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A B S T R A C T   

Agricultural runoff is one of the main sources of excess phosphorus (P) in different water bodies, subsequently 
leading to eutrophication and harmful algal blooms. To effectively monitor P levels in water, there is a need for 
simple measurement tools and extensive public involvement to enable regular and widespread sampling. Several 
smartphone-based P measurement methods have been reported, which extract red-green-blue (RGB) values from 
colorimetric reactions to build statistical regression models for P quantification. However, these methods typi-
cally require meticulous light conditions, involve initial equipment investment, and have undergone limited 
testing for large-scale applications. To overcome these limitations, this study developed a smartphone-based, 
equipment-free and facile P colorimetric analysis method. Following the standard procedure of the ascorbic 
acid approach, colorimetric reactions were captured by a smartphone camera, and RGB values were extracted 
using Python code for modeling. Different indoor light conditions, phone types, containers, and types of water 
samples were examined, resulting in a collection of 1922 images. The best regression model, employing random 
forest with RGB values and container types as inputs, achieved an R2 of 0.97 and an RMSE of 0.051 for P 
concentrations ranging from 0.01 to 1.0 mg P/L. Additionally, the optimal classification model could estimate 
the level of P below 0.1 mg P/L with an accuracy of 95.2 (or 77.4 % for <0.05 mg P/L). The strong performance 
of the developed models, which are also available freely online, suggests an easy and effective tool for more 
frequent P measurement and greater public involvement.   

Introduction 

Excess nutrients in surface waters worldwide cause eutrophication, 
leading to excessive growth of autotrophs like algae and cyanobacteria 
(Khan et al., 2014). Apart from wastewater discharge, agriculture and 
animal husbandry are two main nutrient sources leading to eutrophi-
cation (Sala and Mujeriego, 2001). In recent decades, Lake Erie has been 
plagued by harmful algal blooms, with soluble reactive phosphorus, 
primarily originating from non-point agricultural runoffs, identified as 
one of the key driving factors (Ai et al., 2023; Ho and Michalak, 2017). 
Effective P monitoring and control are critical for mitigating eutrophi-
cation and harmful algal blooms. Capturing transient changes in P 
concentration over time is another critical step, as the concentration of P 
in runoffs is significantly influenced by variations in weather and fer-
tilizer application. For example, sudden precipitation following the 
application of fertilizer can result in high P levels in runoffs, while 
prolonged precipitation can interrupt fertilizer application and reduce P 
in agricultural runoffs (Guo et al., 2020; Michalak et al., 2013). More-
over, smaller water bodies, such as ponds and small lakes, are often 

overlooked in environmental monitoring due to their sheer number and 
small sizes. However, their pollution poses significant public health 
concerns because of their proximity to communities (Downing, 2010; 
Mrdjen et al., 2018). Regular monitoring of ditches, creeks, and lakes 
that captures the spatial and temporal changes of P can not only help 
identify hot spots but also support more targeted nutrient management 
plans. In this context, an effective and easy method for measuring P is in 
great demand. 

Several methods exist for measuring P, with new techniques 
continually emerging; however, most of current methods have certain 
limitations, particularly for widespread monitoring by the general 
public or farm owners. For instance, ion chromatography (IC) can effi-
ciently analyze low P concentrations ranging from μg/L to 1 mg/L 
(Scientific, 2023). However, IC is expensive, delicate and vulnerable to 
background anions. Another common method is the ascorbic acid 
method (EPA, 1978; Murphy and Riley, 1962), which involves colori-
metric reactions of P and the analysis by a spectrometer. However, the 
spectrometer not only is expensive but also requires a well-controlled 
lab environment. Although size-reduced spectrometers are available at 
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a cost of a few hundred dollars (e.g., $310 on Amazon), their widespread 
distribution remains infeasible and their detection limits are often not 
specified. Therefore, a simple and affordable P measurement method is 
needed to enable wide application. 

