the hAM
may function as a sensor and regulator of the inflammatory
response to infections and/or inflammatory stimuli (38).
Interestingly, there is a great shortage of studies (especially in
the in vivo setting) that would investigate the immunomodulatory
activity of hAM in the context of IAI. The studies investigating the
expression and production of immunomodulatory molecules by
hAM cells in IAI are described in the Chapter 3.

It is thought that at term, amnio-chorionic membrane
weakening that occurs due to irreversible epithelial-to-
mesenchymal transition (EMT), as well as the initiation of
labor are inflammation dependent, and can be triggered by
physical stretching of the membrane and an increased
oxidative stress (39, 40). The resulting cellular stress produces
Damage-Associated Molecular Patterns (DAMPs) and
senescence-associated secretory phenotypes (SASPs), in the
case of infection also Pathogen-Associated Molecular Patterns
(PAMPs), which contribute to the necessary inflammation
through downstream signalling cascades (40–42). Moreover,
hAM was shown to be crucial in the production of
prostaglandins, which induce cervical ripening and uterine
contractions (43, 44).
INTRA-AMNIOTIC INFECTION
AND INFLAMMATION

Occasional infections of the amnio-chorionic membranes or
hAF do occur and may harm the fetus or cause preterm labor
and other complications (45, 46). Infections are present in 15-
35% of all pregnancies that result in preterm birth (47, 48). As
infection and inflammation are associated processes, it is
sometimes difficult to distinguish between them, especially in
cases when only limited analysis or sampling is available.
Therefore, the term chorioamnionitis includes inflammation of
intrauterine structures amnion and chorion, their infection, or
both; in this paper we refer to this as intra-amniotic infection/
inflammation (IAI) (49).

IAIs are most commonly caused by pathogenic bacteria and
fungi, such as Mycoplasma sp., Ureaplasma sp., Bacteroides sp.,
group B Streptococcus sp., Escherichia coli, Enterococcus faecalis,
Klebsiella pneumoniae, Fusobacterium nucleatum, Gardnerella
vaginalis and Candida albicans (50, 51) and viruses, such as
cytomegalovirus, herpes simplex virus types 1 and 2 and Zika
virus (52, 53). SARS-Cov-2 that caused the current pandemic can
in rare cases infect the fetus through a transplacental transmission
(54, 55). Interestingly, IAI is often caused by multiple pathogens,
since over 65% of all positive hAF cultures involve two or more
October 2021 | Volume 12 | Article 735324
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microorganisms (56). While the identified pathogens are diverse,
they are mainly typical genital pathogens, largely from the phylum
Firmicutes, order Mycoplasmatales (57).

The question whether the placenta has its own microbiome,
or if the presence of bacteria always indicates potential pathogens
still remains open. A study performed by Aagaard et al. (58)
demonstrated the presence of microbiome in human placenta,
which was low in abundance but metabolically rich (58).
Moreover, others have demonstrated the presence of
microbiota in the human umbilical cord blood and hAF (59,
60). On the other hand, these findings were refuted by de Goffau
et al. (61) who investigated the presence of bacterial DNA in the
human placenta and demonstrated that the human placenta has
no microbiome but can contain potential pathogens (61).
Furthermore, not only was there no evidence for the presence
of bacteria in the majority of samples, but all signs were related to
the acquisition of bacteria during labor and delivery or to
contamination of laboratory reagents with bacterial DNA (61–
63). The contradicting observations of these studies reflect the
difficulty of studying placental microbiome, since the placenta is
a relatively inaccessible tissue during pregnancy, and after birth it
is easily contaminated. Furthermore, the microbiome, if there is
one, is limited in the amount of microbes, and therefore
challenging to detect. This is especially true for less sensitive
methods, such as classical cultivation techniques, whereas DNA
amplification techniques are more sensitive but are also more
prone to contamination and present an indirect evidence of
microbes. In the future, further investigations will need to be
done to answer the questions of presence and extent of
placental microbiome.

Multiple routes of invasion have been proposed for IAI.
Namely, pathogens can enter the amniotic cavity by
1) ascending migration from the lower genital tract through
the cervix (most common route of infection), 2) haematogenous
dissemination from distant sites (e.g. the intestine or oral cavity)
through the placenta, 3) retrograde seeding from the peritoneal
cavity through the fallopian tubes or 4) iatrogenic introduction
during the invasive procedures (57, 64, 65). Interestingly, a study
by Kim et al. (66) indicates that the microbial invasion of the
amniotic cavity does not follow widespread infection of amnio-
chorionic membrane, but precedes it. The authors proposed that
the microbial invasion of the amniotic cavity starts by intra-
amniotic bacterial invasion through a discrete region of the
amnio-chorionic membrane, is followed by intra-amniotic
proliferation and therefore, bacterial invasion of amnio-
chorionic membrane primarily extends from the hAF (66). The
pathogens are recognized by the pattern recognition receptors
(PRRs), a component of the innate immune system, which
activates the synthesis of cytokines, chemoattractant cytokines
(chemokines), prostaglandins, proteases, antimicrobial peptides,
and other mechanisms of the innate immune system, some of
which are mediated by neutrophils, monocytes and lymphocytes
(51, 67, 68). This immune cascade can lead to premature
contractions, cervical changes and premature delivery.
Furthermore, some bacteria are even capable of producing
enzymes that degrade amnio-chorionic membrane or inducing
Frontiers in Immunology | www.frontiersin.org 3
synthesis and release of molecules that stimulate uterine
contractions and lead to preterm labor (e.g. prostaglandins)
(57, 69). Importantly, various pathogens and the inflammatory
response that follows the infection, affect the fetal development
(especially the developing fetal lung and brain), and may also
impact the long-term health of the infant (70). IAI can affect
different neurological developmental processes, inducing
neuroinflammation, cerebral palsy, and periventricular white
matter injury in the fetus, and even neuropsychiatric diseases
have been linked to IAI (71–76). Chronically damaged lungs in
the form of bronchopulmonary dysplasia are also highly
associated with IAI (77–79).

