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Abstract
Severe acute respiratory syndrome coronaviruses (SARS-CoVs) caused worldwide epidemics over the past few decades. 
Extensive studies on various strains of coronaviruses provided a basic understanding of the pathogenesis of the disease. 
Presently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is leading a global pandemic with unprecedented 
challenges. This is the third coronavirus outbreak of this century. A signaling pathway map of signaling events induced by 
SARS-CoV infection is not yet available. In this study, we present a literature-annotated signaling pathway map of reactions 
induced by SARS-CoV infected cells. Multiple signaling modules were found to be orchestrated including PI3K-AKT, Ras-
MAPK, JAK-STAT, Type 1 IFN and NFκB. The signaling pathway map of SARS-CoV consists of 110 molecules and 101 
reactions mediated by SARS-CoV proteins. The pathway reaction data are available in various community standard data 
exchange formats including Systems Biology Graphical Notation (SBGN). The pathway map is publicly available through 
the GitHub repository and data in various formats can be freely downloadable.

Keywords COVID-19 · Post-translational modifications · Protein–protein interaction · Translocation · Differential 
expression

Introduction

Coronaviruses (CoVs) are enveloped, single stranded, posi-
tive sense RNA viruses that are phenotypically and geno-
typically diverse. CoVs can infect bats, birds, cats, dogs, 
pigs, mice, horses, whales, and humans (Zaki et al. 2012). 
The first detected human coronavirus can be traced back 
to studies carried out in 1965 (Kahn and McIntosh 2005). 
However, the field of coronavirology advanced significantly 
in recent years (Kahn and McIntosh 2005). Though the exact 
mechanism of species-to-species transmission of the virus 
has not been clear. From the turn of the twenty-first century 
three deadly CoVs: the Severe Acute Respiratory Syndrome 
Coronavirus (SARS-CoV; 2002), the Middle East Respira-
tory Syndrome coronavirus (MERS-CoV; 2012), and the 
ongoing 2019 novel coronavirus, Severe Acute Respiratory 
Syndrome Coronavirus 2 (SARS-CoV-2) made a mark in 
history by causing havoc in different parts of the world (Guo 
et al. 2020). The diversity in these viruses can be attrib-
uted to RNA dependent RNA polymerases, as they possess 
high frequency of RNA recombination and large genome 
size as compared to other RNA viruses (Zaki et al. 2012). 
The shared proteins among the different CoVs may vary in 
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structure and function. However, the proteins seem to be 
multifunctional, indicating a common theme interconnecting 
CoVs (Wong and Saier 2021). The ability of SARS-CoVs 
to transfect hosts have been a major concern and eventu-
ally led from an epidemic to pandemic situation (Perlman 
and Netland 2009). SARS-CoV infection resulted in severe 
and potentially fatal lung disease. Majority of the patients 
infected with SARS-CoV showed febrile illness accompa-
nied by weakness. Nevertheless, a considerable popula-
tion of individuals developed severe inflammation of the 
lung, necessitating ventilator support and intensive care. 
Many patients from this group had acute respiratory dis-
tress syndrome (ARDS) with high mortality (Hui and Sung 
2004). Individuals of this group also showed manifestations 
of infection in other organ systems. Lymphopenia (Wong 
et al. 2003a), gastrointestinal symptoms (Leung et al. 2003), 
impaired renal functions (Chu et al. 2005), and impaired 
liver function (Chan et al. 2004; Wong et al. 2003b) were 
other common conditions.

SARS-CoVs have a genome size of ~ 30 Kb with 14 open 
reading frames (ORFs) encoding the viral proteins dur-
ing its infection cycle (Bruford et al. 2008; Gordon et al. 
2020). These proteins mainly comprise of four structural 
proteins, spike (S), membrane (M), envelope (E), and nucle-
ocapsid (N). Table 1 summarizes the functional receptors 
of various strains of CoVs. Broadly, CoVs infection cycle 
involves attachment/binding to the host cells, replicase pro-
tein expression, replication and transcription, assembly and 
release (Fehr and Perlman 2015). Of these, binding of CoVs 
to the host cell membrane receptors is a major determinant 
for the detection of infection cycle and host range of CoVs. 
To infect a new host species CoV must adapt to the receptor 
of the new host (Belouzard et al. 2012). Alternatively, host-
factors such as, interferon-inducible transmembrane proteins 
can play essential role to restrict or facilitate the attachment 
and entry of CoVs (Bailey et al. 2014; Huang et al. 2011; 
Zhao et al. 2014; Zhao et al. 2018).