The ubiquitous smartphone and its increasing capability provide a 
promising tool for public involvement in citizen science (Zheng et al., 
2022). Simplicity and effectiveness are crucial for citizen science ap-
plications. Without any advanced instruments, a few studies (Table 1) 
have employed smartphone cameras to take pictures of colorimetric 
reactions, and then extracted the RGB values of the images to estimate 
the P concentrations. However, those methods require professional or 
customized auxiliaries, such as LED-equipped boxes, synthesized test 
strips, expensive cuvettes, or complex fluorescent methods, leaving 
considerable challenges for their applications in public involvement. 
The need for any investment in equipment could deter widespread 
public engagement. Only one study (Table 1) directly used a smartphone 
for P measurement without any additional equipment (Costa et al., 
2020). However, the reported performance was compromised, showing 
a relative error (RE= |residuals|

actual concentration× 100%) of 70 % for detection 
ranging from 0.25 to 10 mg P/L. For P measurement without any 
additional instruments, employing a machine-learning (ML) model 
could compensate for performance deterioration or enable a rapid 
concentration range determination, referring to a drinking water chlo-
rine residual estimation study that achieved an accuracy of 94 % in a 
2-level classification by a random forest (RF) model (Schubert et al., 
2022). 

Additionally, the previously developed phone-based P measurement 
methods (as shown in Table 1) paid insufficient attention to quality 
control. For example, the validity of calibration curves, usually based on 
a small number of data points (mostly 5–10), is not well-established, as 
the errors introduced by device setup and calibrations in the real 
application are often not considered, and the reproducibility and 
robustness of measurements are rarely examined. In addition, the dis-
cussions often lack details on measurement deviations, and errors are 
obscured by mean values. There is also a noticeable lack of results and 
discussion regarding low concentration (0–0.1 mg P/L) P detection, 
even though regulatory guidelines suggest limits of 0.05 mg P/L in 
streams entering lakes and 0.1 mg P/L in running waters (Litke, 1999). 

In this study, we developed an easy and effective P measurement 
method with the smartphone camera coupled with an ML algorithm. 

With the aid of an ML tool, we significantly simplified the measurement 
process by eliminating the need for any equipment used in the reported 
phone-based methods. In total, 1922 images of colorimetric reaction 
were collected under different indoor light conditions, phone types, 
containers, and water sample types. Moreover, we focused on P con-
centrations ranging from 0.01 to 1.0 mg P/L, particularly studying real 
water samples. Subsequently, RGB values were extracted from the 
colorimetric images to build accurate regression and classification ML 
models with their corresponding concentrations. In summary, this study 
developed an easy, versatile, and effective P measurement method using 
smartphones, requiring minimal equipment and suitable for public use. 

Results and discussion 

Development of ML regression models 

As the model performance shown in Table S1, except for convolu-
tional neural network (CNN) and multilinear regression (MLR), all five 
tree-based ML regression models achieved comparable performance on 
the test set for P measurement. In this study, we chose to use RF as it can 
evaluate the input feature importance by the permutation approach (Ai 
et al., 2023), which can help evaluate the feature importance below. As 
for the permutation approach, it calculates the feature importance by 
shuffling the order an input feature values and comparing the model 
performance before and after the shuffling (Jones and Linder, 2015). 

CNN is highly effective at tasks such as image classification, object 
detection, and image segmentation (Girshick et al., 2015). However, 
with a poor R2 value of − 0.03, it did not effectively discern the intensity 
changes of the colorimetric measurements. The MLR model showed a 
strong correlation between P concentrations and RGB values with an R2 

of 0.82. However, this correlation is not sufficient for accurate P esti-
mation when compared to the ML models developed in this study. 

Determination of P measurement conditions 

Unlike sophisticated instrument analysis, an easy and portable 
method that requires minimal training, effort, and no capital investment 
for the general public can justify a sacrifice in accuracy (Li et al., 2022). 
As the image quality was likely affected by operational parameters, we 
examined different phones, indoor light conditions, and container types 

Table 1 
Summary of smartphone-based phosphate measurement studies since 2015. RSD = relative standard deviation.  

Conc. range, 
mg P/L 

LOD mg 
P/L 

Colorimetric method Image object Device for imaging Performance Reference 

0.3–1.0 0.01 Ascorbic acid method Test tube LED light box R2=0.993; RSD=0.95 % and 2.1 % for 0.5 and 1.0 
mg P/L, respectively. 

(Moonrungsee et al., 
2015) 

0.1–5.0 0.016 Ascorbic acid method Cuvette LED tool kit R2=0.99; mean RSD=0.95 % for 0.5, 1.5, 3, and 
5.0 mg P/L. 

