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Introduction: In the field of personalized medicine, radiomics has shown its potential to
support treatment decisions. However, the limited feature interpretability hampers its
introduction into the clinics. Here, we propose a new methodology to create radiomics
feature activation maps, which allows to identify the spatial-anatomical locations
responsible for signature activation based on local radiomics. The feasibility of this
technique will be studied for histological subtype differentiation (adenocarcinoma versus
squamous cell carcinoma) in non-small cell lung cancer (NSCLC) using computed
tomography (CT) radiomics.

Materials and Methods: Pre-treatment CT scans were collected from a multi-centric
Swiss trial (training, n=73, IIIA/N2 NSCLC, SAKK 16/00) and an independent cohort
(validation, n=32, IIIA/N2/IIIB NSCLC). Based on the gross tumor volume (GTV), four
peritumoral region of interests (ROI) were defined: lung_exterior (expansion into the lung),
iso_exterior (expansion into lung and soft tissue), gradient (GTV border region), GTV+Rim
(GTV and iso_exterior). For each ROI, 154 radiomic features were extracted using an in-
house developed software implementation (Z-Rad, Python v2.7.14). Features robust
against delineation variability served as an input for a multivariate logistic regression
analysis. Model performance was quantified using the area under the receiver operating
characteristic curve (AUC) and verified using five-fold cross validation and internal
validation. Local radiomic features were extracted from the GTV+Rim ROI using non-
overlapping 3x3x3 voxel patches previously marked as GTV or rim. A binary activation
map was created for each patient using the median global feature value from the training.
The ratios of activated/non-activated patches of GTV and rim regions were compared
between histological subtypes (Wilcoxon test).

Results: Iso_exterior, gradient, GTV+Rim showed good performances for histological
subtype prediction (AUCtraining=0.68–0.72 and AUCvalidation=0.73–0.74) whereas GTV and
lung_exterior models failed validation. GTV+Rim model feature activation maps showed
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that local texture feature distribution differed significantly between histological subtypes in
the rim (p=0.0481) but not in the GTV (p=0.461).

Conclusion: In this exploratory study, radiomics-based prediction of NSCLC histological
subtypes was predominantly based on the peritumoral region indicating that radiomics
activation maps can be useful for tracing back the spatial location of regions responsible
for signature activation.
Keywords: lung cancer, computed tomography, peritumoral radiomics, radiomics activation maps, local
radiomics, interpretability
INTRODUCTION

Personalization of therapy options for patients with oncological
diseases has gained great importance in recent years.
Differentiation of non-small cell lung cancer (NSCLC) patients
into histological subtypes, i.e., lung adenocarcinoma (ADC, ~50%)
and squamous cell carcinoma (SCC, ~40%) (1) is for example an
important factor in the choice of systemic treatments (2). Current
biomarker assessments are often based on invasive interventions
to extract a single-pin-pointed measurement. Consequently, there
are many clinical scenarios with a clinical need for alternatives to
tissue-based assessment of tumor histology: e.g., challenging
anatomical locations for biopsy, unfavorable risk-benefit ratio
for biopsy, history of more than one malignancy, or
characterization of two simultaneously identified lung nodules.

Quantitative, image-based biomarkers, so-called radiomic
features, can potentially overcome these obstacles (3–6).
Extracted from medical images such as computed tomography
(CT), those features rely on mathematical definitions to depict
image-related characteristics. Features can often be subdivided
into four main types: shape, intensity, texture and filtered based
features, providing a 3D profile of the region of interest (ROI)
(2). Radiomics has shown increasingly its potential usefulness in
diagnosis, prognosis and response assessment (4, 6–8). For
example, Aerts et al. showed that CT based radiomics was able
to predict overall survival (OS) in NSCLC and head and neck
cancer patients (concordance index=0.65, 0.69, respectively)
treated with radiochemotherapy (5). Further, radiomics was
reported prognostic for NSCLC patients treated with targeted
therapies such as nivolumab, docetaxel and gefitinib with
promising results (9, 10). Next to OS, other endpoints have
been reported such as disease-free survival (11) or distant
metastasis (12). Moreover, radiomics has shown to be useful
for response assessment, i.e., in prediction of pathological
complete response (13, 14). Identified radiomics features
prognostic for survival in NSCLC were associated with image
related tumor heterogeneity in CT imaging (15), i.e., entropy (16)
or busyness (7) based on filtered images.

