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Type IV secretion systems (T4SSs) play a central role in the pathogenicity of many important
pathogens, including Agrobacterium tumefaciens, Helicobacter pylori, and Legionella pneu-
mophila.TheT4SSs are related to bacterial conjugation systems, and are classified into two
subgroups, type IVA (T4ASS) and type IVB (T4BSS). The T4BSS, which is closely related
to conjugation systems of IncI plasmids, was originally found in human pathogen L. pneu-
mophila; pathogenesis by L. pneumophila infection requires functional Dot/Icm T4BSS. A
zoonotic pathogen, Coxiella burnetii, and an arthropod pathogen, Rickettsiella grylli – both
of which carry T4BSSs highly similar to the Legionella Dot/Icm system – are evolutionarily
closely related and comprise a monophyletic group. A growing body of bacterial genomic
information now suggests that T4BSSs are not limited to Legionella and related bacteria
and IncI plasmids. Here, we review the current knowledge on T4BSS apparatus and com-
ponent proteins, gained mainly from studies on L. pneumophila Dot/Icm T4BSS. Recent
structural studies, along with previous findings, suggest that the Dot/Icm T4BSS contains
components with primary or higher-order structures similar to those in other types of
secretion systems – types II, III, IVA, and VI, thus highlighting the mosaic nature of T4BSS
architecture.
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INTRODUCTION
Legionella pneumophila is the causative agent of the acute
pneumonia known as legionellosis or Legionnaires’ disease. The
genus Legionella was established in 1979 after a large outbreak
at the American Legion convention in Philadelphia 3 years ear-
lier (Brenner et al., 1979). L. pneumophila enters eukaryotic
host cells using the host cells’ own mechanisms: phagocytosis or
macropinocytosis (Horwitz, 1984; Watarai et al., 2001b; Peracino
et al., 2010). Early studies by Marcus Horwitz and his colleagues
revealed that the Legionella-containing vacuoles (LCVs) escape
from endocytic maturation processes, including the acidification
of LCVs and LCV–lysosome fusion (Horwitz, 1983; Horwitz and
Maxfield, 1984). The LCVs acquire endoplasmic reticulum (ER)-
like properties over time and L. pneumophila multiply within the
resulting replicative niche (Horwitz and Silverstein, 1980; Swanson
and Isberg, 1995; Tilney et al., 2001).

By 1998, taking advantage of the available forward genetic
approach, Ralph Isberg’s and Howard Shuman’s laboratories inde-
pendently discovered ∼20 L. pneumophila genes that are required
for the establishment of the replicative niche, intracellular repli-
cation, or macrophage killing (Berger et al., 1994; Brand et al.,
1994; Segal and Shuman, 1997; Andrews et al., 1998; Purcell and
Shuman, 1998; Segal et al., 1998; Vogel et al., 1998). These genes
have been named independently by the two groups: dot (for defect
in organelle trafficking) or icm (for intracellular multiplication).
The dot/icm genes were believed to encode a type IV secretion
system (T4SSs) – defined as bacterial macromolecular transport

systems closely related to conjugation systems – because (a) sev-
eral Dot/Icm proteins have limited sequence-level similarity to
components of conjugation systems; and (b) L. pneumophila has
the Dot/Icm-dependent ability to mediate the conjugal trans-
fer of IncQ plasmids (Segal and Shuman, 1997; Segal et al.,
1998; Vogel et al., 1998). When the nucleotide sequences of
IncI plasmids colIb-P9 and R64 became available to the pub-
lic in 1999–2000, it became obvious that the dot/icm genes are
closely related to the tra/trb genes of these IncI plasmids (Segal
and Shuman, 1999b; Komano et al., 2000; Wilkins and Thomas,
2000). It had been known that T4SSs play central roles as DNA
or protein transporters in the pathogenicity of many impor-
tant pathogens, including Agrobacterium tumefaciens, Bordetella
pertussis, Brucella species, and Helicobacter pylori. In 2002, L.
pneumophila was shown to deliver a protein substrate RalF to
the host cell cytosol using the Dot/Icm system; this established
that the Dot/Icm system can translocate effector proteins (Nagai
et al., 2002). Since then, over a hundred L. pneumophila pro-
teins have been experimentally shown to be translocated via the
Dot/Icm system (Hubber and Roy, 2010 as a review). Together,
the dot/icm genes encode a T4SS classified as type IVB, which is
closely related to the I-type conjugation systems (Lawley et al.,
2003), but is distinct from the conventional T4SSs now classified
as type IVA (Christie and Vogel, 2000; Sexton and Vogel, 2002).
Hereafter in this article, we use the term “type IVB secretion sys-
tem (T4BSS)” to mean the secretion/conjugation system family
closely related to the Legionella Dot/Icm system and the I-type
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conjugation system of IncI conjugal plasmids, unless otherwise
indicated.

Transport substrate proteins, including VirE2 and VirF of the
Agrobacterium VirB/D type IVA secretion system (T4ASS), have
C-terminal translocation signals (Vergunst et al., 2000, 2005). Like-
wise, RalF carries a C-terminal disordered region necessary for
translocation via the Dot/Icm system (Amor et al., 2005; Nagai
et al., 2005). The C-terminal signal hypothesis has been confirmed
by studies on a number of L. pneumophila effector proteins.