(Das et al., 2022) 

0.056–7.75 0.0167 Ascorbic acid method Cuvette LED light box R2=0.999; mean RSD=3.52 % for 0.056–0.93 mg 
P/L; mean RSD=5.3 % for 0.338–7.75 mg P/L. 

(Li et al., 2022) 

0.3–28.0 0.001 Ascorbic acid method Cuvette LED light box R2=0.96 for 0–1.0 mg P/L; mean RSD=2.01 % for 
0.3–28 mg P/L. 

(Lavanya et al., 2023) 

0.25–10.0 1.6 Ascorbic acid method Cuvette LED light box R2=0.980; RSD varied from 2.3 % to 9.8 % for 5 
replicates of 1.0 mg P/L. 

(de Souza et al., 
2023) 

0.1–10 0.028 Ascorbic acid method Plate LED light box R2=0.978; RSD = 1.34 % for 6 replicates of 5.0 
mg P/L. 

(Xing et al., 2022) 

0.25–10.0 NA Commercial liquid test 
kit 

Glass bottle None Relative error is about 30 % and 70 % for 
corrected and uncorrected measurements, 
respectively. 

(Costa et al., 2020) 

0.155–1.24 0.031 Fluorometric 
heptamolybdate method 

Cuvette LED tool kit R2=0.989; mean RSD=1.2 %. (Granica and 
Tymecki, 2019) 

0.0155–1.55 0.0037 Lanthanide fluorescent 
method 

Cuvette UV light box R2=0.996 (Wu et al., 2022) 

0.062–1.98 0.031 Wax-printed paper strip Paper strip UV light box R2=0.96; mean RSD=12.67 %. (Sarwar et al., 2019) 
0.2–8.3 NA TMB oxidation method Designed 

microplate 
UV light box R2=0.985 (Li et al., 2020) 

0.031–23.25 0.093 Commercial test strips Paper strip Infrared lightbox, 
camera, processer 

R2=0.998 (Heidari-Bafroui 
et al., 2021)  
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to capture the colorimetric differences in P solutions. During the RF 
model development, we started with all input features for the first RF 
model, then eliminated the indoor light, phone, and container features 
sequentially to build the second, third, and fourth RF model based on the 
feature importance. The model performance and feature importance are 
summarized in Table 2. The first RF model achieved an R2 of 0.98 and an 
RMSE of 0.049. Given the model’s impressive performance, it was 
necessary to evaluate the importance of the input features to identify 
and exclude any unnecessary ones for a simpler method. In the first RF 
model with all the input features, the light feature showed the lowest 
importance (0.002) and was thus excluded in the second RF model. 

Excluding the light feature in the second RF model maintained sur-
prisingly strong performance, yielding an R2 of 0.97 and an RMSE of 
0.051, on par with the first RF model. However, almost all reported 
studies used light boxes to control the light condition and used LED as 
the light source (Table 1). This approach ensures consistent RGB values 
for images of designated P concentrations (Li et al., 2022). Indeed, we 
observed a significant RGB variation due to varying light conditions 
among images from samples with the same concentration (Figs. S1–2). 
This also explained the poor performance of the MLR model (Table S1) 
as it did not consider indoor light condition and container type in the 
model input. However, when the data groups under bright, dim, and 
dark conditions in the second RF model were compared, P estimation 
performed similarly under all three conditions (Fig. 1a). This is likely 
because there is a clear difference in color intensity under the bright, 
dim, and dark conditions, as indicated by the plots of mean intensity 
against P concentration and the different mean intensity ranges for 
bright, dim, and dark conditions (Fig. S2, ANOVA, p < 0.001). Giving 
the large amount of data used to train the ML model, the model has 
likely already learned the differences among the three indoor light 
conditions. When the model encounters a query sample, it could 
‘correctly’ determine the indoor light condition as bright, dim or dark 
based on the observed light intensity against the respective mean light 
intensity, even without explicit input. Therefore, different indoor light 
conditions have no significant influence on the P estimation using our 
model. In comparison, the reported statistical models have only a small 
number of standards. Therefore, using light boxes to fix the light con-
dition becomes necessary to reproduce the standard values for statistical 
models. 

As consistent RGB values in previous studies, achieved through 
meticulous control of light conditions, including box dimensions, the 
number of LED lights, and power supplies, are essential for simple sta-
tistical models (studies in Table 1), these results demonstrate that our 
model can circumvent the need for equipment to control light, providing 
a significant simplification for smartphone-based P measurement. 