However, the quantitative and highly complex methodical
nature of radiomics is a two-edged sword. Compared to
manually assessed measures in radiological reports, these
radiomic features lack in their interpretability, challenging the
methodology to emerge from a research topic to a useful tool in
clinical settings.
2

Gradually, this hurdle has been recognized and few research
groups have attempted to improve the feature interpretability.
One strong motion is to correlate radiomic features with known
biological markers such as human papillomavirus (17, 18) or
epidermal growth factor receptor (19–21). However, the
biological data is often only of limited availability. In contrast,
local radiomic features can be used to provide more spatial
information about given signatures. Local radiomics refers to the
extraction of radiomic features from small sub-regions (patches),
which cover the complete ROI. Compared to traditional global
radiomic features, the spatial location of these patches is known
and hence differences in radiomics signatures can be determined
on a smaller spatial scale. Bogowicz et al. for example showed
that local radiomics differed substantially between recurrent to
non-recurrent regions in head and neck cancer treated with
radiotherapy (22). Local radiomics may not only serve as a
detection tool, but the additional spatial information obtained
from the patches potentially allows to trace the regions which are
most revealing for a particular radiomics signature.

It is the aim of this exploratory study to create and analyze CT
radiomics signature activation maps using local radiomics. As a
case-study, we built tumoral and peritumoral radiomics models
using a multi-centric imaging dataset to predict NSCLC
histological subtypes. Local radiomic features were extracted
for the model features to create radiomics feature activation
maps. These maps were assessed to evaluate whether the tumoral
or peritumoral region is more informative for NSCLC histology
differentiation in pre-treatment CT.
MATERIALS AND METHODS

Patient and Imaging Characteristics
Patient and imaging characteristics were integrated from a previous
study (23). For the training cohort, pre-treatment CT scans were
collected from 73 stage IIIA/N2 NSCLC patients from a prospective
Swiss multi-centric randomized phase 3 trial (SAKK 16/00 (5),
neoadjuvant chemotherapy or radiochemotherapy prior to surgery).
For the validation cohort, CT scans of 32 stage IIIA/N2 or IIIB
NSCLC patients were included (induction radiochemotherapy or
chemotherapy only prior to surgery) which were treated at the
University Hospital Zurich (USZ). Patients with histological
subtypes ADC and SCC were selected for this study. Histology as
well as patient staging [6th edition of the tumor-node-metastasis
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(TNM) classification] were defined according to the SAKK 16/00
protocol (5). Patients were similarly distributed between ADC and
SCC subtype in the training and validation cohort (61.6 and 56.3%
of ADC patients in training and validation, respectively)
(Supplement A, Table 1).

Patients received non-contrast enhanced, non-gated pre-
treatment CT scans reconstructed with filtered-back projection
(FBP) using standard convolution kernel. Due to the multi-
centric imaging set, we defined the standard kernel as follows: GE
—STANDARD, Siemens—B30f/B31f, Toshiba—FC18, and
Philips—B, similarly to the phantom study of Mackin and Ger
et al. (24, 25). CT spatial resolution varied between 0.98 and
1.37 mm in-plane and 0.6 to 5.0 mm slice thickness. Patients
from the validation cohort received a non-contrast enhanced
average CT and were imaged on CT scanner Discovery RX, STE,
690 and Biograph 128 Edge, 128, 40, 6 and SOMATOM
Definition AS, from GE MEDICAL SYSTEMS and SIEMENS.
Scans were reconstructed with FBP and a smooth kernel
(STANDARD, I30f, B31f). CT spatial resolution was 0.98, 1.17,
1.37 mm in-plane and 2 and 3.27 mm slice thickness.

