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ABSTRACT

Introduction: Cerebral blood flow (CBF) is regulated
by several mechanisms. Neurogenic control has been
a matter of debate, even though several publications
reported the effects of changes in sympathetic tone on
CBF. Transcutaneous electrical nerve stimulation and
spinal-cord stimulation have been shown to influence
peripheral and cerebral blood flow through

a sympathetic pathway. The authors hypothesise that
certain pathological conditions result in a relative
increase in the neurogenic regulation of CBF and that
this regulation can be modulated electrically.
Methods and analysis: Patients with cerebral
vasospasm after subarachnoid haemorrhage will be
included. The experimental set-up measures several
parameters that are involved in cerebral blood flow
regulation in patients with cerebral vasospasm after
subarachnoid haemorrhage. Measurements are taken
at baseline and with stimulation in several frequencies.
An ad hoc statistical analysis is used to evaluate
different settings of the electrical stimulation.
Autoregulation is evaluated with transfer function
analysis and autoregulatory index calculations.
Ethics and dissemination: Ethical registration was
granted by Medical Review Ethics Committee
Groningen (ID METc 2010.123). All participants provide
written informed consent on participation. Upon
finishing a pilot study to investigate feasibility and
effect, either future prospective (randomised) studies
will be designed, or other modalities of electrical
stimulation will be explored using the same set-up.
Trial Registration: Dutch Trial Registry: NTR2358.

INTRODUCTION

Cerebral blood flow (CBF) is determined by
cerebral perfusion pressure and cerebral
vascular resistance (CVR) (figure 1). Both are
regulated by complex mechanisms. Cerebral
perfusion pressure depends on intracranial
pressure (ICP) and mean arterial blood
pressure (MAP), which in turn is a resultant of
cardiac output and systemic vascular
resistance. CVR is mainly regulated by
cerebral vasomotor autoregulation, chemo-

ARTICLE SUMMARY

Article focus

m Although several papers have demonstrated
neurogenic control of cerebral blood flow
(CBF), the subject remains debatable. We
postulate that neurogenic control of CBF is of
importance in certain pathological circum-
stances.

m Electrical stimulation of the sympathetic nervous
system has been shown to increase peripheral
and cerebral bloodflow. We hypothesise that
cervical trancutaneous electrical neurostimula-
tion (TENS) can increase CBF.

m A study protocol is described to study the effects
of CBF by cervical TENS.

Key messages

m The trial protocol described is being used in
a pilot study but can be applied in future
research.

m In particular, our mathematical and statistical
analysis allows for an examination of the several
settings of electrical stimulation.

Strengths and limitations of this study

m The study set-up takes into account as many
factors as possible that influence CBF.

m TENS might not be feasible in troubled patients
or patients with decreased consciousness.

reflex control (based on arterial carbon
dioxide and oxygen concentrations (Pacog
and Paoy)), local metabolic processes and
nervous activity.' * The anatomical and
physiological bases of neurogenic control of
CBF have been extensively studied. The cere-
bral vessels are thought to be directly sympa-
thetically innervated in two ways: (1) extrinsic
by the cervical sympathetic nervous system
(analogous to other parenchymal vascular
territories) and (2) intrinsic by central path-
ways of the locus coeruleus and other
brainstem vasomotor centre origin.2 57
Even though several studies have shown
changes in CBF as a result of sympathetic
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Electrical modulation of CBF

Figure 1 Regulatory
mechanisms of cerebral blood
flow. CBF, cerebral blood flow;
CO, cardiac output; CPP, cerebral
perfusion pressure; CVR, cerebral
vascular resistance; ICP,
intracranial pressure; MAP, mean
arterial blood pressure; P, pulse;

CBF = CPP / CVR

CPP = MAP - ICP

MAP = CO * SVR

PaCO.,, arterial carbon dioxide

I CO=P*sv | |S\rﬁa8,frt°n‘l,.fr“ |

Vasomotor autoregulation

| Metabaolic |

pressure; PaO,, arterial oxygen

pressure; SV, stroke volume;

SVR, systemic vascular

resistance; 8/mxnxI/r,

Poiseuille’s law; where n=blood

viscosity, I=vessel length and

r=vessel radius. Overlap and

interactions between metabolic,

chemical, neurogenic and vasomotor

autoregulation are not shown.

blockage or modulation in humans,1 8~12 the influence
of the latter remains debatable.'* '® In physiological
resting conditions, the sympathetic effects on CVR seem
to be minor, but in non-resting and particularly patho-
logical conditions, the effects of sympathetic tone on
CVR and consequently CBF become more apparent.'? !”
8 Indirect effects of the autonomic nervous system
influence CBF by altering MAP, pulse and cardiac
output—for example, through the arterial and cardio-
pulmonary baroreflexes.'" '*