In the third RF model, the phone feature was excluded as it had the 
lowest feature importance (0.006) in the second RF model (Table 2). The 
third RF model still maintained good performance with an R2 of 0.97 
and an RMSE of 0.051. In this model, data in the iOS and Android sets 
showed similar performance in P estimation (Fig. 1b). Both phones used 
in the study had high camera resolutions of 48 and 40 megapixels, 

respectively, which is essential for effective image capturing (Schubert 
et al., 2022). It can be inferred that different phones with high camera 
resolutions should function similarly in capturing colorimetric images. 
Therefore, it is not necessary to include the ’phone’ feature in the model 
input. 

Lastly, the container feature was excluded in the fourth RF model. 
Notably, the model’s performance deteriorated, with an R2 of 0.93 and 
an RMSE of 0.082 (Table 2). Therefore, the fourth RF model, which 
relies only on RGB values, is not capable of making effective P estima-
tions, although it is still much better than the MLR model. When com-
parisons were made among the datasets using a cuvette, a bottle, and a 
dish as the container (Fig. 1c), dish showed the best performance, fol-
lowed by bottle and cuvette. This discrepancy is reasonable considering 
that the three container types have different surfaces for color capturing. 
As shown in Materials and Methods, colorimetric solutions can be 
directly captured by a camera above the liquid surface in dishes. In 
contrast, the cylindrical shape of glass bottles might introduce reflection 
into the colorimetric solution (Costa et al., 2020), so do cuvette walls. In 
practical terms, low-cost white plastic dish-like containers (common 
sauce dishes) are readily available and well-suited for P measurement. 
Referring to Table 1, most studies utilized more expensive containers, 
such as cuvettes, for testing. Based on the above results, we will focus on 
the third RF model which includes both container and RGB features in 
the input. 

Comparison with similar reported methods 

The first six studies in Table 1 employed LED light boxes for P 
measurement based on the ascorbic acid method. As a reference, these 
studies achieved R2 values ranging from 0.96 to 0.9988 and RSD ranging 
from 0.95 % to 9.8 %. The performance of these methods was deter-
mined based on linear, log-scaled linear, or exponential data fitting 
between mean concentrations and RGB values, where 1 to 3 color 
channels were used. Compared with the limited data fitting at high P 
concentration ranges (0.056–28 mg P/L) in those studies, our RF model 
achieved an R2 of 0.995, an RMSE of 0.021 (Fig. 2a), and an RSD of 6.07 
% for the concentration range of 0.01–1.0 mg P/L, with a large number 
(1922) of data points. However, there are three limitations in those 
statistical models. Firstly, the applicability of those models is not fully 
evaluated. They were developed based on a small number of data points 
(5–20 mean values) across a concentration range of 0.0558 to 30 mg P/ 
L. Mean values can obscure data deviation in the fitting process, 
potentially decreasing the RSD. Additionally, the P concentrations 
studied were mostly higher than 0.1 mg P/L, where higher concentra-
tions can mask relative measurement errors/standard deviations. Sec-
ondly, as mentioned earlier, the statistical models require consistent 
RGB-concentration values to build a reliable relationship, so those 
studies required data calibration before measurement, which would 
significantly increase the workload for the measurement of real water 
samples. Thirdly, with comparable performance, our RF model elimi-
nates the need for any equipment. The RF model collects over 1900 

Table 2 
Overall model performance and feature importance in four RF models during the feature exclusion process.  

RF model Performance Feature importance 

R2 RMSE R G B Container Phone Light 

First 0.98 
(0.004) 

0.049 
(0.004) 

0.778 
(0.006) 

0.075 
(0.006) 

0.086 
(0.003) 

0.054 
(0.002) 

0.006 
(0.001) 

0.002 
(0) 

Second 0.97 
(0.004) 

0.051 
(0.004) 

0.778 
(0.006) 

0.075 
(0.006) 

0.087 
(0.003) 

0.054 
(0.002) 

0.006 
(0.001) 

– 

Third 0.97 
(0.004) 

0.051 
(0.004) 

0.779 
(0.006) 

0.077 
(0.006) 

0.090 
(0.002) 

0.055 
(0.002) 

– – 

Fourth 0.93 
(0.006) 

0.082 
(0.004) 

0.800 
(0.006) 

0.088 
(0.005) 

0.111 
(0.003) 

– – – 

Note: The dataset was randomly stratified split to training and test sets in a 4:1 ratio for 20 times by changing the random state from 42 to 61. The model performance 
against the test sets and the feature importance values are presented as mean values, and the value in parenthesis is the standard deviation. 
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images across various conditions and sampling environments, repre-
senting a truly equipment-free method for citizen science and wide 
application, potentially broadening the end-user. 