Delineation
Five ROIs were defined for this study (Figure 1):

A. GTV: visual extent of the gross tumor volume (GTV)
B. lung_exterior: 0.8 cm expansion from the GTV into lung

tissue only
C. iso_exterior: 0.8 cm expansion from the GTV into lung and

soft tissue
D. gradient: 0.4 cm contraction and 0.8 cm expansion from

the GTV
E. GTV+Rim: union of GTV and 0.8 cm expansion from GTV

(iso_exterior)

The GTV ROI was manually delineated on the CT scans by an
experienced physician using MIM VISTA (Version 6.7.9., MIM
Software Inc., Cleveland, USA) with the lung window level and
the support of registered PET images. All ROIs except for the
GTV will be referred to as peritumoral ROIs. These peritumoral
Frontiers in Oncology | www.frontiersin.org 3
ROIs were created using an in-house developed MIM workflow.
Anatomical structures which would strongly disturb the analysis,
e.g., consisting of large air cavities (bronchi) or dense structures
(bones) were manually excluded from all ROIs. Further, patients
were excluded from the gradient analysis if the gradient regions
comprised the entire GTV (Figure 1D).

Robustness Study
The creation of the peritumoral ROIs was based on the manual
delineation of the GTV, therefore a robustness study was
performed to study the impact of inter-observer delineation
variability on the radiomic features. A separate set of eleven
patients were used as described in the study of Pavic et al. (26).
Three independent observers from USZ manually delineated the
GTV. The same MIM workflow was used to create the
peritumoral ROIs with the GTV of the three observers as an
input. The intra-class correlation coefficient (ICC) was used as
stability measure as described in Pavic et al. (26). However, a
stricter acceptance level of 0.9 was chosen, i.e., radiomic features
with ICC > 0.9 were considered stable.

Radiomics
Pre-treatment CT scans were resampled to 3.75 mm cubic voxels,
the 75th percentile of slice thicknesses in the training dataset
using linear interpolation. Radiomic calculations were performed
using an in-house developed software implementation (Z-Rad)
based on Python programming language v 2.7.14 (for details on
the software and features, please consult: https://medical-
physics-usz.github.io). A Hounsfield unit (HU) range of −1,024
to 200 HU was chosen to exclude bone structures which could
not be accounted for manually. Since the expansion and
contraction parameters for the peritumoral ROIs were fixed,
no shape features were considered for the analysis. Further, due
to the small number of voxels in each direction, no wavelet
features were included. Hence, a total of 154 radiomic features
were calculated, i.e., intensity (n = 17) and texture (n = 137).
Feature definitions were standardized according to the image
biomarker standardization initiative (IBSI, version 11) (27). A
fixed bin size of 20 HU was used to discretize the grey level values
FIGURE 1 | Same axial slice of a patient in our cohort shown for tumoral and peritumoral region of interests (ROIs), i.e., visual extent of the primary tumor (A, GTV),
0.8 cm expansion into lung tissue region inside the lung (B, lung_exterior), 0.8 cm expansion into lung and soft tissue (C, iso_exterior), 0.4 cm contraction and 0.8
cm expansion from the GTV (D, gradient), and primary tumor including iso_exterior (E, GTV+Rim).
December 2020 | Volume 10 | Article 578895
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for texture analysis, resulting in approximately 60 bins, which
has been shown to reduce intrinsic noise in the images while
preserving essential texture (28).
Statistical Analysis for Global Radiomics
To reduce the number of features, principal component analysis
(PCA) was performed as a feature reduction method (29). The
retained principal components were defined based on the 95%
data variance. The feature which correlated the most with the
selected principal component was used as a surrogate (the largest
Pearson correlation coefficient). Univariate logistic regression
analysis was performed to determine individual prognostic
power of each features, separately. The significance level was
0.05, with no correction for multiple testing. Based on features
with highest prognostic power per principal component group, a
multivariate logistic regression model was built with backward
selection using Akaike information criterion (AIC) which
balances the goodness of fit of the model and its simplicity
(30). The discriminatory power of the models was quantified
using the area under the receiver operating characteristic curve
(AUC) along with its 95% confidence interval (CI). Model
performance was verified using 5-fold cross validation. Folds
were chosen randomly without repetition. The generalizability of
the models was verified in the validation cohort. Statistical
analysis, model building and validation were performed with R
[Version 3.5.1, packages: base, survival (31), survcomp (32), boot
(33), pROC (34), and glmnet (35)].
Frontiers in Oncology | www.frontiersin.org 4
Creation of Activation Maps Based on
Local Radiomics
Local radiomic features were extracted from the GTV+Rim ROI
using non-overlapping patches of size 3x3x3 voxels. This size of the
patches allowed a meaningful calculation of the texture features
(minimum number of voxels in each direction) as well as a
meaningful overlap with the rim region (0.8 cm margin in each
direction and 3.75mm voxel size). The placement of the patches was
automatically optimized to cover the entire ROI with a minimum
number of patches. Patches with a low number of informative voxels
(<9voxels)of theROIwerediscarded.Theoverlapof thepatcheswith
the GTVwas assessed, i.e., 100% referred to patches comprising only
the GTV and 0% to patches comprising only normal tissue. This tool
is intended to determine whether the radiomics signature for the
prediction of histological subtypes originates from a certain
predefined region. The signatures of patches with mixed overlap
(10% to 90%) contain ambiguous information and were therefore
discarded toclearlydistinguishpatches spatiallyassignedrimorGTV.
Finally, patcheswith overlap lower than 10%or larger than 90%were
labeled as rimandGTV, respectively.Abinary feature activationmap
was created for each individual patient using the respectivemedian of
the global (standard) feature value in the training cohort, i.e., patches
with feature value larger than the median were considered activated.
The ratios of activated/non-activated patches for the normal tissue
and the GTV were compared in the validation cohort between the
histology types (Wilcoxon test), consideringonlypatientswith at least
27 patches and a minimum 3 patches per region (Figure 2, a more
detailed description can be found in Supplement D).
FIGURE 2 | Scheme of radiomics feature activation map creation. Patches were optimally placed and patches with few informative voxels (< 9) were discarded (1),
patches were labeled according to their overlap with the gross tumor volume (GTV) contour (2), and patches with mixed overlap were discarded (3). Patches were
labeled activated (red) if their feature value was larger than the global median and were labeled non-activated (blue) if their feature value was smaller than the global
median. The activation ratio was analyzed per region and histological subtype (5).
December 2020 | Volume 10 | Article 578895
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RESULTS