Coxiella burnetii is a zoonotic pathogen and the causative
agent of human Q-fever. Like L. pneumophila, C. burnetii estab-
lishes a specialized replicative compartment within host cells; the
properties of lysosome-derived Coxiella-containing vacuoles are
distinct from those of ER-derived LCVs. C. burnetii carries genes
closely related to the L. pneumophila dot/icm genes (Segal and
Shuman, 1999b; Sexton and Vogel, 2002; Seshadri et al., 2003).
The C. burnetii Dot/Icm proteins, including DotB, IcmW, and
IcmS, have been shown to be able to functionally substitute for
their L. pneumophila counterparts in intracellular replication; this
implies that the Coxiella Dot/Icm system is functional and plays
a critical role in interactions with its host cells (Zamboni et al.,
2003; Zusman et al., 2003). Until recently, C. burnetii was believed
to be an obligate pathogen (Omsland et al., 2009). L. pneumophila
has been successfully employed as a surrogate host to identify and

analyze C. burnetii effector proteins (Pan et al., 2008; Voth et al.,
2009; Chen et al., 2010).

Bacteria of the genus Rickettsiella are obligate intracellular
pathogens of a wide variety of arthropods. A phylogenetic study
of Rickettsiella popilliae and Rickettsiella grylli demonstrated that
these bacteria carry genes orthologous to dotB, dotO/icmB, and
icmQ (Leclerque and Kleespies, 2008). Analysis of the pub-
lished draft genome sequence of R. grylli (GenBank accession no.
NZ_AAQJ02000001) demonstrated that R. grylli encodes a nearly
full set of the dot/icm genes on its chromosome (Figure 1). A phy-
logenetic analysis using 16S rRNA sequences placed R. grylli as
the nearest neighbor of C. burnetii, under the family Coxiellaceae
(Roux et al., 1997). The families Legionellaceae and Coxiellaceae
are the only members of the order Legionellales, showing the intra-
cellular pathogens Legionella, Coxiella, and Rickettsiella to be evo-
lutionarily closely related bacteria, and comprise a monophyletic
group.

GENETIC ORGANIZATIONS OF T4BSSs
We noticed that the current release of the BLAST non-redundant
protein database (nr) contains quite a few proteins from various
pathogenic and environmental bacteria that have significant sim-
ilarity to L. pneumophila Dot/Icm proteins. This tempted us to
conduct phylogenetic analyses of these Dot/Icm-related proteins.

FIGURE 1 | Genetic organizations of selectedT4BSSs. Genetic
organizations of T4BSSs from the following bacteria or plasmids are
illustrated. Legionella pneumophila strain Philadelphia 1 (GenBank
accession no. NC_002942); Legionella longbeachae NSW150
(NC_013861); Rickettsiella grylli (NZ_AAQJ02000001); Coxiella burnetii
RSA 493 (NC_002971); Marinobacter aquaeolei VT8 pMAQU01
(NC_008738); Xanthomonas campestris pv. vesicatoria str. 85-10
pXCV183 (NC_007507); Achromobacter xylosoxidans A8 pA82
(NC_014642); Yersinia pseudotuberculosis IP 31758 153 kbp plasmid

(NC_009705); Burkholderia vietnamiensis G4 pBVIE03 (NC_009229);
Methylobacterium extorquens AM1 megaplasmid (NC_012811); Beijerinckia
indica subsp. indica ATCC 9039 pBIND01 (NC_012811); Gluconobacter
oxydans 621H pGOX1 (NC_006672); Burkholderia vietnamiensis G4 pBVIE04
(NC_009228), and IncI plasmid R64 (NC_005014). ORFs designated as
“0163” are conserved in several T4BSSs but not in Legionella, Coxiella,
Rickettsiella, or R64. ORFs designated as “TPase” are putative transposase
derivatives. Notably, B. vietnamiensis G4 harbors multiple plasmids that carry
distinct T4BSSs.
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We constructed a phylogenetic tree of a C-terminal domain of
DotG/IcmE (862–1046; Figure 2), because DotG is supposed to be
a central core component of the T4BSS, and the DotG domain is
conserved in T4BSSs and T4ASSs (see below for details). Legionella
species and their plasmids have been shown to encode T4ASSs (Lvh
and Trb), genomic-island associated T4SSs (GI or LGI) which may
function as integrative and conjugative elements (ICEs), and/or F-
type conjugation systems (Segal et al., 1999; Cazalet et al., 2004,
2010; Chien et al., 2004; Glockner et al., 2008; D’Auria et al., 2010;
Kozak et al., 2010; Schroeder et al., 2010). The proteins of these
distinct systems are distantly homologous to DotG and are suit-
able as outgroups in the phylogenetic analysis. DotG of Legionella,
Coxiella, and Rickettsiella, as well as DotG-homolog TraO of var-
ious plasmids, form distinct monophyletic clades. In addition to
these, a dozen proteins from a wide variety of proteobacteria are
placed in the major clade of DotG/TraO, distinct from outgroups.
Similar results were obtained from a phylogenetic analysis using
secretion ATPase DotB (data not shown). We looked closely at
the genomic sequences of bacteria that encode DotG- and DotB-
like proteins and whose genome projects have been completed, to
identify other T4BSS components; in Figure 1, we have illustrated
their genetic organizations.