Based on the third RF model, predicted and actual P concentrations 
in the test set are plotted in Fig. 2b. As specified in Materials and 
Methods, the colorimetric P solutions were composed of DI water, 
spiked real water, and real water. These different water matrices were 
used to examine the method’s generalization ability beyond laboratory 
conditions. The predicted data from these three sets followed a similar 
pattern along the 1:1 reference line (Fig. 2b). Furthermore, the predic-
tion residuals for the spiked and real groups fell within the range of the 
DI water group (Fig. 2c). The limit of detection (LOD) was determined to 
be 0.036 mg P/L. Fig. 2c also indicates that there is slight overestimation 
for low concentrations and underestimation for high concentrations, but 
no significant prediction bias for mid-range concentrations, except for a 
few outliers. Note that the spike concentrations were between 0.2 and 
0.9 mg P/L, resulting in a mean RE of 3.52 %. Compared with the only 
reported smartphone-method without a light box (Costa et al., 2020) 
(Table 1), which achieved a RE of 70 % (additional empirical correction 
can reduce to 30 %) in the range of 0.25 to 10 mg P/L, our study’s RF 
model performed much better, with an RE of 8.43 % for the test set 

within the concentration range of 0.1 to 1.0 mg P/L, further highlighting 
the robustness of our method. 

Apart from the commonly used ascorbic acid method, other studies, 
like the 8th to 10th in Table 1, have employed fluorescent methods to 
increase measurement sensitivity and specificity. However, when 
employing smartphones, these methods still rely on extracting RGB 
values from images. This extraction is based on the interaction between 
phosphate and heptamolybdate, lanthanide, or phosphate-binding pro-
tein, and an additional light source is necessary for capturing the images. 
In terms of performance, these methods perform similar to those based 
on the ascorbic acid method, with the R2 values ranging from 0.96 to 
0.9962 and RSD ranging from 1.2 % to 12.67 % across concentration 
ranges of 0.0155 to 1.98 mg P/L, using the same data fitting methods. 
Considering the complexity of operations, stringent measurement re-
quirements, and initial hardware investment of these methods, our 
model still demonstrates its superiority. 

Classification models for real water samples 

As mentioned in Introduction, the suggested total P limit is 0.1 mg P/ 
L for running water and 0.05 mg P/L for water entering lakes (Litke, 

Fig. 1. Model performance for each data group based on different (a) indoor light conditions, (b) phone inputs (IOS and Android), and (c) container types in the 
second, third, and fourth RF model, respectively. Note: The data dataset was randomly stratified split to training and test set in a 4:1 ratio for 20 times by changing 
the random state from 42 to 61. The model performance is presented as the mean value, and the error bar is the standard deviation. 