Various studies determined CoV proteins modulating 
host signaling pathways through the interactions with host 
proteins (Khan and Islam 2021; Munjal et al. 2021). Par-
ticularly, studies have shown that activation of intracellular 
signaling cascades induced upon SARS-CoV infection leads 
to the post-translational modifications (PTMs) and activation 
of downstream molecules (Garrington and Johnson 1999; 
Kyriakis and Avruch 2001; Whitmarsh and Davis 2000). 
Predominantly, CoVs infection caused altered expression 
of host kinases, chemokines and transcription factors to 
evade host-immune responses and to aid replication and 
assembly of viral particle (Garrington and Johnson 1999; 
Kyriakis and Avruch 2001; Whitmarsh and Davis 2000). 
Upon SARS-CoV infection, cell death has been observed 
in cultured Vero E6 cells (Mizutani et al. 2004c). Supple-
mentary Table 1 summarizes the list of cell lines used to 
investigate the biological functions induced by SARS-CoV 
(Kaye 2006). The signaling pathways regulating cell death 
and survival in SARS-infected cells were highly complex. 
The in-depth understanding of these regulatory mechanisms 
will help in underlying the pathophysiology of SARS-CoVs 
infection cycle and host-range.

Despite the immense need to understand the pathology 
of SARS-CoVs, the signaling pathway map of reactions 
induced by SARS-CoV proteins are not available. This 
study presents the signal transduction pathways of SARS-
CoV-infected cells in Graphical Pathway Markup Language 
(GPML) and SBGN format. GPML format is a custom XML 
format compatible with pathway visualisation and analysis 
tools such as, Cytoscape (Shannon et al. 2003) and PathVi-
sio (Kutmon et al. 2015). SBGN is a set of three complemen-
tary visual languages that helps in representing networks of 
biological interactions in a standard, unambiguous manner. 
This would further result in efficient representation, visuali-
zation, storage, exchange, and reuse of various types of bio-
logical knowledge (Bergmann et al. 2020). Nodes describe 
entity pools (genes, proteins, etc.) and process (associations, 
influences, etc.). Edges describe the relationship between 
the nodes.

Table 1  List of extensively 
studied coronavirus receptors 
and functions of non-structural 
proteins

Coronavirus Receptor References

HCoV-229E APN Yeager et al. (1992)
HCoV-NL63 ACE2 Hofmann et al. (2005)
HCoV-OC43 9-O-acetylated sialic acid Lu et al. (2020)
HCoV-HKU1 9-O-acetylated sialic acid Lu et al. (2020)
CCoV APN Benbacer et al. (1997)
BCoV N-acetyl-9-O-acetylneuraminic acid Schultze and Herrler (1992)
SARS-CoV ACE2 Li et al. (2003)
MERS-CoV DPP4 Raj et al. (2013)
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The generation of SARS‑CoV‑host signaling 
pathway map

An extensive search of published literature was performed 
using PubMed to annotate the reactions induced by SARS-
CoV proteins. Several query terms were used including, 
“SARS-CoV” AND “ACE2”, “SARS-CoV” AND “path-
way” OR “signaling”. The articles were screened for infor-
mation pertaining to protein–protein interactions (molecular 
association), PTMs (catalysis), transport (translocation of 
proteins between sub-cellular compartments), activation/
inhibition events and gene regulation events (Sharma et al. 
2015; Zhong et al. 2014) which were induced by SARS-
CoV infection in host cells. The pathway map was generated 
using PathVisio (version 3.3.0), an open-source pathway 
drawing software and CellDesigner (version 4.4.2), a process 
diagram editor for drawing gene regulatory and biochemical 
networks.