All pathways can be affected by pathological condi-
tions. Known examples are arterial hypertension,
carotid stenosis, ischaemic or haemorrhagic cerebral
vascular accidents, traumatic brain injury and cerebral
vasospasm.'®** It is postulated that in pathological
conditions, such as subarachnoid haemorrhage or
ischaemic stroke, cerebral autoregulation is (focally)
decreased, resulting in a relative increase in sympathetic
regulation. Therefore, in these conditions, sympathetic
pathways can be relevant, while in a normal resting state,
they are overruled by stronger mechanisms. In these
conditions, modulation of the sympathetic nerve activity
on cerebral vessels could be of therapeutic importance.

In this context, electrical nervous stimulation is attrac-
tive, since several studies have shown the effects of
electrical nervous stimulation on peripheral and cerebral
blood flow. For example, it has been demonstrated that
cervical spinal cord stimulation (cervical SCS) increases
CBF,*~® which is thought to be caused by inhibition of
the sympathetic nervous system>° 27 and the release of
vasoactive substances.”® Both intrinsic and extrinsic
systems have been postulated to be the path of action for
cervical spinal cord stimulation induced increase in
CBFE.?” % %0 yascular calibre can directly reflect adrenergic
tone and sympathetic receptor sensitivity, as demonstrated
in experimental and animal models of vasospasm in
SAH.?! * Studies with spinal cord stimulation as a treat-
ment of patients with coronary vasospasm showed
ameliorated coronary perfusion independent of MAP, as
did studies using transcutaneous electrical nerve stimula-

£

| Neurcgenic |

P

| Intrisic | l Extlinsic|

| Chemical |

| PaC0O, ‘ | Pa0;

tion (TENS).** % Also, studies showed an inhibitory

effect of TENS on sympathetically mediated reflexes.?®~*

The decision to study the effects of TENS on CBF is
empowered by the following motivations:

» Cervical SCS has the ability to increase CBE.>*~* This
effect must be indirect because the electrical field
does not surpass the sympathetic pathways.*

» If the effect of SCS is indeed indirect, and (anti-
dromic or orthodromic) neuronal pathways lead to
modulation of sympathetic pathways in the spinal
cord, then TENS may have the same effect.

» TENS may have a mild effect on reflexes involving the
autonomic nervous system.””

» TENS and SCS are interchangeable in pain manage-
ment, suggesting they affect similar pathways.

» TENS is non-invasive and safe.*’

The aim of the study setup is to investigate the
following hypotheses:

» CBF can be influenced by electrical stimulation (either
TENS or SCS) through the sympathetic nervous system.

» Neurogenic regulation of CBF is relatively increased
when cerebral autoregulation is diminished in certain
cerebrovascular diseases.

As a model, patients with cerebral vasospasm were
selected, since, in those patients, the strong autor-
egulatory mechanisms are diminished by the disease.
This makes them better candidates than healthy subjects
with intact cerebral autoregulation in order to show
proof of concept. Since cerebral vasospasm after SAH is
often asymmetrical, these patients are ideal candidates
to test both hypotheses at the same time. If we can
show that autoregulation is asymmetrically impaired,
and CBF can be electrically augmented on one side,
a neurogenic pathway is likely to play a different role on
each side.

METHODS AND ANALYSIS

Sample selection

The patient-selection criteria are listed in box 1. In order
to study the feasibility of application of TENS in subjects
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Box 1 Patient-selection criteria

Inclusion criteria

m Confirmed aneurysmatic subarachnoid haemorrhage

m Cerebral vasospasm demonstrated by transcranial
Doppler, defined as a middle cerebral artery/internal
carotid artery ratio >3

® Aneurysm is treated with a surgical or endovascular
procedure

m Age >18years

m Treatment can be started promptly

m Informed consent signed by patient or family

Exclusion criteria

m History of cervical spine or skull-base surgery

m Known adverse reaction to trancutaneous electrical
neurostimulation pads

m Presence of any implanted electronic device (including
pacemakers)

m Pre-existing disease that can obscure follow-up

m Unacceptable interference with ECG registration (in case
intensive care is necessary)

m Insufficient temporal bony windows

m Use of sympathicomimetic or sympathicolytic agents

after SAH and in order to collect data for a future power
analysis, a pilot study will be performed in 10 subjects.

Intervention

The subjects are treated with conventional TENS,
providing a continuous flow of symmetrical rectangular
biphasic pulses (Schwa Medico, Pierenkemper GMBH,
Ehringhausen, Germany). Stimulation will be performed
at 90% of the highest tolerated current, with a pulse-
width of 200 ps. Stimulation frequencies are 20, 50, 100
and 120 Hz. In this way, the entire range of possible
TENS frequencies and the most used frequencies in
current TENS treatments are captured. Subjects are
supine during the entire experiment. The TENS elec-
trodes are applied cervical at the height of the mandible
on both sides of the nuchal ligament (dermatome
C2-C3).