Interestingly, nearly all the T4BSSs found in the analysis
are encoded on plasmids. Notable exceptions include Legionella,
Coxiella, and Rickettsiella Dot/Icm systems. It is most likely that
a common ancestor of these closely related bacteria acquired a
T4BSS on its chromosome, and that the T4BSS played a criti-
cal role in survival of the ancestor. The T4BSS acquisition on
chromosome might be related to the alteration of life style as intra-
cellular bacterium. Genes encoding T4BSS tend to gather in several
conserved gene clusters; it appears that there is little pressure to
keep them in a single locus. The conserved gene clusters include
(a) dotD–dotC–dotB (traH–traI–traJ in I-type conjugation sys-
tems), (b) dotM/icmP–dotL/icmO (trbA–trbC), and (c) dotI/icmL–
dotH/icmK–dotG/icmE (traM–traN–traO). Together with other
genes found in all T4BSSs, including dotA (traY) and dotO/icmB
(traU), these conserved genes are expected to encode core com-
ponents that play fundamental roles in transport activity. On
the other hand, the genes found only in the Dot/Icm systems
of Legionella and related bacteria may encode components that
are important for life as intracellular pathogens. In the following
section, we discuss T4BSS component proteins in detail, taking
advantages of developing genomic information and structural
insights. We do not intend to thoroughly review the type IVB
effector proteins and the regulation of T4BSSs here. Please refer to
excellent reviews recently published on these subjects (Segal et al.,
2005; Ninio and Roy, 2007; Shin and Roy, 2008; Franco et al., 2009;
Isberg et al., 2009; Hubber and Roy, 2010).

CORE COMPONENTS OF T4BSSs
THE PUTATIVE CORE COMPLEX OF THE L. PNEUMOPHILA Dot/Icm
SYSTEM
In 2006, Joseph Vogel and his colleague reported an excellent sys-
tematic study on component proteins of the Dot/Icm system (Vin-
cent et al., 2006b). Notably, they demonstrated that DotC, DotD,
DotF/IcmG, DotG/IcmE, and DotH/IcmK were fractionated into
outer membrane fractions. DotC and DotD are lipoproteins and

sorted to outer membranes even in the absence of other Dot/Icm
components. DotH is localized to the outer membranes, which
requires the lipoproteins DotC and DotD. Thus, DotC and DotD
appear to behave as a pilotin for DotH. DotF and DotG are intrinsi-
cally inner membrane proteins with single transmembrane helices.
In wild-type L. pneumophila, DotF and DotG are fractionated into
both inner and outer membrane fractions. The outer membrane
fractionation of DotF and DotG requires the DotC, DotD, and
DotH. These results suggest the presence of a complex spanning
both inner and outer membranes that contains these five proteins,
DotC, DotD, DotF, DotG, and DotH (Figure 3).

DotG/IcmE: THE CENTRAL COMPONENT OF THE CORE COMPLEX?
In 2009, major advances in structural research on T4ASS were
achieved by Gabriel Waksman and his colleagues. They biochem-
ically isolated the core complex spanning both inner and outer
membranes from the conjugation system of an IncN plasmid
pKM101 (Figure 4A; Fronzes et al., 2009). Furthermore, they
isolated the outer membrane complex from the core complex
treated with trypsin, and solved the crystal structure of the outer
membrane complex (Figure 4B; Chandran et al., 2009). The core
complex has 14-fold rotation symmetry and contains three pro-
teins, VirB7, VirB9, and VirB10, at a 1:1:1 molar ratio. In the outer
membrane complex, VirB10 faces to the central cavity and two
alpha helices from each monomer are inserted into the outer mem-
brane. VirB9 constitutes the outer lobe. VirB7 takes an extended
form and wraps around the complex.

DotG is an integral membrane protein with single trans-
membrane helix in an N-terminal region. As described above,
the C-terminal region of DotG (862–1046) is well conserved in
T4BSSs including I-type conjugation systems (TraO). However,
the sizes of DotG family proteins significantly vary: Legionella,
Coxiella, and Rickettsiella DotG proteins are significantly larger
than other siblings because of a variable region, which often
contains penta-peptide repeats (Segal et al., 1998), between the N-
terminal transmembrane and the C-terminal conserved regions.
As previously suggested (Segal et al., 1998; Vogel et al., 1998), the
C-terminal conserved region of DotG is significantly similar to the
TrbI domain (Pfam PF03743) found in VirB10 family proteins of
T4ASSs. Interestingly, the VirB10 region in the outer membrane
complex of the pKM101 conjugation system corresponds nicely to
the Pfam TrbI domain. The size variation of VirB10 family proteins
is documented as well; for instance, Cag7/CagY of the Helicobac-
ter cag PAI-associated T4ASS is far larger than the Agrobacterium
VirB10 (Liu et al., 1999). These suggest that T4BSS has an outer
membrane complex similar to that of T4ASS, and DotG is the
counterpart of VirB10 in the outer membrane complex.

DotC, DotD, AND DotH/IcmK
Besides VirB10, the core complex of T4ASS also contains VirB7
and VirB9. Agrobacterium VirB7 is an outer membrane lipopro-
tein; it forms a heterodimer with VirB9 and stabilizes several
VirB proteins, including VirB9 (Fernandez et al., 1996). None of
T4BSS proteins has detectable sequence-level similarity to T4ASS
VirB7 and VirB9. Possible candidates for T4BSS counterparts of
these VirB proteins include DotC, DotD, and DotH. Like DotG,
DotC, DotD, and DotH are well conserved in T4BSSs, including
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FIGURE 2 | A phylogenetic tree of DotG/IcmE862–1046. Proteins that have
regions homologous to DotG/IcmE862–1046 were selected by multiple rounds of
PSIBLAST (Altschul et al., 1997) using the non-redundant protein database
(nr), as of November 30, 2010. Legionella proteins homologous to Ti plasmid
VirB10, RP4 plasmid TrbI and F plasmid TraB were incorporated in the analysis
as outgroups. The evolutionary history was inferred using the
Neighbor-Joining method (Saitou and Nei, 1987). The bootstrap consensus