Modeling and Validation
Robust features were identified from the inter-observer variability
robustness studies. Overall, the number of stable features for each
ROIs were found to be moderate, i.e., GTV (49.7%), lung_exterior
(57.6%), iso_exterior (57.6%), gradient (55.8%), and GTV+Rim
(74.5%). The analysis can be found in the Supplement B. Results
of the univariate analysis of the robust features selected in the
feature selection step are shown in Table 1. Features marked with
an asterisk were the final features retained after backward
selection. Overall good univariate performances on the training
set were observed (AUC = 0.61 to 0.72).

Different methods of feature selection were tested. The PCA +
univariate logistic regression feature selection method led to simpler
models. For majority of the ROIs, the models using PCA +
univariate logistic regression performed best compared to other
feature selection methods (Supplement C).

For all regions, a logistic regression model could be built. The
five-fold cross validation performance was [mean AUC (range)]:
GTV [0.625 (0.23–1.00)], lung_exterior [0.72 (0.68–0.78)],
iso_exterior [0.67 (0.46–0.84)], gradient [0.70 (0.48–0.82)],
GTV+Rim [0.67 (0.48–0.84)]. The models based on the GTV
and lung_exterior ROI were the only models which could not be
validated on the validation cohort with 95% CI covering AUC =
0.5, i.e., a performance of a random predictor. Iso_exterior,
gradient and the GTV+Rim showed acceptable performances
in the range of 0.68–0.72 in the training and 0.73–0.74 in the
validation cohort (Figure 3).