The aim of this review is therefore to encompass the
variability and importance of the innate immune response of
the hAM and hAF implicated in the IAI. To provide a thorough
overview of the literature, we collected an unbiased set of articles
covering all parts of the hAM and hAF innate immune response
related to IAI during pregnancy and in labor. The studies were
screened and selected from PubMed database using key words
“intraamniotic”, “infection”, “amnion”, and various components
of the innate immune system. Studies, which were investigating
immune response in tissues other than hAM or hAF were
excluded. Several in vitro studies that used hAM or its
derivatives are also considered, and an overview of animal
models for IAI is presented in a recent paper by Cappelletti
et al. (80).
INNATE IMMUNE SYSTEM DEFENSE
AGAINST PATHOGENS IN THE hAF
AND hAM

The immune system of the fetus and (preterm) neonate is
immature and requires stimulation to fully develop. Moreover,
the fetal adaptive immune responses are downregulated, which
may enhance their vulnerability to infection but at the same time
this has a protective role against collateral inflammatory damage
and is related to maintaining the intricate immune balance
between the mother and the fetus (62, 81). Therefore, fetuses
and neonates largely rely on their innate immune system and
additional protection is provided by various components of the
placenta, namely by the amnio-chorionic membrane and decidua
and also by the hAF (62, 80, 82, 83). The studies that explored the
involvement of the innate immune system in the hAM and hAF
in relation to the aforementioned IAIs are summed up in the
following subsections, and in Figure 1 and Table 1. The
involvement of other important tissues in immune response in
IAI is not covered in this review.

AM as a Physical Barrier
Amnio-chorionic membrane, including hAM, present a barrier
for the potential intra-amniotic pathogens. Their loss of integrity,
inflammation, and inflammation-related oxidative stress can
increase the chance of preterm rupture of membranes (PROM)
or directly permit the entry of pathogens to the hAF, which
sequentially weakens the membrane further (212, 213). hAM
October 2021 | Volume 12 | Article 735324
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integrity can be modified by changes in the extracellular matrix
modified by a pro-inflammatory environment. For example,
activin A, which is involved in connective tissue remodeling, is
increased in IAI, and its stimulation by LPS or TNFa suppresses
type I and type III collagen mRNA levels in hAMSC (84–86).
Additionally, the amount of extracellular matrix glycoprotein
tenascin X was changed with IAI (87) and an in vitro model
Frontiers in Immunology | www.frontiersin.org 4
hAMSC suppressed expression of collagen types I and III with
activin A stimulation (85). Matrix metalloproteinases (MMPs)
are important regulators of inflammation with their role
extending beyond the degradation of extracellular matrix (214).
The relationship between MMPs and fetal membrane weakening
and preterm labor is reviewed by Vadillo-Ortega et al. (95).
Studies investigating association of IAI and PROM with MMP
FIGURE 1 | Innate immune system defense against pathogens in the hAF and hAM is comprehensive. hAM integrity prevents the entry of pathogens. Breaching
of hAM causes upregulated expression and release of cytokines, including chemokines, which engage immune cells neutrophils, macrophages, monocytes and
T lymphocytes. Immune cells regulate the inflammatory process and directly kill the microbes through phagocytosis, formation of neutrophil extracellular traps,
and direct killing with granules. Using the pattern recognition receptors (PRRs), the hAEC recognize the pathogen-associated molecular patterns (PAMPs) (LPS,
bacterial glycoprotein) and damage-associated molecular patterns (DAMPs) that are a result of the microbial infection. Most notably, these include toll-like
receptors (TLRs) on cell membrane and the nucleotide-binding oligomerization domain (NOD)- Leucin Rich Repeats (LRR)-containing receptors (NLRs) in the
cytosol, both of which induce various downstream signaling that culminates in the release and maturation of inflammatory cytokines, regulated cell death and
secretion of antimicrobial peptides (AMPs). AMPs and activated complement system directly damage pathogens, mainly by targeting their cell wall and by
causing lysis.
October 2021 | Volume 12 | Article 735324
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TABLE 1 | Response of various components of the innate immune system to the intra-amniotic infection/inflammation.

Component of the innate immune system Function Response to the intra-amniotic infection

hAM as a physical barrier Prevention of microbial entry The presence of inflammatory mediators leads to the loss of tight junctions
between the hAEC and an increased level of apoptosis, senescence and necrosis
(84–92).

The EMT transitions of hAEC can weaken the hAM and contribute to the onset of
parturition (90–94).

The endogenous host response to microbial infections includes secretion of
extracellular matrix degrading enzymes matrix metalloproteinases (93, 95–106).

The invading microbes may produce their own extracellular matrix-degrading
enzymes (107).

Loss of hAM’s integrity increases chances of PROM (90–92, 108–111).

Immune cells Neutrophils Production of reactive oxygen
species that are cytotoxic to
microbes, phagocytosis, production
of antimicrobial peptides and
cytokines

The hAF neutrophils can be predominantly of the fetal or maternal origin or a
mixture of both (112, 113).

The hAF neutrophils can invade the amniotic cavity, therefore, the fetus and the
mother participate in the host defense mechanisms against intra-amniotic infection
(113–118).