tree inferred from 500 replicates is taken to represent the evolutionary history
of the taxa analyzed (Felsenstein, 1985). The percentages of replicate trees in
which the associated taxa clustered together in the bootstrap test are shown
next to the branches. The evolutionary distances were computed using the
Poisson correction method (Zuckerkandl and Pauling, 1965) and are in the
units of the number of amino acid substitutions per site. Evolutionary
analyses were conducted in MEGA4 (Tamura et al., 2007).
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FIGURE 3 | Legionella pneumophila Dot/IcmT4BSS. The putative core
complex containing DotC, DotD, DotH, DotG, and DotF was suggested by
Vincent et al. (2006b). A possible scenario of its assembly is as follows: (1)
outer membrane lipoproteins DotC and DotD recruit intrinsic periplasmic
protein DotH to the outer membrane, thus forming a DotC–DotD–DotH
outer membrane complex; (2) the C-terminal domain of DotG participates in
the outer membrane complex, resulting in a complex spanning both inner
and outer membranes; and (3) DotF participates in the core complex by
binding to DotG and/or the DotC–DotD–DotH complex. Subcellular
localization of Dot/Icm proteins are depicted based on lines of experimental
evidence (Roy and Isberg, 1997; Zuckman et al., 1999; Coers et al., 2000;
Matthews and Roy, 2000; Sexton et al., 2004a,2004b; Vincent et al., 2006b),
or prediction from amino acid sequences (DotE, DotJ, DotV, and IcmT).

I-type conjugation systems (TraI, TraH, and TraN, respectively).
However, the genes encoding DotH and DotG, and the genes
encoding DotC and DotD are often found in separate gene clus-
ters. In contrast, the genes encoding VirB7, VirB9, and VirB10 are
typically found in single gene clusters of T4ASSs.

DotC and DotD are outer membrane lipoproteins required for
the outer membrane targeting of DotH (Vincent et al., 2006b). L.
pneumophila strains that produce lipidation-site cysteine mutant
of DotC or DotD are partially defective in intracellular growth
(Yerushalmi et al., 2005). The defects due to these mutations
are additive, which suggest a genetic interaction between DotC
and DotD. DotD consists of a disordered N-terminal domain
and a globular C-terminal domain (Nakano et al., 2010). The
crystal structure of the C-terminal domain is remarkably sim-
ilar to the N-terminal subdomain of secretins, whereas these
domain/subdomains are poorly related to each other at the amino
acid sequence-level (Nakano et al., 2010; Figure 5). Secretins
form a protein family that participates in several macromole-
cule translocation processes across bacterial outer membranes,
notably type II and type III secretion (Genin and Boucher, 1994;
Hardie et al.,1996). Secretins are integral outer membrane proteins
that form substrate conduits. The protease-resistant C-terminal
domain of secretins forms rings with 12- or 14-fold rotation sym-
metry (Opalka et al., 2003; Collins et al., 2004; Chami et al., 2005),
and is embedded into the outer membrane. The N-terminal region
of secretins extends into the periplasm and may interact with

FIGURE 4 | Core complex of pKM101T4ASS. (A) Comparison of electron
micrographic structures of Vibrio cholera secretin GspD (type II secretin;
EMDB accession EMD-1763; Reichow et al., 2010), type III injectisome
isolated from �invJ Salmonella typhimurium (type III needle base;
EMD-1224; Marlovits et al., 2006), and T4ASS core complex of pKM101
conjugal plasmid (type IVA core; EMD-5031; Fronzes et al., 2009). (B) Top
and side views of pKM101 outer membrane complex (PDB accession
3JQO; Chandran et al., 2009). One of each protomer in the complex is
shown in color: VirB7 (blue), VirB9 (green), and VirB10 (red). (C) VirB7 takes
an extended form in the complex. Figures are generated using PyMol
(Schrodinger, 2010) and resources deposited to indicated databases.

inner membrane partners as well as substrates. The periplasmic
domain of secretins contains a most N-terminal DotD-like sub-
domain, followed by often-repeated Secretin_N domain(s) (Pfam
03958). Crystal structures of periplasmic domains of enterotoxi-
genic Escherichia coli (ETEC) GspD and enteropathogenic E. coli
(EPEC) EscC secretins, from type II and type III secretion systems,
respectively, containing the N-terminal DotD-like subdomains,
were not captured as multimers of cylindrical shape (Korotkov
et al., 2009; Spreter et al., 2009). Recently cryo-EM structure of
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FIGURE 5 | Comparison of the C-terminal domain of DotD with

secretin periplasmic subdomains. (A) Domain organizations of
L. pneumophila DotD (Nakano et al., 2010), EPEC secretin EscC (Spreter
et al., 2009), and ETEC secretin GspD (Korotkov et al., 2009). (B) DotD
(green, PDB accession 3ADY) superimposed onto the N0 domain of ETEC
secretin GspD (blue, PDB 3EZJ). (C) DotD (green) superimposed onto the
T3S domain of EPEC secretin EscC (light blue, PDB 3GR5). (D) A model of
T4BSS core complex. DotD may form a periplasmic ring, like the N0 domain
of type II secretin.

dodecameric full-length type II secretin GspD from Vibrio cholera
has been reported (Figures 4A and 5D; Reichow et al., 2010).
The periplasmic domain of V. cholera GspD forms a vestibule,
which binds to the substrate cholera toxin and tip of pseudopilins.
These findings imply that the C-terminal domain of DotD may
form a periplasmic ring that is a part of the T4BSS core complex
(Figure 5D). It should be noted that there is no counterpart of the
putative DotD ring in the pKM101 core complex.

