REVIEW

1663

Manual Therapy in Primary Dysmenorrhea: A Systematic Review and Meta-Analysis

Xia Li^{1,*}, Yanan Sun^{2,*}, Yuhan Wang¹, Xiyou Wang¹, Changhe Yu¹

¹Tuina and Pain Management Department, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, People's Republic of China; ²Traditional Chinese Medicine Department, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China

*These authors contributed equally to this work

Correspondence: Xiyou Wang; Changhe Yu, Email dzmyywxy@163.com; yakno2@163.com

Objective: This research aimed to assess the effectiveness of manual therapy in alleviating pain among women undergoing primary dysmenorrhea (PD).

Methods: All randomized controlled trials (RCTs) regarding manual therapy for PD were searched from online databases, spanning from their inception to July 2023. The identified literature underwent a thorough screening process, and the data were meticulously extracted and analyzed using RevMan 5.3. Subsequently, the included studies underwent Cochrane's quality assessment and meta-analysis. The evidence obtained was then assessed using the grading of recommendations, assessment, development, and evaluation (GRADE) approach.

Results: 32 RCTs, involving 2566 women were finally included for analysis. The overall quality of the concluding evidence was generally rated as low or very low. Performance bias and blind bias were found to be the main risk of bias of the included studies. In comparison to no treatment, manual therapy demonstrated a significant increase in pain relief in short-term (n=191, MD=1.30, 95% CI: $0.24 \sim 2.37$). The differences in the effects of manual therapy and the placebo on pain intensity may not be statistically significant (n=255, MD=0.10, 95% CI: $-0.37 \sim 0.58$). In contrast to NSAIDs, manual therapy exhibited superior pain alleviation (n=507, MD=3.01, 95% CI: $1.08 \sim 4.94$) and a higher effective rate (n=1029, OR=4.87, 95% CI: $3.29 \sim 7.20$). Importantly, no severe adverse events were reported across all studies, indicating a relatively safe profile for manual therapy.

Conclusion: Manual therapy presented promise in effectively relieving menstrual pain with minimal adverse events in short term, outperforming both no treatment and NSAIDs. However, this conclusion is tempered by the low quality of the included RCTs, highlighting the necessity for more robust trials to validate it.

Keywords: primary dysmenorrhea, manual therapy, meta-analysis, systematic review

Introduction

Primary dysmenorrhea (PD) is defined as painful menstruation in the absence of pelvic pathology and is characterized by recurrent, crampy, lower abdominal pain during menstruation, affecting 50–90% of women.¹ Among them, 15–50% of women with moderate to severe symptoms find their daily activities, including work, school, or other activities, disrupted.² The adverse effects of PD extend beyond physical discomfort, affecting performance by reducing attention and productivity.^{3,4} The guidelines recommend the use of non-steroidal anti-inflammatory drugs (NSAIDs) as the primary therapeutic approach for PD.⁵ Nevertheless, a subset of individuals fails to relieve their pain with NSAIDs and, instead, may experience undesirable side effects such as nausea, dyspepsia, headaches, or insomnia.⁶

The non-pharmacological and non-invasive therapies are endorsed to manage dysmenorrhea symptoms, including acupuncture, biofeedback, heat treatments, transcutaneous electrical nerve stimulation, exercises, and manual therapy.^{7,8} Manual therapy, a specialized branch of physical therapy, employing skilled hands-on techniques to assess, diagnose, and treat musculoskeletal and neuromuscular conditions. This therapeutic approach encompasses a variety of hands-on techniques, including massage, acupressure, holographic therapy, spinal manipulative therapy and more.

The utilization of manual treatment for PD remains controversial. Manual therapy, either in isolation or in combination with other treatment modalities, has demonstrated potential advantages for overall health with a low reported risk of adverse effects.⁹ In contrast, in 2006, a Cochrane systematic review indicated inadequate evidence to substantiate the efficacy of manual therapy in alleviating pain for women with dysmenorrhea.¹⁰ Given these divergent viewpoints, this research was to evaluate the efficacy and safety of manual therapy for PD, utilizing updated data and comparing its effects with no treatment, placebo or first-line treatment.

Methods

This meta-analysis adhered to the guidelines outlined in the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines (<u>Table S1</u>).¹¹ The study protocol was registered in the PROSPERO database (<u>https://www.crd.york.ac.uk/PROSPERO</u>/; registration number CRD42023443160) and fully conducted in this research.

Search Strategy

A thorough search was conducted across multiple databases, including PubMed, EMBASE, MEDLINE, Cochrane Central Register of Controlled Clinical Trials, CNKI, Wanfang, SinoMed, and VIP, covering the period from inception to July 2023. The search strategy employed a combination of medical subject headings (MeSH) terms with free words such as dysmenorrhea, menstrual pain, massage, manipulation, manual therapy, and was adjusted based on the specific requirements of each database (Table S2).

Eligibility Criteria

Types of Participants

The inclusion criteria included female patients of reproductive age who were experiencing PD. PD was defined as cyclic pelvic pain occurring during menstruation without the presence of gynecological pathologies such as endometriosis, adenomyosis, or uterine myoma. Furthermore, patients with secondary dysmenorrhea or significant medical conditions were excluded.

Types of Studies

All randomized controlled trials (RCTs) assessing pain intensity and associated outcomes were systematically included to evaluate the efficacy of manual therapy in females with PD. The treatment duration spanned a minimum of 2 menstrual cycles.