The hAF neutrophils phagocytose bacteria and form neutrophil extracellular traps
(113–115, 118).

Monocytes/Macrophages Production of nitric oxide that is
cytotoxic to microbes,
phagocytosis, production of
cytokines

Monocytes/macrophages can be predominantly of the fetal or maternal origin or a
mixture of both (119).

Monocytes/macrophages in the amniotic cavity primarily act through the release
of pro-inflammatory cytokines (120, 121).

Pattern
recognition
receptors
(PRRs)

Toll-like receptors (TLRs) Recognition of conserved features
of microbes and downstream
signaling

PRRs induce inflammation through the activation of several inflammatory
pathways (122–131).

Nucleotide-binding
oligomerization domain
(NOD)- Leucine-Rich
Repeats (LRR)-containing
receptors (NLRs)

Intra-amniotic infection leads to an increase of the transcriptional level of NLRP1,
NLRP3, NLRC4, NOD2 (118).

Retinoic acid-inducible gene
1 (RIG-1)-like receptors
(RLRs)

Activation of the NLRP3 inflammasome promotes preterm birth (118, 132–138).

C-type lectin receptors (CLRs) TLR1-10 are expressed by the hAEC (122, 139).

Cytokines Signaling molecules that mediate
and regulate immunity, inflammation
and hematopoiesis

Presence of IL-6, IL-1b, IL-10, IL-18, TNFa, macrophage migration inhibitory
factor, nicotinamide phosphoribosyltransferase, TGFb, granulocyte-macrophage
colony-stimulating factor, high-mobility group protein 1, IL-10 and IL-6 in the hAF
with IAI or preterm labor conditions (118, 121, 128, 129, 140–153).

An elevated level of cytokines IL-1b, IL-6, TNFa, IFNg, EGF, MIP3a in patients
with PROM and intra-amniotic infection (154).

The intra-amniotic infection leads to an increased level of cytokines and
chemokines IL-1b, IL-6, IL-8, TNFa, IFNg, EGF, MIP3a, MIP1a, Eotaxin, IL-16,
IL-8, monocyte chemoattractant protein-1, chemokine (C-X-C motif) ligands
(CXCLs)-1, -3, -4, -5, -6, -10, -11 and L-selectin (128, 146, 147, 154–159).

Antimicrobial
peptides

a- and b-defensins AMPs damage and kill bacteria
mainly by disrupting their
membrane

AMPs are expressed by the hAM cells and are present in the hAF (23, 160–176).

SLPI Intra-amniotic infection leads to increased levels of AMPs (23, 100–102, 150, 152,
162, 166, 168–174, 177–183).

Elafin

Calgranulin/Calprotectin

Lactoferrin

Lipocalin 2

Cathelicidin

(Continued)
Frontiers in Immunology | www.frontiersin.org
 5
 October 2021 | Volume 12 | Article 735324

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
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concentration discovered the upregulation of MMP-7, MMP-8
and MMP-9, with inconsistent conclusions for MMP-2 (93, 96–
103). The discrepancies for MMP-2 are the result of different
experimental settings; the studies by Fortunato et al. (96) and
Myntti et al. (102) have seen an increase in total levels of MMP-2
and in catalitically active levels of MMP-2 (tissue inhibitor of
metalloproteinases (TIMP)-free MMP2) in the hAF samples,
while Flores-Herrera et al. (99) used an in vitro model of
infected amnio-chorionic membrane and did not observe an
increase in the secretion of proMMP-2. MMP inhibitor TIMP1
was increased in preterm PROM and in IAI, while TIMP2 was
decreased in preterm PROM (96, 99, 102). Similarly, a higher
ratio of MMP : TIMP was observed also in the placenta and in
maternal serum in cases of preterm birth (104, 105). Interestingly,
the altered levels of MMPs and their inhibitors in the plasma of
preterm infants appear to have a role in the development of
bronchopulmonary dysplasia and intraventricular hemorrhage
(106). Overall, there are still very few results concerning MMPs,
therefore, definitive conclusions are still missing. Fetal membrane
weakening can also be caused by prothrombin, which was shown
to be upregulated in hAM when stimulated with Ureaplasma
parvum in an in vitro study (108–110). Moreover, the disruption
of tight junctions between AECs was observed and characterized
by the loss of claudins 3 and 4 in mice, where IAI was induced
with lipopolysaccharide (LPS) administration (88). In the same
setting, apoptosis of the AECs was also observed. Studies of hAM
samples, obtained at term, show high levels of endocytosis and
autophagy, thought to be induced by lack of nutrients and
possibly hormonal changes during the end of pregnancy (215).
Autophagic death and apoptosis of hAECs are elevated at
ruptured sites of the hAM, signifying their involvement in the
weakening and rupture of hAM at term (216). Nevertheless, more
studies are needed to decipher the role of different intrinsic cell
deaths of hAECs in IAI. Infection of hAM cell line by Listeria
monocytogenes, a rare but very dangerous pathogen in IAI, results
in cell necrosis after bacteria have successfully multiplied,
suggesting yet another way of hAM weakening (89).
Frontiers in Immunology | www.frontiersin.org 6
Infection, inflammation, and related oxidative stress promote
cell senescence of hAEC, and have been observed in hAM of
premature PROM (90–92). Throughout pregnancy, EMT and
the reverse mesenchymal-to-epithelial transition (MET)
contribute to healing of small hAM ruptures and the
maintenance of hAM integrity during the fetal growth (217).
The process is partially regulated by oxidative stress and
transforming growth factor b, which promote EMT, and by
progesterone, which promotes MET (39, 218, 219). However, at
term the homeostasis of hAM remodeling via cellular transitions
is disrupted by irreversible EMT of hAECs, which is necessary
for weakening of the membrane and parturition (92).
Furthermore, in vitro studies with hAECs were shown to
undergo EMT when stimulated with TNFa (93, 94). Therefore,
an imbalance in EMT andMETmay occur due to IAI and related
oxidative stress, and may promote premature PROM.
Altogether, the considerable changes to the extracellular matrix
and hAM cells during IAI can weaken the hAM, promote
preterm onset of labor, and allow further complications for the
pregnancy (Figure 2).