Assuming that the core complex of T4BSS carries the VirB9
counterpart, DotH is the strongest candidate. Both proteins are
recruited to outer membranes, probably through interaction with
cognate outer membrane lipoproteins. Structural analyses indi-
cated that VirB9 is rich in beta-strands (Bayliss et al., 2007;
Chandran et al., 2009). Similarly, the protease-resistant C-terminal
domain, representing about two thirds of DotH, is predicted to
be rich in beta-strands, using PHDsec (our unpublished results).
Surface exposure of residues Asn-226, Pro-227, and Asp-228 of
Agrobacterium VirB9 has been reported (Bayliss et al., 2007). Like-
wise, the surface exposure of DotH in L. pneumophila treated in
certain conditions has been reported (Watarai et al., 2001a). Along
these lines, the N-terminal disordered domain of DotD may serve
as the VirB7 counterpart. The VirB7 in the pKM101 outer mem-
brane complex takes an extended conformation and wraps around

the complex (Figure 4C; Chandran et al., 2009). Mature VirB7
of pKM101 is a small peptide of 33 amino acids long, compa-
rable in size to the N-terminal disordered region of DotD (46
amino acids), which may interact with outer membrane compo-
nents such as DotH. Notably, some VirB7 family T4ASS proteins
including Helicobacter CagT are significantly larger than Agrobac-
terium VirB7, having an extra C-terminal region whose function
is not known (Alvarez-Martinez and Christie, 2009).

Alternatively, DotC and DotH may structurally correspond
to the Secretin_N and Secretin domains, respectively. In this
case, DotD, DotC, and DotH form an outer membrane complex
functionally equivalent to secretins. The DotG outer membrane
complex may associate with the secretin-like DotC–DotD–DotH
complex. Clearly, further studies are called to clarify the nature of
the T4BSS core complex.

DotF/IcmG
DotF is a ∼30 kDa protein composed of a small cytoplasmic
domain, a transmembrane domain, and a large periplasmic
domain. The periplasmic domain contains a putative coiled-coil
region that is potentially responsible for protein–protein interac-
tion, such as self-association and interaction with DotG (Vincent
et al., 2006b). The DotF homologs can be found in T4BSSs, includ-
ing I-type conjugation systems (TraP), whereas some T4BSSs have
no protein significantly similar to DotF. Furthermore, even among
homologous proteins, the region of similarity is limited mostly to
C-terminal regions. Consistently, unlike other components of the
putative core complex, DotF appears to be not essential for full
activities of the Dot/Icm system. An internal deletion/kanamycin-
cassette insertion dotF mutant (icmG635::Kan) was shown to be
partially cytotoxic to HL-60 cells (Purcell and Shuman, 1998).
This dotF mutant is not able to replicate within a protozoan host,
Acanthamoeba castellanii, but shows only a partial defect in growth
within HL-60 cells (Segal and Shuman, 1999a). Similar results were
obtained using an in-frame dotF deletion strain (our unpublished
results). Two-hybrid interactions of DotF and several effector pro-
teins, including RalF, LidA, and Sid proteins, have been reported
(Luo and Isberg, 2004). This raises the possibility that DotF is
somehow involved in substrate recognition or signal transduction
from the transport substrates to the T4BSS machinery.

DotI/IcmL AND DotJ/IcmM
DotI and DotJ are closely related integral inner membrane pro-
teins, essential to Dot/Icm-dependent activities. Both proteins
carry single transmembrane helices in N-terminal conserved
regions. DotJ consists only of the N-terminal conserved region.
DotI has an extra periplasmic domain. DotI is conserved in all
T4BSSs including I-type conjugation systems (TraM). Legionella
species encode multiple additional DotI-related proteins whose
functions are not known. C. burnetii appears to have only the
DotI-type protein but in two copies. R. grylli has both DotI- and
DotJ-types of proteins in terms of domain organization, but the
N-terminal conserved regions of both proteins are more closely
related to that of DotI than that of DotJ. Other T4BSSs have only
the DotI-type proteins. These suggest that the gene duplication of
dotI occurred in a common ancestor of Legionella, Coxiella, and
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Rickettsiella, and the DotJ-type protein was evolved after species
differentiation.

The gene encoding DotI is associated with the genes encoding
core components DotH and DotG, and the gene order dotI–dotH–
dotG appears to be well conserved in T4BSSs. These suggest pivotal
roles of the DotI in T4BSS activities. DotI (and DotJ) may form an
inner membrane complex that associates with the core complex.

DotE/IcmC, DotV, AND DotP/IcmD
DotE and DotV are closely related small integral inner mem-
brane proteins having four transmembrane helices. TraQ, of the
I-type conjugation system, has the same domain organization as
DotE and DotV, but the sequence-level similarity, if any, between
them is difficult to detect by homology search programs (BLAST,
e.g.). Proteins with domain organization similar to DotE/DotV are
found in most T4BSSs; the genes are typically located immediately
downstream of dotF. DotV is only found in Legionella species.

DotP, which has sequence-level similarity to DotE/DotV,
appears to be a shorter version of DotE/DotV, having two trans-
membrane helices. As with TraQ, TraR of the I-type conjugation
system has the same domain organization as DotP, but poor
sequence-level similarity. Proteins having similar domain orga-
nization to DotP are found in most T4BSSs; the genes are typically
located immediately downstream of dotE. In addition to the two
transmembrane helices, DotP is predicted to have a cleavable signal
sequence at the N-terminus (Purcell and Shuman, 1998). Inter-
estingly, multiplication of the gene encoding DotP is found in
L. longbeachae and R. grylli genomes.