Types of Interventions

In this research, the intervention group comprised various forms of manual therapies, while combinations of manual therapy with other interventions were excluded. The control group encompassed sham or placebo treatments, no treatment, and oral NSAIDs.

Types of Outcomes

The primary outcome measures were centered on a direct assessment of pain intensity or severity, utilizing assessment tools such as the *Visual Analogue Scale* (VAS) or *Numeric Rating Scale* (NRS) and *McGill Pain Questionnaire* (MPQ). The secondary outcomes included the *Moos Menstrual Distress* (MDQ) questionnaire, adverse events, and the effective rate. The effective rate was determined by applying specific evaluation criteria, including the improvement in clinical symptoms or other measurable outcomes. Participants were classified as "cured", "significantly improved", "improved", or "non-responders" following therapy. The effective rate was computed using the following formula: Effective Rate = (N1 + N2 + N3)/N, where N, N1, N2, and N3 represent the total sample size and the number of patients who were cured, significantly improved, and improved, respectively.¹²

Study Selection and Data Extraction

Two researchers (LX and WYH) independently conducted searches, integrating the results using NoteExpress software to eliminate duplicates and identify potentially eligible articles through a review of titles and abstracts. The full texts of the selected articles were subsequently assessed against predetermined inclusion and exclusion criteria. Data were extracted

in a standardized manner, with any discrepancies resolved through consultation with a senior reviewer (YCH). The data collection form included recorded information such as the first author, publication year, sample size, age, course of PD, intervention regimen, treatment duration, and follow-up.

Quality Assessment

Two reviewers (LX and SYN) employed Cochrane Handbook of Systematic Reviews to assess the potential for bias in each included RCT.¹³ This assessment encompassed seven items categorized by the risk of bias, with each item being assigned to one of three risk categories: low risk, unknown risk, and high risk. The evidence quality was then rated as good, moderate, low, and very low using the grading of recommended assessment development and evaluation tool (GRADEpro GDT).¹⁴ If any of the following conditions were met: 1) risk of bias; 2) inconsistency; 3) indirectness; 4) imprecision; and 5) publication bias, the GRADE grading downgraded quality of each study from excellent.

Interpretation of Treatment Effects

To gauge the clinical significance of each treatment effect, a comparison was made with the minimum clinically important difference (MCID): 1.3 points for pain intensity on NRS,¹⁵ 10 points for MDQ,¹⁶ and a 19.9% improvement for the effect rate.¹²

Data Synthesis

The outcomes were classified into short-term (2-3 months), intermediate (3-12 months), and long-term (>12 months). In cases where multiple time frames fell within the same category, data closest to 3 months (short-term), 6 months (intermediate), and 12 months (long-term) were considered.

Meta-analysis was performed using the RevMan 5.3. Heterogeneity was assessed through I-square (I^2) statistics and Cochrane Q test.¹⁷ $I^2 < 50\%$ statistics or P-value > 0.01 indicated a low heterogeneity. When possible, a random-effects model was adopted for meta-analysis. In cases where substantial heterogeneity was observed, sources of heterogeneity were explored through subgroup or sensitivity analysis. For dichotomous variables, odds ratios (ORs) with 95% confidence intervals (CIs) were utilized, and other binary data were converted into OR values. Continuous variables were analyzed using the Hedges' g method and expressed as standardized mean difference (SMD) or mean difference (MD) with 95% CIs.

The findings were descriptively synthesized if there was only one relevant study or when the data were inappropriate for quantitative synthesis. To assess publication bias, a funnel plot was employed when more than ten papers were available for pooling.

Results

Study Selection

A total of 6068 citations were retrieved initially. After excluding 2367 duplicate studies, a further 3603 studies were excluded based on the screening of titles and abstracts, as they did not align with the study purpose. Subsequently, the full texts of 98 studies were carefully reviewed, and 65 were found not to meet the inclusion criteria. Finally, 32 RCTs that met the specified criteria were included in the analysis. All studies were published between January 1999 and 2019, with 18 studies published in Chinese^{18–35} and 14 in English.^{36–49} The PRISMA flowchart of the screening process is shown in Figure 1.

Study Characteristics

The study population comprised a total of 2566 participants who were randomly assigned to one of the 32 comparator groups. Among these, 18 studies were conducted in the Chinese mainland, ^{18–35} 5 in Iran, ^{36,37,39,40,47} 2 in Germany,^{45,46} 3 in Taiwan,^{41–43} and 1 each in HongKong,⁴⁸ America,⁴⁴ Italy,³⁸ and Turkey.⁴⁹ The age of participants ranged from 14 to 41 years, and the duration of symptoms varied from a mean of 3 months to 17 years. Across the 32 studies, manual therapy consisted various techniques, with 15 studies focusing on massage, 10 on acupressure, 2 on foot reflexology, 2 on holographic therapy, 2 on spinal manipulative therapy, and 1 on neuromuscular therapy. In the control group, 8 studies employed no treatment, 3 used sham therapy, and 21 involved oral medications. Details are presented in Table 1.