Immune Cells
In the hAF of women with IAI the total leukocyte count is up to
100-fold increased (68, 120, 140, 155, 220, 221). The leukocytes
are also elevated in preterm PROM, especially in extremely early
gestation (103). There is a general increase in T lymphocyte
numbers associated with hAF inflammation, which is largely due
to T helper cells, although NK and cytotoxic T lymphocytes have
been implicated as well (68, 120, 221, 222). Importantly, the
number of phagocytic monocytes/macrophages and neutrophils
is drastically higher in the hAF of IAI cases (68, 114, 120, 221–
223). Neutrophils found in the hAF during IAI, can mostly
originate from the mother, or fetus, or both (112, 113), and have
been shown to phagocytose bacteria and form neutrophil
extracellular traps (NETs) (114, 115). NETs are actively formed
by a process called NETosis, during which the chromatin and
antimicrobial proteins are released into neutrophil vicinity,
TABLE 1 | Continued

Component of the innate immune system Function Response to the intra-amniotic infection

Lipids and
derivatives

Prostaglandins Bioactive molecules that mediate
human parturition

Intra-amniotic infection leads to an increased prostaglandin-prostamide ratio (122,
139, 184–197).

5-lipoxygenase pathway
molecules

Intra-amniotic infection causes an increase of molecules of 5-lipoxygenase
pathway (191, 198).

Complement
system

Complement molecules
C3a, Bb

Complement activation lyses
pathogens and regulates innate and
adaptive immune response

C3a and Bb are increased in the hAF of women with intra-amniotic infection (199,
200).

Inhibitor CD-59

Other
molecules
and
pathways

Glycolysis Various - consequence of infection/
inflammation or unknown

Upon intra-amniotic infection or inflammation numerous molecules show changed
concentration in the hAF (102, 174, 178, 201–211).

Gluconeogenesis

Iron homeostasis

Immune cell products

Other
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thereby entrapping, disarming, and killing the pathogens (224).
Unsurprisingly, the immune cells are also present in amnio-
chorionic membrane, and the presence (and abundance) of
neutrophils or lymphocytes defines the stage of acute or
chronic chorioamnionitis, respectively (116, 117). Neutrophils
and monocytes/macrophages are most abundant in hAM in
acute chorioamnionitis and natural killer cells can also be
found, while CD3+ and CD8+ lymphocytes are present in
moderate amounts in chronic chorioamnionitis with smaller
number of CD4+ (helper T) cells (115–117, 141, 225–227). As
is explained in the reviews by Cappelletti et al. (80) and Hoo et al.
(227), during normal pregnancy, the decidual-placental interface
is rich with immune cells, which become activated in IAI and
migrate towards amnio-chorionic membrane (80). The immune
cells involved in the inflammation are of maternal and fetal
origin, and must maintain a delicate balance of eliminating an
infection, while preventing the damage to the fetus. The role of
both populations, maternal and fetal, should be further studied.
A recent paper by Gomez-Lopez (228) suggests that the
activation of fetal T lymphocytes in the hAF may be enough to
cause preterm birth in some cases (228). The presence and
activation of immune cells, however, is the result of a complex
regulatory network that begins with the identification of
pathogens or their components.

Pattern Recognition Receptors
Pattern recognition receptors are proteins that have evolved to
recognize conserved features of microbes PAMPs and molecules
released by damaged cells DAMPs (229, 230). PRRs can be
divided into four major groups, namely 1) Toll-like receptors
(TLRs), 2) the nucleotide-binding oligomerization domain
(NOD)- Leucin Rich Repeats (LRR)-containing receptors
(NLRs), 3) the retinoic acid-inducible gene 1 (RIG-1)-like
receptors (RLRs) and 4) the C-type lectin receptors (CLRs)
(229, 231). The engagement of PRRs on the cells of the innate
Frontiers in Immunology | www.frontiersin.org 7
immune system induces co-stimulatory signals for the cells of the
adaptive immune system (229, 232, 233). DAMPs and PAMPs,
which trigger PRRs, can indirectly cause tissue remodeling and
fetal membrane weakening, though the regulation of these
processes in the context of IAI has not been elucidated yet
(40). Furthermore, hAECs release exosomes packed with
inflammatory mediators, such as DAMPs, PAMPs and SASP,
which induce inflammation in uterine tissue that promotes
(preterm) labor (213, 234–236).

TLRs1-10 are expressed in hAEC and hAMSC at
transcriptional level under normal (non-IAI) conditions at
term (122, 237, 238). Specifically, TLR1, TLR2, TLR4, TLR5,
TLR7, TLR8, TLR9, and heterodimer TLR6/2 are involved in
active sensing and regulation of IAI (122–127). For example, LPS
simultaneously binds to myeloid differentiation factor 2 and
TLR4 that relays signalling of NF-kB through a TLR mediator
MyD88, thereby inducing cytokine release (123, 128, 129).
Alternatively, TLR4 activation in hAEC can lead to apoptosis
via Bax/Bcl-2 caspase-3 pathway, thereby triggering a different
immune response (122). IL-1R-associated kinase 1 (IRAK1),
which is a mediator in TLR/IL-1 pathway, is increased in the
hAF in IAI, and showed strong response to intra-amniotic LPS
stimulation in animal models (130). IRAK2 plays a similar role
and is upregulated in women with preterm IAI (127).