DotO/IcmB
DotO is a large protein associated with all T4BSSs, including I-like
conjugation systems (TraU). The DotO family protein is distantly
homologous to VirB4 of T4ASS. Like VirB4, DotO has conserved
Walker motifs for nucleotide binding (Purcell and Shuman, 1998).
A cellular localization study showed L. pneumophila DotO to be
targeted to the inner membrane (Vincent et al., 2006b). The sur-
face exposure of DotO was reported in L. pneumophila that had
been treated under the same conditions as those in which DotH
was surface-exposed (Watarai et al., 2001a). The specific function
of DotO, however, remains unclarified.

DotL/IcmO, DotM/IcmP, AND DotN/IcmJ: T4CP AND ITS PARTNERS
DotL is a member of the type IV coupling protein family (T4CP).
T4CPs are associated with nearly all type IV secretion and con-
jugation systems, and are related to the FtsK/SpoIIIJ family DNA
motor proteins (Errington et al., 2001; Aussel et al., 2002; Massey
et al., 2006). The typical T4CP has transmembrane helices at its
N-terminus, followed by a large cytoplasmic domain. The cyto-
plasmic domain carries conserved Walker motifs and forms a
hexamer ring, which is anchored to the inner membranes via
the N-terminal transmembrane helices (Gomis-Ruth et al., 2001,
2002). Studies on conjugation systems indicate that T4CP inter-
acts with a nucleoprotein complex called relaxosome (de la Cruz
et al., 2010). The relaxosome contains a protein called relaxase,
which is a bona fide protein substrate; relaxase is translocated
into recipient cells even in the absence of trailing DNA (Draper

et al., 2005; Lang et al., 2010). These suggest that T4CP links pro-
tein substrates as well as DNA substrates to membrane-embedded
transport apparatus of T4SSs.

T4BSSs are also associated with T4CPs DotL (TrbC in I-type
conjugation systems). The genes encoding DotL are often cou-
pled with the genes encoding DotM (TrbA), whereas the homolog
of TrbB of I-type conjugation systems is missing in the Dot/Icm
systems of Legionella and related bacteria. DotL is essential for
viability of L. pneumophila strain Lp02 (Buscher et al., 2005). This
phenomenon is strain-dependent: DotL is not essential for the via-
bility of L. pneumophila strain JR32, a derivative of strain Philadel-
phia 1, as Lp02 is (Buscher et al., 2005). Transposon-inserted
suppressor mutations of lethality through DotL disruption were
mapped in several dot/icm genes, suggesting that lethality requires
a functional Dot/Icm system (Buscher et al., 2005). Insertion
mutants of DjlA (DnaJ-like protein) were also identified as sup-
pressors for the lethality phenotype (Vincent et al., 2006a). DjlA
mutants of Legionella species have been shown to be severely defec-
tive in intracellular growth (Ohnishi et al., 2004; Vincent et al.,
2006a). These suggest involvement of the DnaK chaperone system
in the assembly/quality control of the Dot/Icm apparatus. Inter-
estingly, DotM and a cytoplasmic/inner membrane protein, DotN,
showed the same essentiality as DotL, suggesting genetic interac-
tions between these proteins (Buscher et al., 2005). Furthermore,
DotL and DotM proteins are destabilized in Lp02-derived strains
lacking DotL, DotM, or DotN, suggesting biochemical interactions
between these proteins (Vincent et al., 2006b).

DotB: SECRETION ATPase POSSIBLY ORIGINATED FROM THE TYPE IV
PILUS BIOGENESIS SYSTEM
DotB is another protein in T4BSS that carries conserved Walker
motifs. Purified DotB is a hexametric ATPase in a ring shape,
the activity of which is essential to Dot/Icm-dependent activities
(Sexton et al., 2004b, 2005). The formation of the ring structure
does not require ATP binding/hydrolysis. In L. pneumophila cells
the majority of DotB was found to be cytoplasmic, while small
amounts of DotB were recovered in inner membrane fractions.

Secretion ATPases from type II and type IV secretion systems
are well conserved at the sequence-level. DotB is no exception;
DotB orthologs are well conserved in T4BSSs, including I-type
conjugation systems (TraJ). Interestingly, phylogenetic analyses
clearly indicate that DotB has a closer relationship to PilT, the
ATPase involved in the retraction of type IV pili, than to VirB11 of
T4ASS (Planet et al., 2001). Type IV pilus biogenesis systems are
closely related to the type II secretion system, and DotB is found
in the major clade to which ATPases from type II secretion and
type IV pilus biogenesis systems belong. In this connection, it is
notable that many plasmids harboring T4BSSs carry type IV pilus
biogenesis systems as well. Of particular interest, the gene encoding
DotO and the pil genes encoding a type IV pilus biogenesis system
of Gluconobacter oxydans pGOX1 comprise a single transcription
unit (Figure 1). The common ancestor of the genes encoding DotB
might originate from the co-existing type IV pilus biogenesis sys-
tem. In summary, phylogenetic analyses clearly indicate that at
least one component of T4BSS has a distinct origin from T4ASS,
which highlights the mosaic nature of T4BSS architecture.
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IcmT
IcmT is a small integral inner membrane protein. IcmT orthologs
can be found in most T4BSSs, including I-type conjugation sys-
tems (TraK). The gene encoding IcmT is often associated with
the gene cluster dotD–dotC–dotB. IcmT is essential for Dot/Icm-
dependent activities, but its specific function remains to be
clarified.