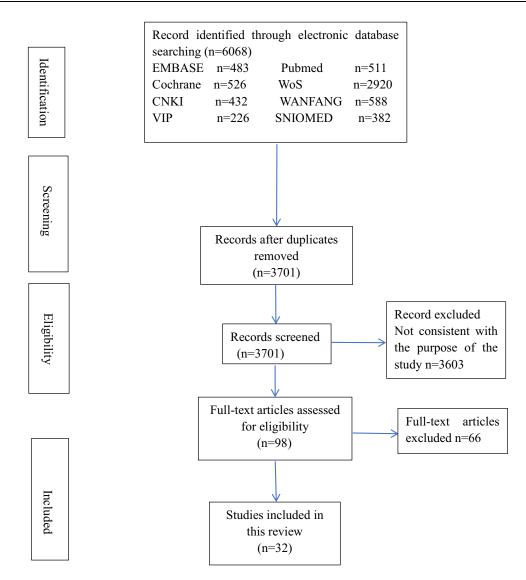


Figure I PRISMA flowchart. Adapted from Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. J Clin Epidemiol. 2021;134:178–189. Creative Commons.¹¹

In terms of outcome reporting, the VAS was the most frequently utilized, with 15 studies^{18,24,28,30,33,36–38,41–44,47–49} providing relevant data. Following closely, 14 studies^{19,20,22–24,26,27,29–35} reported effect rates, all originating from China. Additionally, 4 studies,^{22,25,26,30} reported pain scores, $4^{41-43,48}$ reported outcomes using the MDQ, $3^{21,45,46}$ mentioned outcomes using the NRS, and $2^{40,47}$ demonstrated outcomes using the MPQ. Adverse events were documented in two studies.^{28,45} The duration of most treatments lasted 2 to 4 menstrual cycles, with 6 studies having follow-ups of up to 6 months and one study extending to 12 months. Details are presented in Table 2.

Risk of Bias

Figures 2 and 3 illustrated the risk of bias observed in the included studies. Notably, in 4 studies,^{27,30,33,36} the randomization methods were considered to pose a high risk of bias, whereas the randomization methods were deemed appropriate in 13 studies.^{18,23–25,37,39,40,43–47,49} Additionally, 15 studies^{19–22,26,28,29,31,32,34,35,38,41,42,48} did not provide specific details regarding the generation of random sequences. Allocation concealment was implemented in 4 studies.^{36,43,45,49} Except for 1 study³⁶ reporting blinding of participants, the remaining studies^{18–20,22–27,31,33–35,44–46,21,28–30,32,37–43,48,49,47} did not furnish information on blinding. Notably, details of missing data were not reported in any of the enrolled studies, suggesting an absence of selective reporting bias. With the exception of 1 study²⁸ with uncertainty, all other studies^{18–27,31,33–46,29,30,32,47–49} did not exhibit any other biases.

Study	Country	Study	Number of Pa	rticipants	Age, Mean (S	D)/Range	Intervention	Control
		Design	Intervention	Control	Intervention	Control	-	
Atrian 2013 ³⁶	Iran	RCT	27	32	21.40 (2.45)	21.95 (3.01)	Acupressure	No treatmen
Azima 2015 ³⁷	Iran	RCT	34	34	21.41 (0.95)	21.08 (1.21)	Massage	No treatmen
Barassi 2018 ³⁸	Italy	RCT	30	30	31.56	(7.44)	Neuromuscular therapy	NSAIDs
Bazarganipour 2017 ³⁹	Iran	RCT	30	30	22 (1.71)	21.76 (1.73)	Acupressure	Placebo
Behbahani 2016 ⁴⁰	Iran	RCT	40	40	20.02 (1.44)	20.37 (1.54)	Acupressure	NSAIDs
Chen 2004 ⁴¹	Taiwan	RCT	35	34	17.78	(1.43)	Acupressure	No treatmen
Chen 2010 ⁴²	Taiwan	RCT	36	35	16.75 (1.36)	16.77 (1.19)	Acupressure	No treatmen
Chen 2011 ¹⁸	China	RCT	30	30	22.47 (4.58)	23.70 (4.56)	Massage	NSAIDs
Chen 2015 ⁴³	Taiwan	RCT	65	64	18.75 (1.74)	18.73 (0.63)	Acupressure	No treatmen
Chen 2016 ¹⁹	China	RCT	25	25	20.44 (1.54)	20.44 (1.8)	Massage	No treatmer
Guo 2015 ²⁰	China	RCT	34	34	14-30	14-30	Acupressure	NSAIDs
Hondras 1999 ⁴⁴	America	RCT	69	69	31.1	29.7	Spinal manipulative therapy	Placebo
Hu 2015 ²¹	China	RCT	40	40	22.61 (1.63)	22.83 (1.72)	Massage	NSAIDs
Jia 2011 ²²	China	RCT	16	16	21–27	21–27	Holographic therapy	No treatmen
Lin 2010 ²³	China	RCT	20	20	14	-41	Massage	NSAIDs
Lin 2017 ²⁴	China	RCT	20	20	17.45	(1.13)	Massage	NSAIDs
Lin 2018 ²⁵	China	RCT	20	20	20.2 (1.43)	20.93 (1.53)	Massage	NSAIDs
Liu 2012 ²⁶	China	RCT	55	55	22.46 (7.21)	23.51 (6.98)	Massage	NSAIDs
Ru 2015 ²⁷	China	RCT	50	50	26.62 (2.14)	26.77 (2.21)	Massage	NSAIDs
Susanne 2018 ⁴⁵	Germany	RCT	111	110	24.4 (3.3)	23.7 (3.9)	Acupressure	No treatmer
Tang 2012 ²⁸	China	RCT	30	30	21.41 (1.58)	21.39 (1.03)	Spinal manipulative therapy	NSAIDs
Vagedes 2019 ⁴⁶	Germany	RCT	23	17	30.22 (7.72)	26.65 (8.4)	Massage	NSAIDs
Valiani 2010 ⁴⁷	Iran	RCT	32	36	21.6	(1.79)	Foot reflexology	NSAIDs
Wang 2003 ²⁹	China	RCT	62	30	17–35	15-32	Massage	NSAIDs
Wong 2010 ⁴⁸	Hong Kong	RCT	19	21	22	21.57	Acupressure	No treatmer
Wu 2017 ³⁰	China	RCT	12	12	22.41 (1.56)	22.6 (1.72)	Massage	No treatmer
Xu 2008 ³¹	China	RCT	62	47	20).3	Holographic therapy	NSAIDs
Yilmaz 2019 ⁴⁹	Turkey	RCT	29	29	20.3	19.7	Foot reflexology	Placebo
Zhao 2015 ³²	China	RCT	30	30	22 (3.6)	21 (4.1)	Massage	NSAIDs
Zhou 2016 ³³	China	RCT	34	30	26.2 (2.59)	25.3 (3.1)	Massage	NSAIDs
Zhu 2012 ³⁴	China	RCT	50	46	_ ´	_	Massage	NSAIDs