Fig. 2. Scatter plot of predicted and actual P concentrations in the (a) training set and (b) test set of the third RF model. The gray line is the reference of the 1:1 slope; 
(c) Prediction residuals for the test set (Prediction residuals = predicted value – actual value). Based on the water sample sources, the test set data was split into DI 
(pure water-made P solution, black), spiked (real water-made P solution, red), and real (in-situ samples, green). Note: the model performance was based on a random 
state of 42 as the representative results as the standard deviation of R2 and RMSE is negligible for 20 times of data split (Table 2). 
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1999). The LOD and RMSE for the RF regression model were 0.036 mg 
P/L and 0.048, respectively. However, the performance of the RF 
regression model on real water samples only showed an R2 of 0.098, an 
RMSE of 0.031, and an RSD of 81.56 % for the concentration range of 
0–0.129 mg P/L (Fig. 2b). Therefore, the regression model may not be 
capable of accurately quantifying low P concentrations. To this end, we 
developed a classification model to rapidly classify P levels in water 
samples into four levels: L1 (0–0.05/0.1 mg P/L), L2 (0.05/0.1–0.4 mg 
P/L), L3 (0.4–0.7 mg P/L), and L4 (0.7–1.0 mg P/L), as detailed in 
Table S2 and further explained in the Materials and Method. This model 
assists in identifying whether P levels exceed limits or indicate the extent 
of eutrophication, benefiting the scientific community and 
decision-makers. As shown in Fig. S3, both classification models 
demonstrate high accuracy. When L1 is set at <0.05 mg P/L, the overall 
accuracy is 86.6 % with a Kappa coefficient of 0.82; when L1 is set at 
<0.1 mg P/L, the overall accuracy is 91.1 % with a Kappa coefficient of 
0.88. Note that a Kappa value of >0.8 indicates strong agreement 
(McHugh, 2012). Additionally, when the RF classification model was 
applied to the second in-situ sampling data, covering low P concentra-
tions (0.001–0.129 mg P/L, encompassing L1 and L2, see Fig. S4, 
Table S3, and Materials and Methods), the overall accuracy was 62.7 % 
(L1=57.9 %, L2=68.9 %, 0.05-limit) and 88.2 % (L1=97.7 %, L2=33.3 
%, 0.1-limit) for the two models. Note that in the above models, we 
employed all previous data, including the first in-situ sampling data, for 
the training set and the second in-situ sampling data for the test set. The 
low L2 accuracy (33.3 %) for the 0.1-limit might be due to the low P 
concentrations of the real water samples. Only two sites of samples 
(sewage effluent and farmland ditch) had P concentrations slightly 
higher than 0.1 mg P/L (0.129 mg P/L). 

Conclusion 

This study developed an accessible and facile P measurement method 
using smartphone cameras and RF models. The RF regression model 
achieved an R2 of 0.97 and an RMSE of 0.051 for the concentration range 
of 0.01–1.0 mg P/L with the LOD of 0.036 mg P/L. Furthermore, over-
coming limitations of traditional methods, this work offers reliable P 
concentration classifications in the critical range of 0 to 0.1 mg P/L, 
where the regression model is incapable of quantifying such low P 
concentrations, making the classification models pivotal for monitoring 
P in water bodies. The RF models, designed to be user-friendly and to 
minimize equipment needs, are available online for public use (https:// 
envmodel-cwru.streamlit.app/), promoting widespread participation in 
environmental monitoring. Field tests in the great Cleveland area 
demonstrated the method’s real-world applicability, even though some 
measurement errors were noted at lower concentrations (0–0.13 mg P/ 
L). 

The ascorbic acid method requires solution preparation and sample 
handling before smartphone application, which may deter some uses 
from the public. This may be especially true when pretreatment is 
needed for samples with interfering substances and color. Despite that, 
compared with previous studies (Table 1), our approach significantly 
simplifies measurement requirements. Reagents for the ascorbic acid 
method can be pre-packaged according to the specified ratios, like a 
covid test kit, and distributed to people closely involved in nutrient 
management, such as farm owners, park rangers, and community vol-
unteers. These reagent solutions can be stored for weeks before mixing, 
and the mixed solution remains stable for 24 h. Overall, this new 
approach not only highlights the potential of machine learning in 
environmental applications but also paves the way for greater public 
engagement in water quality management, thereby enhancing aware-
ness and improving responses to P pollution challenges. 

Materials and methods 

Ascorbic acid method 

The ascorbic acid method (Murphy and Riley, 1962) used here is the 
most commonly used colorimetric method for soluble phosphorus 
determination. Generally, the method requires mixing 5 N sulfuric acid, 
2.743 g/L potassium antimonyl tartrate solution, 40 g/L ammonium 
molybdate solution, and 17.6 g/L ascorbic acid solution in a volume 
ratio of 5:0.5:1.5:3. During the colorimetric reaction, phosphate, 
ammonium molybdate, and potassium antimony tartrate form a phos-
phomolybdate complex in acidic conditions. This complex is then 
reduced by ascorbic acid to generate a phosphor-antimonyl molybde-
num blue substance. The color becomes stable after 10 min, and the 
intensity of the blue color is linearly proportional to the P concentration. 
The detection range of the method is 0–1.2 mg P/L. In addition, arsenate 
and high concentrations of iron may interfere with the measurement. 
This interference occurs because the structure of arsenate is highly 
similar to that of phosphate, and iron can react with the reducing re-
agents in colorimetric tests. The stock P solution is prepared to be 10 mg 
P/L using KH2PO4, with KH2PO4 powder dried at 105 ◦C for an hour to 
eliminate moisture before being used for solution preparation. Unless 
specified otherwise, all mentioned P concentrations refer to elemental P. 
All chemicals were purchased from Fisher Scientific, and all solutions 
were prepared using Millipore nanopure water (DI). 