DotA
DotA is one of the most mysterious components of T4BSSs. DotA
is required for Dot/Icm-dependent activities; historically, defec-
tive DotA mutants have been frequently used in studies of the
Dot/Icm system with regard to pathogenicity of L. pneumophila.
The DotA in L. pneumophila is an integral inner membrane pro-
tein composed of a cleavable signal sequence, seven transmem-
brane helices, a large periplasmic domain and a small cytoplasmic
C-terminal domain (Roy and Isberg, 1997). DotA is well conserved
at sequence-level in T4BSSs, including I-like conjugation systems
(TraY), but the large periplasmic domain appears to be specific to
DotA orthologs in Legionella species. It should be emphasized that
cleavable signal sequences of integral inner membrane proteins is
rarely found in prokaryotes. More surprisingly, DotA is somehow
secreted into the extracellular milieu from culture-grown L. pneu-
mophila in a Dot/Icm-dependent fashion (Nagai and Roy, 2001).
The extracellular DotA forms ring-like oligomers with unknown
46 kDa protein. The elucidation of the specific function of DotA
awaits future studies.

COMPONENTS ONLY FOUND IN Dot/Icm SYSTEMS OF
LEGIONELLA AND CLOSELY RELATED BACTERIA
IcmF AND DotU/IcmH
IcmF and DotU were originally identified as components of the
L. pneumophila Dot/Icm system; most T4BSSs lack them, with
the notable exception of those in Legionella species. Homologous
proteins to IcmF and DotU are prevalent in a wide variety of pro-
teobacteria, while genes encoding them are associated with gene
clusters encoding the conserved IcmF-associated homologous pro-
teins (IAHPs). Now it has been well established that these IcmF
and DotU homologs are components of the type VI secretion sys-
tem (Cascales, 2008). L. pneumophila IcmF and DotU are partially
required for Dot/Icm-dependent activities (Sexton et al., 2004a;
VanRheenen et al., 2004; Zusman et al., 2004). The loss of IcmF
or DotU results in decreased amounts of core components, most
notably DotH and DotG (Sexton et al., 2004a). Moreover, the over-
expression of DotH was shown to suppress defects in intracellular
replication of the double-deletion mutant of IcmF and DotU. This
suggests that IcmF and DotU work together to stabilize the core
complex of the Dot/Icm system (Sexton et al., 2004a).

IcmW, IcmS, AND LvgA
IcmW, IcmS, and LvgA are small acidic cytoplasmic proteins
partially required for Dot/Icm-dependent activities (Zuckman
et al., 1999; Coers et al., 2000; Vincent and Vogel, 2006; Vincent
et al., 2006b). These proteins are destabilized in L. pneumophila
mutant strains lacking IcmW, IcmS, or LvgA, suggesting inter-
actions between them (Vincent and Vogel, 2006; Vincent et al.,
2006b). Binary complexes of IcmW–IcmS and of IcmS–LvgA have

been consistently reported (Ninio et al., 2005; Vincent and Vogel,
2006; Cambronne and Roy, 2007). It is not clear if the ternary
complex exists. The physical properties of these proteins mimic
those of transport chaperones of type III secretion systems, which
are often associated with cognate type III effector proteins and
required for their translocation and/or stability in bacterial cells.
This prompted speculation that these proteins may interact with
effector proteins like the type III chaperones; several effector pro-
teins, including WipA, SdeA, SidH, and SidG, were identified as
proteins that interact with IcmW and/or IcmS (Bardill et al., 2005;
Ninio et al., 2005; Cambronne and Roy, 2007). A detailed study on
the effector protein SidG showed that the IcmW–IcmS complex
binds to a distinct region of SidG from its C-terminal transloca-
tion signal, which probably results in a conformational change that
facilitates recognition of the C-terminal translocation signal by the
Dot/Icm machinery (Cambronne and Roy, 2007). Decreased lev-
els of DotL and DotM have been seen in IcmW or IcmS mutants,
which suggest potential interactions between DotL–DotM and
IcmW–IcmS (Vincent et al., 2006b). The IcmW–IcmS complex
may therefore play a role in recruitment of effector proteins to the
transport apparatus (Figure 3).

Interestingly, IcmS is only found in Legionella, Coxiella, and
Rickettsiella Dot/Icm systems,whereas IcmW is distributed beyond
this scope; IcmW orthologs are found in Marinobacter aquae-
olei VT8 pMAQU01 and Xanthomonas campestris pv. vesicatoria
str. 85-10 pXCV183 as well. LvgA orthologs are found only in
Legionella species. Taken into account their possible function facil-
itating substrate translocation, and the large numbers of effector
proteins that L. pneumophila are believed to translocate, it is tempt-
ing to speculate that these proteins evolved to meet the increasing
demands to translocate a wide variety of effector proteins as
intracellular pathogens.

IcmQ AND IcmR
IcmQ and IcmR are cytoplasmic proteins required for Dot/Icm-
dependent activities (Coers et al., 2000). IcmQ is composed of an
N-terminal domain, a short linker domain, and a large C-terminal
domain. Purified IcmQ tends to aggregate, which can be prevented
by the addition of purified IcmR (Dumenil and Isberg, 2001).
This suggests a chaperone–substrate kind of relationship between
IcmR–IcmQ. Purified IcmQ associates with synthetic lipid vesicles,
leading to vesicle disruption, as evidenced by the release of pre-
loaded calcein dye (Dumenil et al., 2004). The C-terminal domain
plays a primary role in membrane targeting mediated by electro-
static interactions, while the N-terminal domain may be inserted
into lipid bilayers and disrupts membranes (Dumenil et al., 2004;
Raychaudhury et al., 2009). The N-terminal domain also binds to
IcmR, which prevents IcmQ from the stable association with lipid
vesicles. Consistently in L. pneumophila lacking IcmR, significant
amounts of IcmQ are localized to membrane fractions (Dumenil
et al., 2004). Thus IcmR may have a regulatory function on IcmQ.
The site of function as well as the specific function of IcmQ is
unclear.