Table I Summary of Included Trials Basic Information

Data Synthesis

Manual Therapy versus No Treatment

China

RCT

125

Pain Intensity

Zhu 2015³⁵

To synthesize pain scores, a meta-analysis was conducted, incorporating 8 studies.^{30,36,37,41-43,45,48} The pooled data exhibited significant heterogeneity (I²=57%), as depicted in Figure 4. In the short term (n=191, MD=1.30, 95% CI:

125

18–27

18–27

Acupressure

NSAIDs

Study	Outcomes	Course of Disease	e, Range/Mean±SD	Intervention	Follow-Up
		Intervention	Control	Period (Menstrual Cycle)	Period (Menstrual Cycle)
Atrian 2013 ³⁶	VAS		_	3	3
Azima 2015 ³⁷	VAS, Anxiety Level		-	3	3
Barassi 2018 ³⁸	VAS, Number of days with pain		-	4	4
Bazarganipour 2017 ³⁹	Wong-Baker faces pain scale, SF12		_	3	3
Behbahani 2016 ⁴⁰	MPQ		_	2	2
Chen 2004 ⁴¹	VAS, VASA, MDQ		_	3	6
Chen 2010 ⁴²	VAS, VASA, MDQ		-	3	6
Chen 2011 ¹⁸	VAS, PGF2a, UHD, PGE2	4.46±3.44 year	5.51±3.38 year	3	3
Chen 2015 ⁴³	VAS, MDQ		-	4	12
Chen 2016 ¹⁹	Traditional Chinese Medicine Symptom Score, Effective Rate		_	2	2
Guo 2015 ²⁰	Effective Rate	6 mont	h-5 year	3	3
Hondras 1999 ⁴⁴	VAS, PGF2a		-	4	4
Hu 2015 ²¹	NRS	5.63±2.51 year	6.21 ±1.89 year	3	3
Jia 2011 ²²	Effective Rate, Pain score, UHD	2–6	year	3	3
Lin 2010 ²³	Effective Rate	0.5-5	5 year	3	6
Lin 2017 ²⁴	VAS, Effective Rate, Clinical Symptom Scoring for Dysmenorrhea	3.75±0	.67 year	2	5
Lin 2018 ²⁵	Pain score, Hormone levels, emotional factors	3.7±0.	62 year	3	3
Liu 2012 ²⁶	Effective Rate, Pain score	0.5–1	0 year	3	3
Ru 2015 ²⁷	Effective Rate	7.26±3.15 month	7.13±3.04 month	3	3
Susanne 2018 ⁴⁵	NRS, Number of days with pain		-	3	6
Tang 2012 ²⁸	VAS	63.89±30.36 month	68.32±15.58 month	3	3
Vagedes 2019 ⁴⁶	NRS, SF12		-	3	3
Valiani 2010 ⁴⁷	VAS, MPQ, PRI		-	3	3
Wang 2003 ²⁹	Effective Rate	3 mont	h-5 year	3	3
Wong 2010 ⁴⁸	VAS, MDQ		-	3	3
Wu 2017 ³⁰	VAS, Effective Rate, Pain score, PPI, Traditional Chinese Medicine Symptom Score	6.33±2.05 year	6.25±1.76 year	3	3
Xu 2008 ³¹	Effective Rate	0.7-4	.3 year	3	3
Yilmaz 2019 ⁴⁹	VAS	0.7	-	2	4
Zhao 2015 ³²	Effective Rate	3±2.4 year	3±2.4 year	3	3
Zhou 2016 ³³	VAS, Effective Rate	2.7±2.03 year	2.6±1.66 year	3	3
Zhu 2012 ³⁴	Effective Rate		-	3	3
Zhu 2015 ³⁵	Effective Rate	2_8	year	3	3

Table 2 Summary of Included Trials' Outcome Measures and Follow-Up Period

Abbreviations: VASA, Visual Analog Scale for Anxiety; SF12, Short Form 12-Item Health Survey; PRI, Pain Rating Index; PPI, Pain Pressure Threshold; PGF2a, Prostaglandin F2 alpha; UHD, Uterine hemodynamics; PGE2, Prostaglandin E2.