Model Features
In Table 1, the coefficients of the final model features are listed. The
finalmodels consistedof oneor two features. Eachmodel consistedof
one texture features. These texture features can be associatedwith the
texture heterogeneity in the ROI. For example, the gray level
coocurrence matrix (GLCM) inverse variance in the GTV model is
small if there is higher variance (Figure 4). The median GLCM
inverse variancewas lower forADCcompared toSCC, i.e.,ADCwere
Frontiers in Oncology | www.frontiersin.org 5
more likely to have heterogeneous and SCC more homogeneous
patterns (Figure 4). For all regions, iso_exterior, gradient and the
GTV+Rim, one texture feature (GLSZM_zone size non-uniformity
normalized) was present in all three models. This feature counts the
homogeneous zones of the same size over the different zone sizes and
is low in patterns where zone counts are equally distributed along
zone sizes, i.e., more heterogeneous patterns (Figure 4). In the
models, the higher texture value (more homogeneous pattern) was
associated more with SCC patients. Further, since this feature was
present in the all three models, this feature will most likely be
associated in the tumor adjacent region within the stable
performing GTV+Rim model. Using the activation maps we
further validate this assumption (see next section). Interestingly,
the iso_exterior the 90% percentile intensity feature was significant
more relevant in themodel compared to the texture features whereas
in the GTV+Rimmodel the opposite was observed (Figure 4).

Analysis of Radiomics Feature Activation
Maps
The activation map analysis of the full radiomics signature indicated
a greater importance of the rim region compared to the GTV
(p=0.0541 and p=0.302 for rim and GTV, respectively). A closer
analysis on the individual features showed that visually the texture
feature was more activated on the adjacent region of the tumor, the
intensity median more in the tumoral region. The median split
values from the training cohort was 0.526 for GLSZM_zone size
non-uniformity normalized and −158 HU for intensity_median.
There was a significant difference in the activation ratio in the rim
region when comparing ADC vs. SCC patients (p=0.048), however
the ratio was non-significant in the tumor region (p=0.461). No
significant difference in activated/non-activated ratio was observed
in both regions for intensity median (Figure 5).
DISCUSSION

Ideally, clinically useful prognostic models should be performing
reliably and be comprehensive. With the growing complexity of
TABLE 1 | Overview of univariate and multivariate analysis shown for all region of interests (ROIs) considered.

Univariate Multivariate

ROI Features AUC p-value Coefficient p-value

GTV GLRLM_run entropy 0.64 0.034
GLCM_inverse variance* 0.65 0.035 −10.83 0.035

lung_exterior GLSZM_zone percentage 0.63 0.046
GLCM_contrast 0.65 0.043
GLCM_homogeneity normalized* 0.72 0.004 52.51 0.004
NGLDM_low dependence emphasis 0.66 0.025

iso_exterior Intensity_median 0.65 0.028
GLCM_correlation 0.61 0.043
GLSZM_zone size non-uniformity normalized* 0.68 0.015 −12.84 0.112
Intensity_percentile_90* 0.68 0.025 −0.01 0.072

gradient GLSZM_zone size non-uniformity normalized* 0.68 0.046 −20.26 0.046
GTV+Rim Intensity_median* 0.63 0.026 0.002 0.144

GLSZM_zone size non-uniformity normalized* 0.69 0.010 −16.75 0.026
December
 2020 | Volume 10 | Article
Only features are listed which had a significant performance in the univariate analysis per principal component group. Features with an asterisk were retained in the final models after
backward selection and their coefficients and p-values in the multivariate analysis are listed.
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hand-crafted radiomic features, the feature interpretability becomes
more relevant for its successful incorporation into clinical settings.
Tools allowing feature interpretability may help in filtering false
positive results in signature validation or clinical use.

In this exploratory study, we used a new local radiomics
approach to create radiomics feature activation maps to locate
the regions responsible for signature activation. On a local scale
we were able to study whether the peritumoral or the tumoral
radiomics was more informative for NSCLC histology
differentiation in CT. To our knowledge, this is the first study
to correlate peritumoral radiomic features with NSCLC
histological subtypes. Multivariate logistic regression models
were built for each ROI using features robust against inter-
observer delineation variability. Iso_exterior, gradient as well as
the combination of GTV and iso_exterior (GTV+Rim) showed
acceptable performances in the range of AUC = 0.68–0.72 in the
training and AUC=0.73–0.74 in the validation cohort whereas
GTV and lung_exterior ROI models failed to validate. GTV+Rim
radiomics feature activation maps for each patient showed that
the rim region was more informative compared to tumoral
radiomics to differentiate ADC and SCC.