Cytoplasmic PRRs, referred as NLRs, namely NLRP1, NLRP3,
NLRC4 and NOD2 were increased at transcriptional level in the
presence of IAI in women with preterm labor, although NOD2
was decreased at protein level (118). In a mouse model Faro et al.
(132) demonstrated that LPS upregulated NLRP3 inflammasome
and downstream caspase-1 and IL-1b at mRNA and protein
level, ultimately leading to IAI-induced preterm birth (132).
Moreover, several studies in humans have demonstrated
increased levels of apoptosis-associated speck-like protein
containing a CARD (ASC; adaptor protein involved in
inflammasome assembly) in infection and inflammation (133,
FIGURE 2 | Intra-amniotic infection and inflammation induce structural changes in the hAM, such as enzymatic degradation of extracellular matrix (ECM), EMT of
hAEC, senescence, apoptosis and necrotic death of hAEC, and loss of tight junctions between hAEC, all of which weakens the hAM and can cause PROM. Change
in levels of numerous molecules, as well as prostaglandin-prostamide ratio, can induce labor and lead to preterm labor.
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220, 239). In addition, functional ASC activation observed by
speck formation has been demonstrated in vitro in hAEC and
hAMSC (240). Assembled and activated NLRP3 inflammasome
cleaves pro-caspase-1, which in turn cleaves and activates IL-1b,
IL-18 and gasdermin D (134, 135). Gasdermin D induces an
inflammatory cell death pyroptosis, which releases cytokines IL-
1b and IL-18 into the environment (136, 137). In line with this,
several studies have indicated that IAI leads to an increase of
caspase-1, gasdermin D and IL-1b and IL-18 in the hAM and
hAF (118, 133, 138). The activation of PRR inflammatory
pathways has multiple consequences, 1) it can cause cell death
via various pathways, thereby damaging the integrity of the
hAM; 2) PRR downstream signalling changes the expression
profile of cells, synthesizing or activating the effector molecules;
3) living cells and cells undergoing inflammatory cell death
release the cytokines in the environment, promoting
inflammation. Altogether, the PRR activation has evolved to
respond to the infection, but in the case of IAI, the inflammation
itself is often equally damaging, as it can lead to preterm birth.

Cytokines
Numerous studies demonstrated an increase in pro-
inflammatory IL-1b, IL18, TNFa, granulocyte-macrophage
colony-stimulating factor, macrophage migration inhibitory
factor, high-mobility group protein 1 (118, 121, 128, 129, 141–
146 , 201) , an t i - inflammatory IL10 , n i co t inamide
phosphoribosyltransferase (128, 147, 201, 241),, and regulatory
IL-6 (128, 129, 144, 146–151, 201, 241) cytokines in the hAF with
IAI or preterm labor conditions. In fact, the IL-6 is considered as
an important biomarker of IAI (241–243) and an increased
presence of IL-6 (>2.6 ng/ml) in the hAF is used to define
inflammation (244). Moreover, chemokines IL-16, IL-8, IP-10,
monocyte chemoattractant protein-1, chemokine (C-X-C motif)
ligands (CXCLs)-1, -3, -4, -5, -6, -11, and L-selectin have also
been upregulated with IAI and related in vitro models (128, 146,
147, 154–159). Two comprehensive studies by Bhatti et al. (152)
and Romero et al. (140) further reveal the plethora of IAI-
induced cytokines in the hAF (140, 152). Of note, the type (e.g.
Gram positive, Gram negative, or other) and amount of bacterial
pathogens affect the quantity and diversity of cytokine upsurge in
the hAF or hAM cells (124, 159, 245, 246). For example, the
treatment of amnio-chorionic membrane with heat-inactivated
Escherichia coli and Gardnerella vaginalis strongly induced
secretion of IL-1b, while there were no statistically significant
changes in IL-1b secretion when the amnio-chorionic membrane
were treated with Group B streptococci, Mycoplasma hominis,
Ureaplasma urealyticum or Ureaplasma parvum. Similarly, there
was a strong increase in TNF-a secretion when the amnio-
chorionic membrane were treated with E. coli, Porphyromonas
gingivalis and G. vaginalis, while the treatment with M. hominis,
U. urealyticum and U. parvum only moderately increased the
secretion of TNF-a and there was no change in TNF-a secretion
in case of treatment with Group B streptococci (245). In another
study the amnio-chorionic membrane were treated with heat-
inactivated E. coli, G. vaginalis, Group B streptococci and
U. parvum, which led to the increase in IL-6 and IL-10
secretion. On the other hand, there was a statistically significant
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increase in IFNg secretion only when the amnio-chorionic
membrane were treated with E. coli (247). These studies
underline the variety of the immune response depending on the
bacterial species. Moreover, this together with technical reasons in
study design (small sample size, different measurement
techniques), as well as natural endogenous variability of the
immune response explains why some cytokines were not always
consistently increased upon IAI (120, 144, 248).