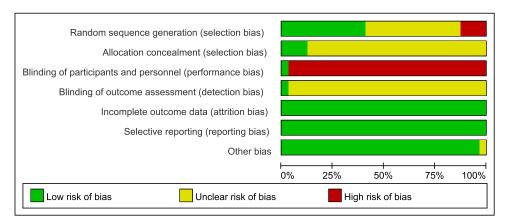


Figure 2 Risk of bias graph: review of the authors' judgments regarding each risk of bias item presented as percentages across all included studies.

 $0.24\sim2.37$), manual therapy was preferred over no treatment by subgroup analysis; however, this effect was not seen in the intermediate term (n=361, MD=0.91, 95% CI: -0.18~1.99) or long term (n=129, MD=0.33, 95% CI: -0.33~1.09). Another subgroup analyses revealed that both acupressure (n=589, MD=0.61, 95% CI: 0.22~1.00) and massage (n=92, MD=2.48, 95% CI: 0.92~3.99) were superior to no treatment group, as depicted in Figure 5.

Effective Rate

3 studies^{19,22,30} reported that the short-term effective rate in the manual therapy group was significantly higher than that in the no treatment control group (n=106, OR=8.73, 95% CI: $3.03\sim25.19$), with no observed heterogeneity (I²=0), as illustrated in Figure 6. A subgroup analysis showed that, in terms of improving effective rate, massage was superior to no treatment (n=74, OR=11.15, 95% CI: $3.40\sim36.58$), but holographic therapy was not as beneficial (n=32, OR=3.46, 95% CI: $0.32\sim37.47$).

MDQ

Additionally, 4 studies^{41-43,48} reported MDQ scores. The results indicated that acupressure can lead to a greater reduction in MDQ scores compared to no treatment (n=309, MD=3.84, 95% CI: 2.27~5.40), as depicted in Figure 7. The subgroup analysis demonstrated that the benefit might extend from short-term, intermediate to long- term.

Manual Therapy versus Placebo

Pain Intensity

3 studies^{39,44,49} comparing manual therapy to a placebo reported outcomes related to pain, suggested that the differences in the effects of manual therapy and the placebo on pain may not be statistically significant in short term (n=255, MD=0.01, 95% CI: -0.37~0.58), as depicted in Figure 8. The interventions in these three studies were acupressure, spinal manipulative therapy, and foot reflexology. The meta-analysis results are consistent with the findings of the original studies but lack clinical significance.

Manual Therapy versus NSAIDs

Pain Intensity

A total of 9 studies^{18,21,24,25,28,33,38,46,47} were subjected to meta-analysis to synthesize pain intensity findings between manual therapy and NSAIDs. Due to substantial heterogeneity ($I^2=99\%$), subgroup analyses were performed based on different types of manual therapy. As illustrated in Figure 9, 1 study⁴⁷ suggested that foot reflexology might yield greater pain relief than NSAIDs (n=68, MD=1.24, 95% CI: 0.41~2.07), although the difference did not attain statistical significance. 6 studies^{18,21,24,25,33,46} indicated that massage therapy proved more effective in alleviating pain compared to NSAIDs (n=324, MD=3.85, 95% CI: 1.60~6.10). Furthermore, 1 study²⁸ reported that the spinal manipulative therapy could potentially offer superior pain relief compared to NSAIDs (n=55, MD=3.26, 95% CI: 2.21~4.40). Conversely, another study³⁸ found that Neuromuscular therapy demonstrated no remarkable difference in pain relief in comparison to NSAIDs (n=60, MD=-0.47, 95% CI: -1.35~0.41).

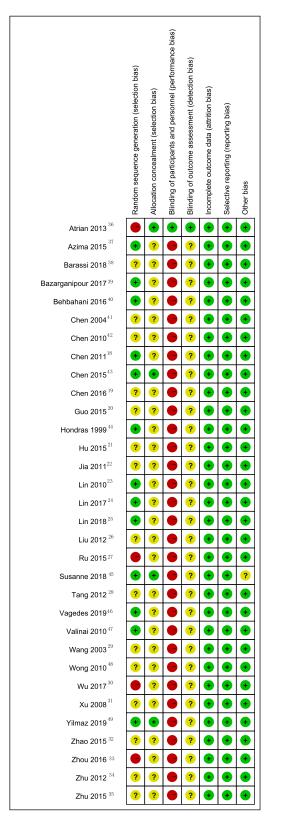


Figure 3 Risk of bias summary: review of the authors' judgments regarding each risk of bias item in each included study.

Subgroup analysis based on different follow-up durations reveals that manual therapy, in both short-term (n=467, MD=2.48, 95% CI: 0.79~4.18) and intermediate-term (n=40, MD=7.18, 95% CI: 6.75~7.61), may provide more pain relief compared to the NSAIDs group, as depicted in Figure 10.