CT based tumoral radiomic models have shown to be able to
discriminate NSCLC histological subtypes, i.e., capturing that ADC
cells are more loosely organized while SCC is more densely
structured (36). Model performances however were not consistent
across different studies ranging frommoderate (37, 38) to good (36,
39–41). Possible explanation for worse performance of our GTV-
based model compared to others may lay in the different imaging
settings used. Reported models incorporated contrast-enhanced
(17), respiratory-gated (15) CT scans or more complex modeling
techniques such as Bayesian network (37). In our dataset, we
selected a subset of patients with similar reconstruction settings
resulting in small inter-scanner effects similar to previous studies
(24, 25) potentially influencing the performance of the model.
Further, scans were acquired in free-breathing which can
introduce blurring to the final image (42, 43). However, in
agreement with previous studies, ADC and SCC patients had a
different tissue structure, i.e., the median of the mean intensity was
Frontiers in Oncology | www.frontiersin.org 6
significantly smaller for patients with ADC compared to SCC (p <
0.05). The final GTV model feature (GLCM_inverse variance) was
lower for ADC patients compared to SCC patients, reflecting the
more loosely structured tumor in ADC patients compared to more
densely structured tissue of SCC patients. Lower GLCM_inverse
variance feature can be associated with higher heterogeneity in the
tissue in agreement with other studies (41), i.e., higher entropy
values (associated with higher tumor heterogeneity) were observed
to be associated with ADC tumors (40).

We hypothesized that peritumoral radiomics can depict better
the known association between the anatomical tumor location and
histological subtypes, i.e., ADC occur in more peripheral regions
while SCC are often located centrally (1). This association is
assumed to be most evident in iso_exterior ROI where the
captured adjacent soft tissue structures can reflect the periphery
or centrality of the primary tumor location. Indeed, the median
90% percentile in ADCwas lower compared to SCC indicating less
dense structures in the ROI. Further, it has been shown that the
microscopic tumor extension in the peritumoral region differs
between ADC and SCC. As a result, it has been suggested to use
different margin sizes when treating ADC and SCC tumors to
cover 95% of the microscopic tumor extension (8 and 6 mm
margin for ADC and SCC, respectively) (44). With the chosen
8 mm margin for the iso_exterior region, this peritumoral model
may depict this difference in the cell distribution.

The presence of the GLSZM_zone size non-uniformity
normalized feature in the peritumoral ROI models indicated that
this feature varies stronger between different histologies in the rim
rather than in the GTV region in the GTV+Rim model. The
activation maps of the GTV+Rim model confirmed this
observation, i.e., the distribution of local texture feature of ADC
differed significantly from SCC for the rim (p=0.048) but not for the
GTV (p=0.461), irrespective that the feature threshold was based on
the global feature values and no feature scaling was applied.

To account for the inter-observer delineation variability, a
robustness study was performed for the primary tumor and
peritumoral ROIs. The peritumoral feature stability was
moderate, interestingly however, similar or even more stable
FIGURE 3 | Receiver operating characteristic curve (ROC) curves and corresponding mean AUC [95% confidence interval] of the analyzed ROIs shown for training
(blue) and validation cohort (red). The radiomic models based on GTV and lung_exterior could not be successfully validated in the validation cohort. Iso_exterior,
gradient and GTV+Rim models had good performances in both cohorts.
December 2020 | Volume 10 | Article 578895
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than the primary tumor radiomics. A possible reason can be a
different amount of lung tissue in the primary tumor delineation,
which can result in higher sensitivity tomanual delineations of the
primary tumor compared to peritumoral regionswhere substantial
lung tissue was a priori present. Further, an increased stability for
larger ROI sizes can be observed. This observation is in agreement
withTunali et al.’s inter-observer variability study,where, however,
the initial primary tumor contours were delineated using three
semi-automatic segmentation methods (45). Arguably, the strict
Frontiers in Oncology | www.frontiersin.org 7
acceptance level ICC > 0.9, could have discarded potential useful
features. However, due to the small cohort of 11 patients for the
robustness analysis, the strict acceptance level helps ensuring that
results were not affected by the small sample size. Recently, it has
been shown that discarding features based on their robustness will
lead to different models compared to modeling using a
standardized imaging allowing to include all features (23).