Data collection and integration

An experimental set-up was designed to measure and
influence the sympathetic regulatory mechanisms of
CBF (by TENS). The set-up is planned to determine CBF
(represented by cerebral blood-flow velocity), as well as
to continuously monitor as many factors that influence
CBF as possible (figure 1).

Data are collected using a continuous transcranial
Doppler (TCD) monitor (DIGI-LITEtm, Raanana, Israel)
to measure cerebral blood flow velocities (CBFV) in the
middle cerebral artery (MCA) on both sides, a plethys-
mograph for assessing blood pressure and pulse
(Finometer-Pro, Finapress Medical Systems, Amsterdam,
The Netherlands), a capnograph (Capnomac Ultima, GE
Healtcare, Chalfont St Giles, UK) to measure respiration
rate and end-tidal carbon dioxide concentration

(ETCOy), and a near-infrared spectroscope (Invos
5100C, Somanetics, Troy, Michigan) to measure cerebral
oxygenation. All analogue output is routed to a computer
via a digitiser. The data are continuously registered using
Labview 9.0 software. Raw data are sampled at 250 Hz.
Beat-to-beat averages are calculated using the arterial
blood pressure curve for triggering. To verify data quality
and any relevant changes in all variables, both raw
data and the calculated averages are plotted in waveform
charts that are continuously updated. Both the raw data
and the calculated averages will be stored in digital
format on a PC for further off-line analysis.

Ad hoc statistical analysis

In order to determine the optimal frequency of stimu-
lation, an ad hoc analysis is performed. Each time, a data
stream acquired with a specific TENS frequency is
compared with baseline. Stable sections of data of the
same length with least artefacts will be selected for
analysis after visual inspection. In order to clean the data
from artefacts, the top and bottom 5% of data will be
deleted, replacing those by linear interpolation using in-
house written routines in the Matlab (6.5) environment.
A visual inspection of the plotted filtered data will take
place, and when necessary the same filter can be run
a second time, or a data section with less noise will be
selected.

Using the Matlab environment, matrices of data are
compared with baseline using the Student t test, since
a sufficient number of observations will be available. An
effect size is calculated for the significant differences
over time (with baseline as anchorpoint) in order to
determine the frequency with the greatest amount of
change since baseline. If none of the frequencies shows
an effect of more than 20% of the pooled SD," no
superiority can be shown.

Analysis of autoregulation
Most patients will have more severe vasospasm on one side.
This allows for a comparison of dynamic autoregulation.

Since the absolute values for MCA velocity can be
influenced by many factors, including slight alteration of
probe position and change in spontaneous autonomic
activity, a frequency domain analysis will be performed.
This is largely independent of minor fluctuations in the
absolute values, since normalisation is used, and phase
differences are less dependent on absolute values. This
facilitates comparison of serial measurements.

The transfer function analysis®® and the Autor-
egulatory Index (ARI) are evaluated,*® estimated from
spontaneous oscillations in blood pressure and TCD
parameters, which results in a phase-difference param-
eter for the transfer function analysis, and an ARI index.
Previously, values for the phase difference between the
mean ABP and TCD values in the low-frequency range
of >b50° were suggested to represent intact cerebral
autoregulation.** ** The values for the ARI index range
from 0 to 9, with 9 indicating perfect autoregulation,
and 0 meaning complete absence of autoregulation.
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The beat-to-beat data are resampled at 10 Hz to create
a uniform timebase. Also, the data are detrended,
normalised and subtracted by 1, creating zero-mean
signals. A Hanning window is applied to the data.
Segments of data with 512 samples each are used to
estimate the cross-spectra and transfer function between
the mean ABP and TCD signals. Spectral averaging was
employed using the Welch method, using segments with
50% overlap, which results in a spectral average that is
calculated over at least nine segments of data (ie, five
epochs of 51.2 s). The phase difference is determined in
the 0.06—0.12 frequency range according to preset rules,
provided coherence is >0.5.** Data on other frequency
ranges will also be provided. For the ARI index, the
inverse fast Fourier transform is calculated, using a cut-
off frequency of 1.0 Hz. The first 10s of the impulse
response function is integrated to yield an estimate of
the step response. The resulting curve is compared with
the original Tiecks curves®® by using a least-squares
fitting procedure.