	Expe	erimen	tal	С	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	I IV, Random, 95% CI
1.1.1 Short-term									
Atrian 2013 ³⁶	0.75	0.62	32	0.25	0.73	27	24.4%	0.50 [0.15, 0.85]	
Azima 2015 ³⁷	3.6	2.26	34	0.08	9.39	34	1.9%	3.52 [0.27, 6.77]	
Wong 2010 ⁴⁸	3	2.27	19	1.8	2.06	21	8.4%	1.20 [-0.15, 2.55]	+
Wu 2017 ³⁰	2.42	2.15	12	0.23	2.11	12	5.9%	2.19 [0.49, 3.89]	
Subtotal (95% CI)			97			94	40.6%	1.30 [0.24, 2.37]	
Heterogeneity: Tau ² =	0.64; Cł	ni² = 7.4	48, df =	3 (P =	0.06);	$l^2 = 60^{\circ}$	%		
Test for overall effect:	Z = 2.40	(P = 0	.02)	,					
1.1.2 Intermediate									
Chen 2004 ⁴¹	2.57	2.6	35	1.68	2.92	34	8.7%	0.89 [-0.42, 2.20]	
Chen 2010 ⁴²	2.97	2.4	36	1.08	2.37	35	10.8%	1.89 [0.78, 3.00]	
Susanne 2018 ⁴⁵	1.9	1.69	111	1.7	1.57	110	22.8%	0.20 [-0.23, 0.63]	- -
Subtotal (95% CI)			182			179	42.4%	0.91 [-0.18, 1.99]	
Heterogeneity: Tau ² =	0.68; Cł	ni² = 8.2	20, df =	2 (P =	0.02);	l² = 769	%		
Test for overall effect:	Z = 1.63	(P = 0	.10)						
1.1.3 Long-term									
Chen 2015 ⁴³	1.45	2.18	65	1.07	1.92	64	17.1%	0.38 [-0.33, 1.09]	-+
Subtotal (95% CI)			65			64	17.1%	0.38 [-0.33, 1.09]	
Heterogeneity: Not ap	plicable								
Test for overall effect:	•	(P = 0	.29)						
Total (95% CI)			344			337	100.0%	0.81 [0.35, 1.28]	•
, Heterogeneity: Tau ² =	0.20: Cł	ni² = 16	.37. df	= 7 (P =	= 0.02)	: l² = 57	7%	- / -	+ + + +
Test for overall effect:				•	,	,			-4 -2 0 2
Test for subgroup diffe		·			- 0.3/	1) 12 - 7	7 20/-		Favours [control] Favours [experimental]

Figure 4 Overall and different follow-up times subgroup forest plot of weighted mean difference (95% Cl) for pain intensity for manual therapy versus no treatment.

	Expe	rimen	tal	С	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
1.2.1 Acupressure									
Atrian 2013 ³⁶	0.75	0.62	32	0.25	0.73	27	24.4%	0.50 [0.15, 0.85]	-
Chen 2004 41	2.57	2.6	35	1.68	2.92	34	8.7%	0.89 [-0.42, 2.20]	
Chen 2010 ⁴²	2.97	2.4	36	1.08	2.37	35	10.8%	1.89 [0.78, 3.00]	
Chen 2015 43	1.45	2.18	65	1.07	1.92	64	17.1%	0.38 [-0.33, 1.09]	
Susanne 2018 ⁴⁵	1.9	1.69	111	1.7	1.57	110	22.8%	0.20 [-0.23, 0.63]	
Wong 2010 ⁴⁸	3	2.27	19	1.8	2.06	21	8.4%	1.20 [-0.15, 2.55]	
Subtotal (95% CI)			298			291	92.2%	0.61 [0.22, 1.00]	◆
Heterogeneity: Tau ² =	0.10; Ch	i ² = 9.3	38, df =	5 (P =	0.09);	l ² = 47	%		
Test for overall effect:	Z = 3.04	(P = 0	.002)						
1.2.2 Massage									
Azima 2015 37	3.6	2.26	34	0.08	9.39	34	1.9%	3.52 [0.27, 6.77]	
Wu 2017 ³⁰	2.42	2.15	12	0.23	2.11	12	5.9%	2.19 [0.49, 3.89]	
Subtotal (95% CI)			46			46	7.8%	2.48 [0.97, 3.99]	
Heterogeneity: Tau ² =	0.00; Ch	i ² = 0.5	51, df =	1 (P =	0.48);	$l^2 = 0\%$)		
Test for overall effect:	Z = 3.22	(P = 0	.001)	,	,.				
Total (95% CI)			344			337	100.0%	0.81 [0.35, 1.28]	•
Heterogeneity: Tau ² =	0.20; Ch	i ² = 16	.37, df	= 7 (P =	= 0.02)	; l ² = 5	7%		
Test for overall effect:				•	,				-4 -2 0 2 4
Test for subgroup diffe		•			= 0.02	$\frac{2}{1}, 1^2 = 8$	31.9%		Favours [control] Favours [experimental]

Figure 5 Overall and various manual therapies subgroup forest plot of weighted mean difference (95% CI) for pain intensity for manual therapy versus no treatment.