For the P measurement, the P stock solution was diluted to concen-
trations ranging from 0.01 to 0.1 mg/L at intervals of 0.01 mg/L, and 
from 0.1 to 1.0 mg/L at intervals of 0.05 mg/L. 4 mL of mixing reagent 
solution and 25 mL of the diluted P solution were mixed in a volume 
ratio of 4:25 (at the same ratio, the volume can be adjusted per the 
application) and sonicated for 5 s for better mixing. After 10 min of 
reaction, the blue color stabilized. The reaction solution was then 
transferred to a 1-cm cuvette and analyzed using a UV/Vis spectrometer 
(Cary 60, Agilent Technologies, USA) at a wavelength of 880 nm within 
1 h. Absorbance values obtained from the spectrometer were plotted 
against known P concentrations to determine the calibration curves. In 
the ascorbic acid method published by the USEPA (EPA, 1978), the 
detection range is 0.3–1.2 mg P/L for a 1-cm cuvette and 0.01–0.3 mg 
P/L for a 5-cm cuvette. In this study, we used 1-cm cuvette for con-
centrations ranging from 0.01 to 1 mg P/L but still obtained excellent 
and consistent calibration relationships for both the full concentration 
(0–1.0 mg/L) and low concentration (0–0.1 mg P/L) ranges, with similar 
slopes (0.644 vs. 0.646) and R2 values (1.0 vs. 0.99), as shown in Fig. S5. 

P colorimetric image analysis 

To examine the versatility of the method, we tested phones with two 
different operating systems (android and IOS), three light conditions, 
three types of containers, and three types of water samples to generate 
14 groups of data, as shown in Fig. 3 and Table 3. After the above P 
measurement by a spectrometer, the cuvette was placed against a white 
paper background for image capture using an iPhone 14 Pro (iOS sys-
tem, Apple, rear camera resolution of 48 megapixels) and a Mate 20 Pro 
(Android system, Huawei, rear camera resolution of 40 megapixels). The 
distance between the camera and the cuvette was approximately 10–20 
cm, and each sample was centered and photographed three times. 
Additionally, three different indoor light conditions (lab room light on 
[bright], lab room light off [dark], and hallway [dim]), and two other 
containers (a 40-mL glass bottle and a 5-cm wide white plastic dish, 
same image taking method as cuvette) were similarly examined to assess 
the influence of light and containers on the performance of machine 
learning models. All images were collected across 14 experimental 
events on different dates and times, further examining the method’s 
generalization capability for varying surrounding environments. Based 
on the Python code, an image center area of 50 × 50 pixels was selected 
and averaged for RGB values extraction to reduce the variation of the 
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image; and then R, G, and B values were recorded separately as three 
input features. The two phone systems were set as 0 (IOS) and 1 
(Android); three light conditions were set as 0 (bright), 1 (dark), and 2 
(dim); and three containers were set as 0 (cuvette), 1 (bottle), and 2 
(dish) for model input. All those features are recorded in the supporting 
data along with the corresponding concentrations and absorbance, and 
the Python code template is available freely online: https://github.com/ 
cwrukaizhang/phosphorus_detection.git. All aforementioned inputs 
were considered at the very beginning of the model development; then 
feature importance was discussed and excluded sequentially to build 
new models. Simplifying the model inputs could reduce the model 
complexity and increase the applicability of the P estimation method. 

As the primary objective of this study was to develop an easy and 
effective method for P measurement, tailored for citizen science, real 
water samples were collected twice in the great Cleveland area from a 
sewage plant, Lake Erie, local creeks, ponds, and pits in farmlands to test 
the method, sampling sites see Fig. S4. Three surface water samples were 
collected using 50-mL glass bottles from publicly accessible watersides. 
The sampling dates were March 30th and April 30th, 2023, and the 
collected samples were analyzed on the same day. Both field and 

experimental samples were filtered through 0.22 µm pore-size filters for 
P measurement. For the application of the method, data from the first 
round of sampling were included in the training set along with all other 
laboratory-generated data (DI and spiked). The data from the second 
round of sampling were set as the external test set to evaluate the 
method. Due to the low concentrations in the field samples, they were 
further spiked to concentrations ranging from 0.2 to 0.9 mg P/L at an 
interval of 0.1 mg/L. The experimental setup and operations are illus-
trated in Fig. 3. All the sample groups are labeled and summarized in 
Table 3. 