Antimicrobial Peptides
Antimicrobial peptides (AMPs) are typically small proteins with
a positive charge that directs them to negatively charged bacterial
surface. Most commonly they have a broad-spectrum activities,
can work synergistically and can disrupt bacterial membrane,
causing cell lysis (AMPs are nicely reviewed in (160, 161). AMPs
are expressed by the hAM cells (162–165) and are present in the
hAF (23, 162, 166–173). They play an important role in the
amniotic defence against pathogens and can be constitutively
expressed or upregulated in IAI. Most notable are human beta
defensins (HBDs)1-3, elafin and secretory leukocyte protease
inhibitor (SLPI), which are expressed by hAM cells (162, 174,
175). Specifically, HBD3 was shown to be upregulated in LPS and
peptidoglycan presence, both of which are components of
bacterial cell wall (176). The amounts of HBD1-3, elafin and
SLPI are also increased in the case of IAI (23, 102, 162, 172, 173),
though there is some evidence that SLPI and elafin are decreased
in preterm PROM (174, 249). Human neutrophil (or alpha)
defensins (HNPs)1-3, lysozyme and lactoferrin were also found
in the hAF in women with non-complicated pregnancies (170,
182). Moreover, HNP1-3, calgranulin/calprotectin, bactericidal
permeability-increasing protein, lactoferrin, lipocalin 2 and
cathelicidin family members are increased in the hAF of IAI or
preterm labor (100, 101, 150, 152, 166, 168, 169, 171, 177, 178,
183, 179, 180) Overall, the presence and activation of numerous
variable AMPs in normal pregnancy and in IAI imply an
important role of AMPs in prevention and resolution
of infections.

Lipids and Their Derivatives
Bioactive lipids, such as prostaglandins, are crucial in the onset
of labor, specifically in the induction of uterine contractions,
and are in fact used to artificially stimulate labor (250–252).
Given that they are also involved in inflammation, they might be
involved with induction of preterm labor in the case of IAI (184).
Even though there are a few conflicting results, most studies
show that hAF of IAI patients has increased prostaglandin-
prostamide ratio due to an increase of prostaglandins PGE2,
PGF2 and PGF2a and decrease of their respective prostamides
(155, 185–194). Similar conclusions were obtained in in vitro
models, in which LPS, IL-1b, TNFa, or whole bacteria
stimulation was used to mimic infection and inflammation,
though 13,14-dihydro-15-keto-PGF2a levels were decreased in
one study (139, 195, 196). Additionally, Gillaux et al. (122)
demonstrated an upregulation of prostaglandin-endoperoxide
synthase 2, a key enzyme in the synthesis of prostaglandins,
through TLR5 and TLR6/2 stimulation in hAECs (122).
Interestingly, Maddipati et al. (191) detected a decrease in
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lipids with anti-inflammatory/proresolution properties in the
case of IAI (191). Perhaps most striking is an observation that
women with a PGF2a concentration in the hAF above the 95th

percentile had a higher rate of IAI, shorter amniocentesis-to-
delivery time, and significantly more preterm deliveries (190,
253). Additionally, proinflammatory lipid mediators belonging
to the 5-lipoxygenase pathway (5-hydroxyeicosatetraenoic acid
and leukotriene B4) are increased in IAI in comparison to sterile
inflammation (254).

Complement System
The complement system is composed of over 40 proteins
(serine proteases, receptors and regulators), and it becomes
activated through one of the three pathways depending on the
trigger – classical, alternative or lectin pathway. After the initial
trigger molecule binding, the convertase enzymes cleave
proteins C3 and C5, leading to the assembly of membrane
attack complex on the microbe membrane that causes the lysis
of the pathogen (255, 256). Besides direct destruction of
pathogens, the complement system is also a mediator for
several innate and adaptive inflammatory processes (256,
257). Hammerschmidt et al. (258) demonstrated that hAF is
capable of activating complement, with higher activation in
hAF from women with distressed pregnancies, meaning that
the women suffered from amnionitis, nonimmune hydrops
fetalis, class T diabetes, or severe preeclampsia (258). Another
study showed that elevated hAF levels of C3a, but not C5a, were
associated with IAI and preterm delivery in women with
cervical insufficiency or a short cervix (199). Moreover, the
concentration of catalytical subunit of complement factor B
(Bb) in hAF was higher in the case of IAI among women with
preterm labor or preterm PROM, indicating the activation by
alternative complement pathway (200). In addition, regulation
of complement activation could be mediated by a membrane-
bound complement inhibitor CD59, which was shown to be
expressed by hAEC and hAMSC (259). The existing studies
show the involvement of complement system in IAI, however,
more research is needed to determine the extent of activation,
triggered pathways, and the significance of complement
activation in this setting.
A HOLISTIC VIEW ON THE INTERPLAY
BETWEEN A PATHOGEN AND THE
IMMUNE RESPONSE IN THE
hAM AND hAF

All Parts of the Innate Immune Response
Are Active During IAI
Numerous studies that were mentioned in this review have
proven that all parts of the innate immune response are active
in the hAM and hAF in the presence of IAI. The components of
this response are summed up in Table 1, along with their
respective function and response to IAI. Other pathways and
molecules with less-obvious connection to the immune system
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are also listed in Table 1 and their importance as biomarkers is
discussed in Chapter 4.3. Given the complexity of the immune
response and the consequences, it has become clear that even
though the role of the immune response is to prevent or eradicate
the pathogens, severe inflammation itself might cause additional
undesired complications for the fetus.