While IcmQ orthologs are found in Legionella, Coxiella, and
Rickettsiella Dot/Icm systems, the situation regarding IcmR is more
complicated. Proteins homologous to IcmR are found only in
L. pneumophila. In other bacteria closely related to L. pneumophila,
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the genes located at immediately upstream of the genes encod-
ing IcmQ encode proteins functionally equivalent, but poorly
related, to IcmR (so-called FIRs). It has been reported that vari-
ous Legionella species (other than L. pneumophila) and C. burnetii
carry FIRs which bind to cognate IcmQs (Feldman and Segal, 2004;
Feldman et al., 2005). Structural analysis of the complex of the
N-terminal domain of IcmQ (Qn) and IcmR provides insights into
the molecular basis of the IcmQ–FIR interaction (Raychaudhury
et al., 2009). The Qn–IcmR complex forms a four-helix bundle
– two helices each from IcmQ and IcmR. Two alpha helices of
IcmQ are amphipathic and the formation of the Qn–IcmR com-
plex is mediated by hydrophobic interactions. The hydrophobic
nature of residues participating in the interaction with IcmQ is
conserved among IcmR and FIRs, although they are poorly related
at sequence-level in general. It still remains unclear why IcmR/FIRs
are so divergent compared to other Dot/Icm components.

IcmX
IcmX is a primarily periplasmic protein conserved in Legionella,
Coxiella, and Rickettsiella Dot/Icm systems (Matthews and Roy,
2000). It has been suggested that IcmX is a distant homolog of
TraW of I-type conjugation systems (Segal et al., 2005), but we are
unable to follow the similarity, if any, between IcmX and TraW by
homology search and phylogenetic analyses. A truncated form of
IcmX was found in culture supernatant in a Dot/Icm-dependent
fashion (Matthews and Roy, 2000). Its physiological meaning, as
well as the specific function of IcmX, remains unclear.

IcmV
IcmV is an integral inner membrane protein conserved in
Legionella, Coxiella, and Rickettsiella Dot/Icm systems, whose
specific function remains unknown.

DotK/IcmN
DotK is an outer membrane lipoprotein found in Legionella
species and C. burnetii Dot/Icm systems. Two L. pneumophila
mutants, which carry a transposon insertion in the coding region
of DotK (icmN 3007::Kan) or a transposon insertion accompany-
ing a partial deletion of the promoter and the coding regions of
DotK (icmN 3006::Kan), were reported to be partially defective in
growth within a protozoan host, A. castellanii (Segal et al., 1998;
Segal and Shuman, 1999a). However, the defect was not comple-
mented with plasmids carrying DotK or DotKJIHG, which makes
it difficult to interpret the data on these mutations. DotK car-
ries the OmpA family domain (Pfam PF00691; Morozova et al.,
2004), which is conserved in bacterial peptidoglycan-binding pro-
teins – notably in an outer membrane porin OmpA, a flagellar
stator MotB and peptidoglycan-associated lipoproteins (PALs).
The OmpA family domain functions as a peptidoglycan-binding

domain, suggesting that DotK anchors the Dot/Icm apparatus to
the peptidoglycan layer.

PERSPECTIVES
Genomic and metagenomic analyses have revealed that T4BSSs are
widely prevalent in bacterial realm (Figure 1). It is well recognized
that Legionella and Coxiella Dot/Icm T4BSSs play pivotal roles in
infection, while most of other T4BSSs may represent conjugation
systems. Rickettsiella is a facultative arthropod pathogen and phy-
logenetically closely related to Legionella and Coxiella. Recently
some pea aphids were reported to carry Rickettsiella species as
endosymbionts which modify insect body color (Tsuchida et al.,
2010). Rickettsiella infection appears to up-regulate production of
green pigments by host insects. Although the molecular mech-
anisms underlying the phenomenon have not been clarified, it
is tempting to guess that Rickettsiella T4BSS may play a role
in endosymbiosis. Future studies on T4BSSs of Legionella and
related bacteria might shed lights not only on the molecular basis
of bacterial pathogenesis but also on evolutionary history from
intracellular pathogens to mutualistic endosymbionts.

Structural studies on secretion systems of pathogenic bac-
teria including T4SSs are rapidly advancing in recent years.
Together with pioneer works on characterizations of L. pneu-
mophila Dot/Icm proteins, we are getting a grip on the T4BSS
core complex containing DotC, DotD, DotH, DotG, and DotF
(Figures 3 and 5D). Intriguingly, the T4BSS core complex
appears to be considerably different from the core complex of
pKM101 T4ASS. Sequence-level similarity is only found between
C-terminal domains of DotG and VirB10. T4BSS appears to be
more complicated than T4ASS; T4BSSs contain roughly twice the
number of component proteins than T4ASSs. Lines of evidence
now suggest the mosaic nature of T4BSS architecture: (a) secretion
ATPase DotB is phylogenetically related to ATPases from type II
secretion and related systems; (b) L. pneumophila Dot/Icm T4BSS
contains the genes encoding icmF and dotU, which are now rec-
ognized to encode components of the type VI secretion system;
and (c) The C-terminal domain of DotD is structurally similar to
a N-terminal subdomain of secretins of type II and type III secre-
tion systems. The nature of the T4BSS core complex as well as
the roles of component proteins in type IVB secretion and I-type
conjugation remain as major challenges of future studies.
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