Results and discussion

The signaling events orchestrated by SARS-CoV are shown 
in Fig. 1. A number of signaling cascades are triggered 
during the entire process of viral infection, from S protein-
ACE2 binding for internalization into the host cells to apop-
totic cell death (Li et al. 2003). S protein of SARS-CoV 
was cleaved at multiple motifs by host type II transmem-
brane serine protease (TMPRSS2) that in turn activated the 

process of cell–cell or virus-cell fusion (Glowacka et al. 
2011). It was observed that overexpression of ACE2 allowed 
efficient SARS-CoV’s S driven cell–cell fusion (Glowacka 
et al. 2011). ACE2 and TMPRSS2 were co-expressed in type 
II pneumocytes (Glowacka et al. 2011). SARS-CoV was 
also found to be dependent on the activity of pH-depend-
ent endosomal cysteine protease cathepsin L (CTSL) for 
virus-cell fusion (Glowacka et al. 2011). The binding of 
S with ACE2 activated CSNK2A1 mediated ACE2 phos-
phorylation. This led to severe immune response involv-
ing cytokines and chemokines in pneumocytes of infected 
patients. (Chen et al. 2010). On infection with SARS-CoV 
various proinflammatory factors such as CXCL8, CXCL10, 
CCL2, CCL3, CCL5 and COX2 were found to be triggered 
through RAS-MAPK-AP1 and NFκB pathways (Cinatl et al. 
2005; Chen et al. 2010; Law et al. 2007; Hu et al. 2017). E 
protein, ORF3a and ORF8b were involved in the activation 
of NLRP3 inflammasomes (Nieto-Torres et al. 2015; Shi 
et al. 2019; Siu et al. 2019). Also, the activation of c-Fos, 
FosB, CREB1 and ATF2 by N protein showed its involve-
ment in the AP1 pathway (He et al. 2003). The role of 
SARS-CoV proteins in innate immunity have been reported 
by various studies. M protein of SARS-CoV inhibited the 
activation of interferon regulatory factor 3 (IRF3) and inter-
feron (IFN) synthesis by hampering the formation of a func-
tional TRAF3-TANK-TBK1/IKKϵ complex (Siu et al. 2009). 
The N protein interfered in the association of TRIM25 and 
DDX58 that led to the suppression of Type I IFN produc-
tion (Hu et al. 2017). ORF9b which was localized in the 
mitochondria (MT) induced ubiquitination and proteasomal 

Fig. 1  A schematic depiction of reactions induced by severe acute 
respiratory syndrome coronavirus (SARS-CoV). The pathway reac-
tion map depicts each type of reactions such as molecular associa-
tions, catalysis, and translocation events induced upon by SARS-CoV 
infection. Site and residue information of post-translational modifi-

cations are also provided whenever available in literature. Important 
pathways including, PI3K-AKT, Ras-MAPK, and NFκB were found 
to be activated. The edges representing the relationships between 
nodes are provided in the legend
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degradation of DNM1L (DRP1), leading to the elongation of 
MT. ORF9b possibly appropriates ITCH (AIP4), a ubiquitin 
E3 ligase to trigger the degradation of MAVS accompanied 
by loss of TRAF3 and TRAF6 thus significantly suppressing 
the IFN responses (Shi et al. 2014). Co-expression of nsp1 
in Type I IFN pathway decreased the phosphorylation lev-
els at Y701 and S727 of STAT1 and Y690 of STAT2 (Law 
et al. 2007). PLpro of SARS-CoV inhibited stimulator of 
interferon genes (STING)-mediated activation and transloca-
tion of IRF3 thereby preventing the induction of Type I IFN 
(Sun et al. 2012). PLpro also inhibited IFN production medi-
ated through agonist induced TLR7 signaling pathway by 
removing the K63 linked polyubiquitination of TRAF3 and 
TRAF6 (Li et al. 2016a). It disrupted the STING mediated 
signaling and then negatively regulated type I IFN induc-
tion (Chen et al. 2014; Sun et al. 2012). It also physically 
interacted with the STING-TRAF3-TBK1 complex, reducing 
the ubiquitinated forms of STING, DDX58, TRAF-3, TBK1 
and IRF3.