The localization of signature relevant regions in the context of
activation maps has been established in deep learning methods.
FIGURE 4 | Boxplots of each studied region of interest (ROI) stratified by histological subtype (adenocarcinoma, squamous cell carcinoma) and dataset (training,
validation) for the final model features.
December 2020 | Volume 10 | Article 578895
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Activation maps are pre-dominantly used to identify areas of
interest used from the neural network to perform its class
prediction. Introduction of such activation maps into the field
of radiomics may provide an addition for clinical interpretability
of radiomic models. In the context of peritumoral radiomics for
example, where various peritumoral region definitions were
reported in different sites (46), no clear strategy was available
to determine the most promising region other than to model and
validate each region individually. Therefore the tool presented in
this study may guide the user to select the most relevant region in
a more efficient way. Further, the presented tool can be not only
applied on individual features but could be useful to interpret a
complete signature for example by combining the activation
maps of the model features. However, in our case, the texture
feature had a more important role for the modeling compared to
the intensity feature, therefore we did not include an analysis
combining both activation maps.

It is important to study the link between local and global
features. For intensity features, the global features do not
necessary have to reflect the spatial saliency on a local scale, as
they are not scale-invariant. For texture features, the distribution of
discretized intensities need to be preserved between the local and
global approach. For example, in our study, the same discretization
for local and global radiomics was used (fixed bin size of 20HUwith
bin 0 corresponding to minimum intensity in the entire ROI). For
Frontiers in Oncology | www.frontiersin.org 8
majority of texture features the link between global and local can be
argued on the basis that they are calculated on the relationship of a
single voxel to its immediate neighbor (e.g., GLCM, NGTDM)
consistent with the definition of our patches (3x3x3 voxels). The
patch size should be adjusted in situations where larger distances are
used for the texture metrics calculation. In more complex metrics
(e.g., GLSZM, GLRLM), further analysis is required to study the
main driving factor of the feature values. However, in our study
both iso_exterior and the GTV+Rimmodel shared the same feature
(GLSZM_zone_size_non-uniformity_normalized) indicating a
close link of that feature to the rim region, further also observed
on the local scale. Similarly, another study showed that CT based
local radiomics was useful to identifying subregions of head and
neck tumors associated with different degrees of radiation curability,
i.e., local features differed significantly between recurrent region and
controlled (non-recurrent) region (22). In that study, heterogeneity
on both global and local scale was linked to worse prognosis.
Irrespectively, a closer investigation is needed to identify the
optimal activation threshold.

This study has its limitations. Higher complexity features
such as wavelet features were not included, since a minimum
number of voxels in each direction is needed to provide a
meaningful analysis. The published tumoral radiomic models
consisted of filter-based features such as law-features or wavelet
features. However, these features were also more sensitive to
FIGURE 5 | Axial slices of the feature activation maps overlaid with the corresponding CT scan of a squamous cell carcinoma patient (SCC) and an adenocarcioma
patient (ADC) from the validation cohort. Activated (red) patches had feature values larger than the median feature value from the training, whereas non-activated
(blue) patches had feature values smaller than the median. The texture feature was activated mostly in the rim region whereas the intensity_median was activated
mostly in the tumor region.
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delineation variability (45). Further, strict cut-off values were
chosen to differentiate patches originated from the GTV and rim
(10% and 90%). These results will likely change when using
different cut-off values. Out of the scope of this exploratory study
was the use of different margin sizes for the definition of
peritumoral ROI as well as the inclusion of clinical known
prognostic factors which might have improved the presented
model performances. A further limitation is our assumption that
the tumor spreads isotropically radial from the primary tumor
center of mass. However, we distinguished a tumor spread into
the lung-only regions with an isotropic spread. Lastly, the small
sample size could have impacted the results, further analysis
incorporating more imaging data would be desired.
CONCLUSION

In this exploratory study we have shown that feature activation
maps using local radiomics proved to be useful for tracing back the
spatial location of regions responsible for signature activation.
Radiomics feature activation map analysis indicated that the rim
region, which is anatomically the tumor invasion front, was more
relevant for histological subtype prediction than the GTV in
CT imaging.
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