Effective Rate

11 studies^{20,23,24,26,27,29,31,33–35,49} reported that the manual therapy group exhibited a significantly higher effective rate to the NSAIDs (n=1029, OR=4.87, 95% CI: $3.29\sim7.20$), showing no heterogeneity ($I^2=19\%$). When compared to NSAIDs, the subgroup analysis revealed that acupressure, massage, and a holographic treatment are more beneficial in increasing effective rate. These findings were summarized in Figure 11. Subgroup analysis based on different follow-up durations

	Experime	ental	Contr	ol		Odds Ratio		Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixe	ed, 95% Cl	
1.3.1 Massage										
Chen 2016 ¹⁹	22	25	12	25	55.7%	7.94 [1.88, 33.50]				
Wu 2017 ³⁰	10	12	2	12	12.9%	25.00 [2.92, 213.99]				
Subtotal (95% CI)		37		37	68.6%	11.15 [3.40, 36.58]				
Total events	32		14							
Heterogeneity: Chi ² =	0.76, df = 1	(P = 0.3)	38); l ² = 0	%						
Test for overall effect:	Z = 3.98 (P	< 0.000	01)							
1.3.2 Holographic the	erapy									
Jia 2011 ²²	15	16	13	16	31.4%	3.46 [0.32, 37.47]				
Subtotal (95% CI)		16		16	31.4%	3.46 [0.32, 37.47]				
Total events	15		13							
Heterogeneity: Not ap	plicable									
Test for overall effect:	Z = 1.02 (P	= 0.31)	1							
Total (95% CI)		53		53	100.0%	8.73 [3.03, 25.19]			\bullet	
Total events	47		27							
Heterogeneity: Chi ² =	1.52, df = 2	(P = 0.4)	47); l² = 0'	%						
Test for overall effect:		`	<i>,</i> .				0.005	0.1 1	l 10	200
Test for subgroup diffe	•		,	2 = 0 3	9) $I^2 = 0.0$	6		Favours [control]	Favours [experir	nentalj

Figure 6 Overall and various manual therapies subgroup forest plot of weighted OR (95% CI) for effective rate for manual therapy versus no treatment.

	Expe	erimen	tal	С	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
1.4.1 Short-term									
Wong 2010 48	7.62	9.07	19	2.15	7.1	21	9.5%	5.47 [0.39, 10.55]	
Subtotal (95% CI)			19			21	9.5%	5.47 [0.39, 10.55]	
Heterogeneity: Not app	olicable								
Test for overall effect:	Z = 2.11	(P = 0	0.03)						
1.4.2 Intermediate									
Chen 2004 ⁴¹	3.83	6.33	35	1.59	7.7	34	22.1%	2.24 [-1.09, 5.57]	
Chen 2010 ⁴²	6.06	6.06	36	0.91	6.92	35	26.7%	5.15 [2.12, 8.18]	
Subtotal (95% CI)			71			69	48.8%	3.83 [1.59, 6.07]	
Heterogeneity: Chi ² = ²	1.60, df =	= 1 (P	= 0.21)	; l² = 38	%				
Test for overall effect:	Z = 3.35	(P = 0	.0008)						
1.4.3 Long-term									
Chen 2015 ⁴³	7.13	6.37	65	3.66	7.6	64	41.8%	3.47 [1.05, 5.89]	│ — ∎ —
Subtotal (95% CI)			65			64	41.8%		
Heterogeneity: Not app	olicable								
Test for overall effect:		(P = 0	.005)						
Total (95% CI)			155			154	100.0%	3.84 [2.27, 5.40]	•
Heterogeneity: Chi ² = 2	2.09. df =	= 3 (P	= 0.55)	: l² = 0%	6				
Test for overall effect:		· ·							-10 -5 0 5 10
Test for subgroup diffe		•		,	= 0.78	8), I² = ()%		Favours [control] Favours [experimental]

Figure 7 Overall and different follow-up times subgroup forest plot of weighted mean difference (95% CI) for MDQ for manual therapy versus no treatment.

	Expe	erimen	tal	С	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Bazarganipour 2017 39	1.8	2.57	30	1.53	2.52	30	13.5%	0.27 [-1.02, 1.56]	
Hondras 1999 ⁴⁴	1	1.52	68	0.8	1.66	69	79.0%	0.20 [-0.33, 0.73]	
Yilmaz 2019 ⁴⁹	3.2	3.5	29	4.4	3.23	29	7.5%	-1.20 [-2.93, 0.53]	
Total (95% CI)			127			128	100.0%	0.10 [-0.37, 0.58]	-
Heterogeneity: Chi ² = 2			,	; I² = 15	%				
Test for overall effect: Z = 0.43 (P = 0.66)									Favours [control] Favours [experimental]

Figure 8 Forest plot of weighted mean difference (95% CI) for pain intensity for manual therapy versus place control.