ORF6 (P6) of SARS-CoV could prevent IFN-β produc-
tion upon infection and may be involved in the suppres-
sion of the IFN immune signaling. It targeted N-Myc (and 
STAT) interactor (NMI) to induce its degradation, which led 
to NMI-enhanced IFN signaling suppression and was also 
involved in blocking STAT1 nuclear translocation(Cheng 
et al. 2015). ORF3b was accumulated in the nucleus during 
the initial phase. During the later phases it got translocated 
to the MT where it was involved in the inhibition of signal-
ing for the production of Type I IFN possibly by inhibiting 
the MAVS response to DDX58 (Freundt et al. 2009). SARS-
unique domain (SUD) of Nsp3 could enhance cellular E3 
ubiquitin ligase known as ring-finger and CHY zinc-finger 
domain containing 1 (RCHY1) that led to proteasomal deg-
radation of TP53 resulting in downregulation of TP53 (Ma-
Lauer et al. 2016). ORF8b directly interacted with IRF3 and 
affected its dimerization and phosphorylation status thereby 
suppressing IFN-β. In addition, the expression of ORF8b 
and ORF8ab also regulated the stability and function of 
IRF3 (Wong et al. 2018).

SARS-CoV infection has been shown to induce apopto-
sis through DNA fragmentation and activation of caspase 
(Mizutani et al. 2004c; Yan et al. 2004). ORF8a induced 
apoptosis by activating caspase-3 (Chen et al. 2007). The 
cytopathic effects on entry of SARS-CoV into the host were 
partially inhibited by p38-MAPK14 specific inhibitor, which 
indicated that p38-MAPK14 pathway may be involved in 
cell death (Mizutani et al. 2004c). Also, the activation and 
phosphorylation of p38-MAPK14 and its downstream tar-
gets including MAPKAPK2, HSPB1, RPS6KA1, CREB1, 
ATF1 and EIF4E were observed (Mizutani et al. 2004a, 
2004c, 2006). ORF3a inhibited the nuclear translocation 
of STAT3 leading to dysregulation in transcription of anti-
apoptotic genes (Padhan et  al. 2008). Infection of cells 

with SARS-CoV led to dephosphorylation of STAT3 at 
Y705 and increased the phosphorylation of STAT3 at S727 
(Mizutani et al. 2004a). p38-MAPK14 pathway was shown 
to be associated with STAT3 dephosphorylation at Y705 
(Mizutani et al. 2004a). SARS-CoV PLpro stimulated Egr-1 
(CUZD1) dependent activation of pro-fibrotic genes, TGFB1 
and THBS1 through ROS-MAPK-STAT3 pathway (Li et al. 
2016b). TGFB1 dependent expression of Type I collagen 
was stimulated by SARS-CoV PLpro via STAT6 pathway 
(Wang et  al. 2017). Additionally, JNK and PI3K-AKT 
pathways were essential for the persistence of SARS-CoV 
infection (Mizutani et al. 2005). AKT1 and its downstream 
targets, GSK3B1, PRKCI and PRKCZ were phosphorylated. 
AKT1 was phosphorylated at serine residue (S473) (Mizu-
tani et al. 2004b). Also, the overexpression of M protein 
led to downregulation of AKT1 phosphorylation thus induc-
ing apoptosis (Chan et al. 2007). E protein of SARS-CoV 
activated apoptosis by sequestering anti-apoptotic BCL2L1 
(Bcl-xL) to endoplasmic reticulum (Yang et al. 2005). Upon 
infection with SARS-CoV, N protein enhanced TGF-β/
Smad3-induced expression of plasminogen activator inhibi-
tor-1 (PAI-1) (Zhao et al. 2008). Thus, N protein modulated 
TGF-β signaling to block apoptosis of SARS-CoV-infected 
host cells while promoting tissue fibrosis (Zhao et al. 2008). 
ORF3a was involved in apoptotic pathway through indirect 
activation of TP53 by p38-MAPK (Padhan et al. 2008).

Conclusions

SARS-CoV-host signaling modules will accelerate the 
understanding of various molecules and their roles in the 
pathogenesis of infection caused by SARS-CoV-2. Most 
likely, SARS-CoV-host signal transduction pathway may 
be useful for the development of potential molecular tar-
gets for antiviral treatment against different strains of CoVs. 
The pathway map available through this study will thus pro-
vide the scientific community with a platform that will fur-
ther help to understand the pathology of various strains of 
SARS-CoVs.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12079- 021- 00642-2.
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