Environmental and Endogenous Factors
Influence the Immune Response in IAI
Due to its structural and physiological differences, pathogen
species is an important factor in IAI immune response (124,
125, 159, 202, 245, 246). Moreover, there are several
environmental and endogenous factors that influence the
immune response, not only its strength, but also which of its
pathways are triggered. For example, it was observed decades ago
that black and African American women have a higher prevalence
of poor perinatal outcomes, and later studies show significant
differences in hAF immune system response between different
races (245, 260–264). For instance, it has been shown that in
comparison to African Americans, Caucasians have higher hAF
levels of soluble TNF receptor in response to IAI, meaning that
TNF-a activity in African Americans is more pronounced (265).
Recent advances have shown that these differences are partly a
result of genetic predispositions, and multiple single nucleotide
polymorphisms were linked to an increased risk for IAI and
spontaneous preterm birth (262, 263, 266–269). Nevertheless,
environmental factors, such as psychosocial and socioeconomic
factors, maternal stress, and epigenetic changes, contribute to the
disparities between demographic groups (270–274). For example,
psychological stress and depression likely promote preterm birth
through inflammation, as is evidenced by increased
proinflammatory cytokines IL-6 and TNF-a in the maternal
serum (275, 276). Additionally, lifestyle determinants, in
particular inadequate diet and nutrition, higher body mass index
or obesity, smoking and alcohol consumption, were shown to be
relevant risk factors for preterm birth (277–283). For instance,
obese patients (class II and III) had increased hAF concentrations
of IL-1b and IL-6, and MMP-1, MMP-6, and MMP-13 (284).
Finally, the maternal infection with SARS-Cov-2 has been
associated with higher incidence of premature delivery, PROM,
and neonatal intensive care unit admissions, and the effect of
SARS-Cov-2 on pregnancy is currently under intense investigation
(54, 55, 285).

The Potential, Feasibility, and Problems of
the Existing IAI Biomarkers
In this review we have focused on the innate immune system
components present in the hAM and hAF. However, other
molecules and pathways have been monitored in relation to
IAI, preterm labor and preterm birth in order to find specific and
reliable biomarkers to evaluate the risk of pregnancy
complications. For instance, a study by Hong et al. (178)
identified several proteins and pathways with altered protein
levels in the hAF, such as vascular endothelial growth factor
receptor 1 and Fc fragment of IgG binding protein, and pathways
of glycolysis, gluconeogenesis, and iron homeostasis (178). In
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line with this, glucose concentration in the hAF was lower in case
of IAI, while hepcidin – a regulator of iron release – was
increased (203, 204). Understandably, neutrophil products
myeloperoxidase and neutrophil elastase have also been
increased in the presence of microbes in the hAF (102, 174,
205), as have been signaling molecules nitric oxide metabolites
(197, 202, 206). To name a few more, neurotrophin 3, brain-
derived neurotrophic factor, triggering receptor expressed on
myeloid cells 1, resistin, soluble human leukocyte antigen-G,
angiopoietin-2, cell-free DNA, and histones H3, H4, H2B have
all been increased in hAF of women with IAI (100, 201, 207–
211). Currently, the samples for determination of IAI are
obtained by amniocentesis, which is an invasive approach,
while ideally, biomarkers for pregnancy complications should
be measured from harmlessly obtained sources. So far, maternal
blood, urine, cervicovaginal fluid, and even saliva have been
proposed (286–292). Lamont et al. (293) outlined the potential,
feasibility and problems of the existing biomarkers, including
their retrieval, and hopefully, increasing endeavors and
knowledge will bring reliable and safely obtained biomarkers to
the clinic in the near future (293).

It is important to note that other tissues, such as placenta and
maternal blood, are also involved in the immune response that
occurs in the hAF. For example, maternal and fetal neutrophils
are recruited to the hAF during IAI (113). Specifically, decidua
acts as an important immune cell reservoir that is heavily
involved in the immune response in IAI acting from maternal
side, and two recent reviews have covered decidual role in IAI
(80, 227). Due to the high complexity and extent of the immune
system related to the IAI, we have not covered the contributions
of other tissues and adaptive immune response in this paper, but
they should be considered as well. Understanding the
engagement of other relevant tissues in IAI immune response
may also prove beneficial in detecting the IAI.
CONCLUDING REMARKS

In conclusion, the innate immune response of the hAF and hAM
is a complex and highly regulated process, signified by the
involvement of immune cells, mediators and effectors
discussed in this paper. However, because of the complexity,
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an infection might not always be resolved, or the inflammation
might become uncontrolled, both of which present a danger of
pregnancy complications that may harm the fetus. Thus, it is
vital that we understand the pathogenesis of different
microorganisms and the variable involvement of the innate
immune system of the hAF and hAM. While most of the
studies covered in this article were designed to detect specific
parts of the immune response, such as immune cells, cytokines,
or AMPs, there is a lack of comprehensive and mechanistic
studies. Such studies, covering all parts of the immune response
in a specific setting, or studies that would reveal detailed
regulation of the immune signalling network depending on the
pathogen and endogenous factors, would give us a more holistic
view on the interplay between a pathogen and the immune
response in the hAM and hAF. This understanding is critical in
early detection of IAI, its categorization, and sequential
treatment options, which will altogether lower the incidence of
pregnancy complications and related risks for the fetus.
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et al. Mid-Gestation Serum Lipidomic Profile Associations With
Spontaneous Preterm Birth Are Influenced by Body Mass Index. PLoS One
(2020) 15(11):e0239115. doi: 10.1371/journal.pone.0239115

284. Melekoglu R, Ciftci O, Eraslan S, Basak N, Celik E. The Effects of Body Mass
Index on Second-Trimester Amniotic Fluid Cytokine and Matrix
Metalloproteinase Levels. Gynecol Obstet Invest (2018) 83(1):70–5.
doi: 10.1159/000455192

285. Martinez-Perez O, Prats Rodriguez P, Muner Hernandez M, Encinas Pardilla
MB, Perez Perez N, Vila Hernandez MR, et al. The Association Between
SARS-CoV-2 Infection and Preterm Delivery: A Prospective Study With a
Multivariable Analysis. BMC Pregnancy Childbirth (2021) 21(1):273.
doi: 10.1186/s12884-021-03742-4

