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ABSTRACT Small RNAs (sRNAs) have been discovered in every bacterium examined
and have been shown to play important roles in the regulation of a diverse range of
behaviors, from metabolism to infection. However, despite a wide range of available
techniques for discovering and validating sRNA regulatory interactions, only a minor-
ity of these molecules have been well characterized. In part, this is due to the na-
ture of posttranscriptional regulation: the activity of an sRNA depends on the state
of the transcriptome as a whole, so characterization is best carried out under the condi-
tions in which it is naturally active. In this issue of mSystems, Arrieta-Ortiz and colleagues
(M. L. Arrieta-Ortiz, C. Hafemeister, B. Shuster, N. S. Baliga, et al., mSystems 5:e00057-20,
2020, https://doi.org/10.1128/mSystems.00057-20) present a network inference ap-
proach based on estimating sRNA activity across transcriptomic compendia. This shows
promise not only for identifying new sRNA regulatory interactions but also for pin-
pointing the conditions in which these interactions occur, providing a new avenue
toward functional characterization of sRNAs.
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wo decades after the first genome-wide screens showed small RNAs (sRNAs) to be

a widespread feature of bacterial genomes, these short noncoding transcripts
remain enigmatic. High-throughput RNA sequencing (RNA-seq)-based approaches now
routinely find hundreds of potential SRNAs in any bacterium examined (1). Despite this,
only on the order of dozens of sSRNAs have been characterized in any detail, and the
number with clearly defined physiological roles is even smaller—in fact, it remains
unclear what fraction may even possess a function at all (2). While some characterized
sRNAs have specialized functions, such as titrating regulatory RNA-binding proteins (3),
the majority appear to effect their function through RNA-RNA interactions with target
transcripts. Depending on the molecular details and protein factors recruited, these
interactions can have a wide range of consequences, including activating translation (4)
or affecting transcript termination (5), but the most common outcome appears to be
repression of translation often with a concomitant decay of the target transcript. In the
best-characterized bacterial systems, Escherichia coli and Salmonella enterica, many of
these sRNAs appear to form regulatory networks centered on RNA-binding proteins
that facilitate RNA interactions, most famously Hfq (6) and the more recently discovered
ProQ (7).

The bottleneck in sSRNA characterization is not a lack of techniques. A basic molec-
ular toolkit for identifying and validating sRNA-target interactions was developed in the
mid-2000s by several different groups (8), and includes techniques like sRNA pulse
induction followed by transcriptomics to identify putative targets, reporter systems to
validate in vivo interactions, and structural probing to map the details of base pairs
formed in the interaction. Computational tools for predicting interactions based on
thermodynamic models of RNA folding have also been long available and are useful for
understanding individual interactions (9) but generally have too high a false-positive
rate to be useful for genome-wide predictions (10), though methods incorporating
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interaction conservation (11) or experimental evidence (12) are beginning to improve
this. More recently, approaches based on coupling pulldowns to high-throughput
sequencing have been developed. These approaches include GRIL-seq (global small
noncoding RNA target identification by ligation and sequencing) (13) and MAPS (MS2
affinity purification coupled with RNA sequencing) (14), which involve pulling down an
sRNA of interest with or without ligation, and RIL-seq (RNA interaction by ligation and
sequencing) (15), which relies on pulling down an RNA-binding protein and ligating the
RNA species interacting on it. These methods can provide direct evidence for sRNA-
target interactions, though they also often report tens to hundreds of potential
interactions, and it remains unclear how many of these impact cell physiology.

Beyond any inherent limitations of the techniques available, there is a more funda-
mental reason that sRNAs are difficult to characterize, namely, the inherently epistatic
nature of posttranscriptional regulation. It was recognized early on that sRNA-based
regulation is dependent on the overall cellular state in a way that transcriptional
regulators are not (16). Most obviously, an sRNA cannot regulate a transcript that is not
expressed under the tested conditions. More subtly, artificially induced competition for
central RNA-binding proteins can have dramatic global effects on sRNA-based regula-
tion (17), and it is becoming clear that similar phenomena affect regulation under more
ordinary conditions (18). Other factors, such as the condition-specific expression of
sRNA sponges (19), may reduce the regulatory activity of sSRNAs. There is even evidence
of cross talk between the networks mediated by RNA-binding proteins (20), adding
another layer of complexity. We are then left in a situation where we cannot easily
determine sRNA function because we do not know the conditions it is relevant to, and
we do not know the conditions it is relevant to because we do not know the function.

Arrieta-Ortiz and colleagues offer one way out of this conundrum (21), using
network inference (NI). NI is a collection of techniques that aim to reconstruct an
underlying regulatory network from large collections of transcriptomic data. These
techniques range from methods that apply clustering or thresholding approaches to
simple statistics like Pearson correlations or mutual information to systems of ordinary
differential equations that attempt to provide a working dynamic model of regulatory
interactions (22). One of the reasons these methods have not been more widely
adopted is the lack of large transcriptomic atlases from which to derive networks,
outside certain model organisms like E. coli. In fact, the mutual information-based
context likelihood of relatedness (CLR) algorithm was applied to sRNA network predic-
tion in E. coli almost a decade ago (23), with promising preliminary results. Now with
the wide availability of RNA-seq making such compendia easier to produce (24-26), NI
approaches are due for a revival.

The key innovation of Arrieta-Ortiz and colleagues’ method (21) is to account for the
epistatic nature of sSRNA regulation in applying NI. Building on their previous work with
transcription factors (27), they first apply a dimensionality reduction technique called
network component analysis (28) that uses an incomplete map of the regulatory
architecture of the cell to derive sRNA activity scores across the input transcriptomic
compendium accounting for known regulatory interactions. They show that these
scores anticorrelate more strongly with the expression level of sRNA targets than the
expression level of sRNAs themselves, as would be expected in the presence of
potential confounding factors. They then show that using these activity scores in place
of SRNA expression improves the recovery of known sRNA-target interactions not
included in the prior network with both their own NI approach, Inferelator (29), and a
hybrid approach based on CLR. With applications in E. coli, Pseudomonas aeruginosa,
Bacillus subtilis, and Staphylococcus aureus using a variety of prior network architectures
derived from noisy computational or high-throughput experimental approaches, they
show that their method consistently reports sRNA-target interactions with independent
experimental support. In a final proof of concept, the authors investigate the distribu-
tion of activity scores across conditions of the P. aeruginosa sRNA PrrF, recovering
known activity in iron-limited, biofilm, and virulence conditions, and the S. aureus sRNA
RsaE, suggesting a role in the response to antibiotic stress.
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The work in this study clearly demonstrates the utility of NI approaches for gener-

ating hypotheses regarding sRNA function and identifying new potential target mRNAs,
and importantly, helps to situate the sRNA in something approaching its natural
regulatory context. With the continuing accumulation of transcriptomic data in public
repositories, it is easy to imagine that in the not too distant future, NI will join molecular
techniques, computational target prediction, and high-throughput sequencing-based
approaches as a standard part of the SRNA biologist’s toolkit.
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