Machine learning models 

All the collected images were randomly stratified split to training and 
test sets in a 4:1 ratio across the 14-labeled groups for 20 times by 
changing the random state from 42 to 61. To select the best ML algo-
rithm(s) for the modeling purposes, we compared the performance of 
five widely used ML algorithms: bootstrap aggregating (BA) (Breiman, 
1996), extreme tree (ET) (Geurts et al., 2006), gradient boosting (GB) 
(Friedman, 2001), RF, an ensemble learning method that builds many 
trees with randomized features for classification and regression tasks 
(Breiman, 2001; Hastie et al., 2009), and XGBoost (XGB) (Chen and 
Guestrin, 2016), where light, phone, container, and three individual 
values of RGB channels were used as the model input to estimate the P 
concentrations, see the supporting data. In addition, grid search was 
employed for hyperparameter optimization with the data randomly 
stratified split for the algorithms mentioned above during the model 
training. All 5 model hyperparameters were optimized by changing the 
number of trees from 10 to 100 in a step of 10. Additionally, we changed 
the learning rate for GB from 0.05, 0.1, 0.5, to 1; the learning rate for 
XGB from 0.05, 0.1, 0.5, to 1, and the max depth from 5, 10, 20, 50, 80, 
to 100. A convolutional neural network (CNN) was also employed for 
comparison, since CNN was widely applied in image recognition studies, 
such as algal genera detection (Krause et al., 2020) and algal bloom 
monitoring (Pyo et al., 2020). The CNN model was directly applied to 
images without other model inputs and optimized by changing the 
number of epochs from 10 to 50 in a step of 10. For comparison, an 
empirical statistical model, the multilinear regression (MLR) model, was 
applied to build the relationship between RGB values and the known P 
concentrations as the baseline model. 

Fig. 3. Experimental setup and the workflow.  

Table 3 
Summary of labels, data conditions, and amount of data for each condition.  

Label Phone Light Container Water 
type 

Amount of 
data 

Conc. 
mg/L 

1 IOS Bright Cuvette DI 461 0.01–1.0 
2 Bottle DI 168 0.01–1.0 
3 Spiked 48 0.2–0.9 
4 Dish DI 174 0.01–1.0 
5 Spiked 48 0.2–0.9 
6 Cuvette Real 1 96 0–0.12 
7 Real 2 102 0–0.13 
8 Dim DI 105 0.01–1.0 
9 Dark DI 108 0.01–1.0 
10 Android Bright Cuvette DI 174 0.01–1.0 
11 Bottle DI 168 0.01–1.0 
12 Spiked 48 0.2–0.9 
13 Dish DI 174 0.01–1.0 
14 Spiked 48 0.2–0.9 

Note: the water type is the sample solution, where “DI” means nano-pure water; 
“Spiked” means Lake Erie water spiked to different P concentrations; “Real” 1 or 
2 means the first or second time of in-situ sampled water. 
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The obtained regression models were evaluated by the R2 and root 
mean squared error (RMSE) values. The P limit of detection was calcu-
lated based on the 3 times the standard deviation of the estimated P 
concentrations when the actual P concentration was 0 (Heidari-Bafroui 
et al., 2021). 

RF classification models were further developed to evaluate the P 
extent in water samples. With 0.05 or 0.1 mg P/L as the threshold for 
level 1 and level 2 (as the suggested limits are 0.05 mg P/L in streams 
entering lakes and 0.1 mg P/L in running waters (Litke, 1999)), P con-
centrations from 0 to 1.0 mg P/L were divided into 4 levels: level 1 (L1, 
0–0.05 mg P/L or 0–0.1 mg P/L), level 2 (L2, 0.05–0.4 mg P/L or 0.1–0.4 
mg P/L), level 3 (L3, 0.4–0.7 mg P/L), and level 4 (L4, 0.7–1.0 mg P/L). 
The data distribution of each level is generalized in Table S2. The 
classification models were evaluated by accuracy and the Kappa coef-
ficient, a factor to examine the agreement between predictions and 
observations. 
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