286. Chan RL. Biochemical Markers of Spontaneous Preterm Birth in
Asymptomatic Women. BioMed Res Int (2014) 2014:164081. doi: 10.1155/
2014/164081

287. Park H, Park KH, Kim YM, Kook SY, Jeon SJ, Yoo HN. Plasma
Inflammatory and Immune Proteins as Predictors of Intra-Amniotic
Infection and Spontaneous Preterm Delivery in Women With Preterm
Labor: A Retrospective Study. BMC Pregnancy Childbirth (2018) 18
(1):146. doi: 10.1186/s12884-018-1780-7

288. Aung MT, Yu Y, Ferguson KK, Cantonwine DE, Zeng L, McElrath TF, et al.
Prediction and Associations of Preterm Birth and Its Subtypes With
Eicosanoid Enzymatic Pathways and Inflammatory Markers. Sci Rep
(2019) 9(1):17049. doi: 10.1038/s41598-019-53448-z

289. Qiu L, Pan M, Zhang R, Ren K. Maternal Peripheral Blood Platelet-to-White
Blood Cell Ratio and Platelet Count as Potential Diagnostic Markers of
Histological Chorioamnionitis-Related Spontaneous Preterm Birth. J Clin
Lab Anal (2019) 33(4):e22840. doi: 10.1002/jcla.22840

290. Ansari A, Lee H, You YA, Jung Y, Park S, Kim SM, et al. Identification of
Potential Biomarkers in the Cervicovaginal Fluid by Metabolic Profiling for
Preterm Birth. Metabolites (2020) 10(9):349. doi: 10.3390/metabo10090349

291. Ma M, Zhu M, Zhuo B, Li L, Chen H, Xu L, et al. Use of Complete Blood
Count for Predicting Preterm Birth in Asymptomatic Pregnant Women: A
Propensity Score-Matched Analysis. J Clin Lab Anal (2020) 34(8):e23313.
doi: 10.1002/jcla.23313

292. Oskovi Kaplan ZA, Ozgu-Erdinc AS. Prediction of Preterm Birth: Maternal
Characteristics, Ultrasound Markers, and Biomarkers: An Updated
Overview. J Pregnancy (2018) 2018:8367571–. doi: 10.1155/2018/8367571

293. Lamont RF, Richardson LS, Boniface JJ, Cobo T, Exner MM, Christensen IB,
et al. Commentary on a Combined Approach to the Problem of Developing
Biomarkers for the Prediction of Spontaneous Preterm Labor That Leads to
Preterm Birth. Placenta (2020) 98:13–23. doi: 10.1016/j.placenta.2020.05.007

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Šket, Ramuta, Starčič Erjavec and Kreft. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
October 2021 | Volume 12 | Article 735324

https://doi.org/10.1111/j.1600-0412.2011.01135.x
https://doi.org/10.1016/j.ajog.2007.11.025
https://doi.org/10.1159/000096301
https://doi.org/10.2741/2052
https://doi.org/10.1111/iwj.12035
https://doi.org/10.1016/j.ajog.2017.12.009
https://doi.org/10.2105/AJPH.2014.302008
https://doi.org/10.2105/AJPH.2014.302008
https://doi.org/10.1371/journal.pone.0186151
https://doi.org/10.1097/NMC.0000000000000458
https://doi.org/10.1007/s43032-020-00456-4
https://doi.org/10.1038/s41390-020-01266-9
https://doi.org/10.1016/j.bbi.2009.02.012
https://doi.org/10.1016/j.bbi.2009.02.012
https://doi.org/10.1097/01.psy.0000170331.74960.ad
https://doi.org/10.1016/S0002-9378(98)70214-5
https://doi.org/10.1093/jn/133.5.1668S
https://doi.org/10.1007/s10995-011-0895-5
https://doi.org/10.1111/ppe.12125
https://doi.org/10.1136/bmjopen-2016-015258
https://doi.org/10.1111/1471-0528.15899
https://doi.org/10.1111/1471-0528.15899
https://doi.org/10.1371/journal.pone.0239115
https://doi.org/10.1159/000455192
https://doi.org/10.1186/s12884-021-03742-4
https://doi.org/10.1155/2014/164081
https://doi.org/10.1155/2014/164081
https://doi.org/10.1186/s12884-018-1780-7
https://doi.org/10.1038/s41598-019-53448-z
https://doi.org/10.1002/jcla.22840
https://doi.org/10.3390/metabo10090349
https://doi.org/10.1002/jcla.23313
https://doi.org/10.1155/2018/8367571
https://doi.org/10.1016/j.placenta.2020.05.007
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	The Role of Innate Immune System in the Human Amniotic Membrane and Human Amniotic Fluid in Protection Against Intra-Amniotic Infections and Inflammation
	Introduction
	Human Amniotic Membrane
	Intra-Amniotic Infection And Inflammation
	Innate Immune System Defense Against Pathogens in the hAF and hAM
	AM as a Physical Barrier
	Immune Cells
	Pattern Recognition Receptors
	Cytokines
	Antimicrobial Peptides
	Lipids and Their Derivatives
	Complement System

	A Holistic View on the Interplay Between a Pathogen and the Immune Response in the hAM and hAF
	All Parts of the Innate Immune Response Are Active During IAI
	Environmental and Endogenous Factors Influence the Immune Response in IAI
	The Potential, Feasibility, and Problems of the Existing IAI Biomarkers

	Concluding Remarks
	Author Contributions
	Funding
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