Interpretation

The described set-up is based on a few assumptions
regarding several factors that play a role in CBF regula-
tion. ICP probably remains constant during the experi-
ments, even though fluctuations in CBF and venous
pressure can affect ICP. We have no reason to suspect
blood-viscosity changes during a measurement. We
assume metabolic autoregulatory mechanisms to remain
constant during the experiments; especially in our
patients with cerebral vasospasm, we think they are
absent. Oxygenation can be safely assumed to be
constant when respiratory rate and room oxygen
concentration remain constant. In order not to disturb
these factors, all experiments take place in a quiet room
and in a supine position.

Several factors (figure 1) have to be taken into account
before the conclusion can be drawn that a change in
CBFV measured in the MCA is most probably caused by
a change in sympathetic activity. First of all, there should
be no major changes in blood pressure and Pacos
(represented by ETcos in our set-up), since changes in
these variables can have a profound effect on CBFV.
Furthermore, any large changes in pulse are also unde-
sirable, since this might indicate a generalised sympa-
thetic activation, and not a more focal sympathetic
activation by TENS. Since we cannot be certain if the

Table 1

effects of TENS, if any, are mediated by the intrinsic or
extrinsic sympathetic pathways, we can expect changes
in vessel diameter of the MCA or the cerebral arterioles,
or possibly even both.

CBF is determined indirectly by measuring CBFV in
the MCA with TCD. In normal subjects, the MCA
diameter is fairly constant, so flow velocity is propor-
tional to cerebral flow, and arteriolar diameter is the
most important regulator. If arteriolar diameter
increases, resistance to flow will decrease, and CBFV (in
the MCA) will increase, and vice versa. By contrast,
in cerebral vasospasm, the opposite situation exists. In
vasospasm, TCD measures intrastenotic blood-flow
velocity, and blood-flow velocity is inversely related to
CBF. In this situation, the relation CBFV=CBF/cross-
sectional area can be applied, that is, if the MCA
diameter increases, CBFV decreases.

Therefore, in this experiment, the finding of
a decrease or increase in CBFV cannot be interpreted
unambiguously. Based on TCD alone, even if we
include indices of vascular resistance (pulsatility), we
cannot determine with sufficient certainty if proximal
or distal diameter changes may have occurred. We use
the measurement of cerebral oxygenation (by NIRS) of
the frontal lobe (downstream of the CBFV measure-
ment in the MCA) as another modality to indirectly
estimate changes in CBF. Provided brain metabolism,
oxygen extraction, blood pressure and Pacos remain
unaltered, an increase in oxygenation indicates vaso-
dilatation and an increase in CBF, while a decrease
indicates vasoconstriction and a decrease in CBF. Using
both TCD and NIRS facilitates interpretation of data,
provided the other factors remain stable (table 1).
Once again, any substantial alterations in MAP, ETcoq
and pulse would make interpretation more difficult.
Still, even though a raised ETcos or MAP can explain an
increase in CBFV, a decrease in CBFV under these
circumstances cannot be disregarded and must be
explained otherwise.

ETHICS AND DISSEMINATION

Ethics and safety considerations

All potential participants will be informed fully about the
study procedures and known risks. All subjects or their
relatives will provide written informed consent. They will
have the opportunity to withdraw from the study at any
time.

Theoretically possible measurements and the most probable consequences for vessel diameter, provided the mean

arterial blood pressure and end tidal carbon dioxide concentration remain unchanged

Measurement

Vessel diameter

Cerebral blood-flow Cerebral oxygen

Middle cerebral

velocity saturation artery Arteriolar Interpretation

1 ! 1 « Vasospasm increase
T 1 < 1 Arteriolar dilatation

1 1 T © Vasospasm decrease
I U < ! Arteriolar constriction
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Studies on SCS and CBF have produced no stimula-
tion-related complications, only surgery-related compli-
cations such as infection, electrode displacement, etc.
The TENS electrodes will be attached to the skin, which
may cause skin irritation or rash comparable with
sunburn. No serious adverse events are known from
TENS in general. A previous study has reported that
TENS can be safely applied in the cervical region.*”

Our study protocol has been approved by the Medical
Review Ethics Committee Groningen (ID METc
2010.123).

Dissemination

We hope to disseminate our study results through
conferences and journal publications. If effects of TENS
can be found in patients with cerebral vasospasm after
SAH and TENS is shown to be a feasible application of
electrical stimulation in this patient population, this set-
up will be used in future prospective (randomised)
controlled trials. If TENS is shown not to be feasible,
other methods of neurostimulation such as subcuta-
neous electrical stimulation or spinal cord stimulation
will be explored using the same set-up.

In conclusion, this setup can be used to investigate
regulation of CBF in several cerebrovascular diseases.
Besides this, the application of ad hoc statistical analysis
allows for the optimisation of several settings (frequency,
current, etc) of electrical stimulation in one session,
which facilitates research on electrical modulation of CBF.
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