	Expe	erimen	tal	С	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
3.1.1 Foot reflexolog	у								
Valinai 2010 ⁴⁷	2.9	1.64	32	1.66	1.86	36	11.2%	1.24 [0.41, 2.07]	
Subtotal (95% CI)			32			36	11.2%	1.24 [0.41, 2.07]	\bullet
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 2.92	2 (P = C	.003)						
3.1.2 Massage									
Chen 2011 ¹⁸	3.78	1.1	30	0.6	1.31	30	11.3%	3.18 [2.57, 3.79]	
Hu 2015 ²¹	6.19	1.96	40	3.36	2.34	40	11.1%	2.83 [1.88, 3.78]	
Lin 2017 ²⁴	8.39	0.72	20	1.21	0.67	20	11.3%	7.18 [6.75, 7.61]	
Lin 2018 ²⁵	7.46	0.76	20	0.79	1.07	20	11.3%	6.67 [6.09, 7.25]	
Vagedes 2019 46	1	3.21	23	-0.6	2.19	17	10.5%	1.60 [-0.07, 3.27]	
Zhou 2016 ³³	4.7	0.52	34	3.26	1.37	30	11.3%	1.44 [0.92, 1.96]	
Subtotal (95% CI)			167			157	66.8%	3.85 [1.60, 6.10]	
Heterogeneity: Tau² = Test for overall effect:	Z = 3.36	6 (P = C		· ·	< 0.00)001); I	² = 99%		
3.1.3 Spinal manipul	ative the	erapy							
Tang 2012 28	5.2	2.23	27	1.94	2.06	28	11.0%	3.26 [2.12, 4.40]	
Subtotal (95% CI)			27			28	11.0%	3.26 [2.12, 4.40]	
Heterogeneity: Not ap Test for overall effect:	•	8 (P < C	.00001)					
3.1.4 Neuromuscula	r therapy	,							
Barassi 2018 ³⁸	3.6	1.97	30	4.07	1.48	30	11.1%	-0.47 [-1.35, 0.41]	
Subtotal (95% CI)			30			30	11.1%	-0.47 [-1.35, 0.41]	◆
Heterogeneity: Not ap	plicable								
Test for overall effect:	•	+ (P = C	.30)						
Total (95% CI)			256			251	100.0%	3.01 [1.08, 4.94]	
Heterogeneity: Tau ² =	8.53: Cł	1i² = 54		f = 8 (P	< 0.00				
Test for overall effect:					5.00	,, .	2370		-4 -2 0 2 4
Test for subgroup diffe		·		df = 2 /I		0001	12 - 00 69	,	Favours [control] Favours [experimental]

Figure 9 Overall and various manual therapies subgroup forest plot of weighted mean difference (95% CI) for pain intensity for manual therapy versus NSAIDs.

	Expe	erimen	tal	С	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
3.2.1 Short-term									
Barassi 2018 ³⁸	3.6	1.97	30	4.07	1.48	30	11.1%	-0.47 [-1.35, 0.41]	
Chen 2011 ¹⁸	3.78	1.1	30	0.6	1.31	30	11.3%	3.18 [2.57, 3.79]	-
Hu 2015 ²¹	6.19	1.96	40	3.36	2.34	40	11.1%	2.83 [1.88, 3.78]	
Lin 2018 ²⁵	7.46	0.76	20	0.79	1.07	20	11.3%	6.67 [6.09, 7.25]	+
Tang 2012 ²⁸	5.2	2.23	27	1.94	2.06	28	11.0%	3.26 [2.12, 4.40]	
Vagedes 2019 ⁴⁶	1	3.21	23	-0.6	2.19	17	10.5%	1.60 [-0.07, 3.27]	
Valinai 2010 ⁴⁷	2.9	1.64	32	1.66	1.86	36	11.2%	1.24 [0.41, 2.07]	
Zhou 2016 ³³	4.7	0.52	34	3.26	1.37	30	11.3%	1.44 [0.92, 1.96]	+
Subtotal (95% CI)			236			231	88.7%	2.48 [0.79, 4.18]	◆
Heterogeneity: Tau ² =	5.76; Cł	ni² = 27	'0.18, d	f = 7 (P	< 0.00	0001); I	² = 97%		
Test for overall effect:	Z = 2.87	(P = 0	0.004)						
3.2.2 Intermediate									
Lin 2017 ²⁴	8.39	0.72	20	1.21	0.67	20	11.3%	7.18 [6.75, 7.61]	+
Subtotal (95% CI)			20			20	11.3%	7.18 [6.75, 7.61]	•
Heterogeneity: Not ap	plicable								
Test for overall effect:		5 (P <	0.0000	1)					
Total (95% CI)			256			251	100.0%	3.01 [1.08, 4.94]	-
Heterogeneity: Tau ² =	8.53: Cł	ni² = 54	7.88. d	f = 8 (P	< 0.00)001): I	² = 99%	- / -	
Test for overall effect:					,	,,.	/ -		-10 -5 0 5 10
Test for subgroup diffe		•		df = 1 (l	- - - -	0001).	$l^2 = 96.4\%$	6	Favours [control] Favours [experimental]

Figure 10 Overall and different follow-up times subgroup forest plot of weighted mean difference (95% Cl) for pain intensity for manual therapy versus versus NSAIDs.

	Experim	ental	Conti	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I M-H, Fixed, 95% Cl
3.3.1 Acupressure					-		
Guo 2015 ²⁰	31	34	24	34	8.2%	4.31 [1.07, 17.39]	
Zhu 2015 ³⁵	109	125	94	125	46.5%	2.25 [1.16, 4.36]	
Subtotal (95% CI)		159		159	54.7%	2.55 [1.41, 4.64]	\bullet
Total events	140		118				
Heterogeneity: Chi ² = (0.68, df = 1	(P = 0.4	41); l² = C	%			
Test for overall effect:	Z = 3.09 (F	P = 0.002	2)				
3.3.2 Massage							
Lin 2010 ²³	19	20	15	20	2.9%	6.33 [0.67, 60.16]	
Lin 2017 ²⁴	18	20	12	20	4.6%	6.00 [1.08, 33.27]	
Liu 2012 ²⁶	52	55	49	55	10.3%	2.12 [0.50, 8.96]	
Ru 2015 ²⁷	47	50	29	50	6.7%	11.34 [3.11, 41.43]	
Wang 2003 ²⁹	60	62	23	30	3.9%	9.13 [1.77, 47.23]	· · · · · · · · · · · · · · · · · · ·
Zhao 2015 32	28	30	23	30	5.9%	4.26 [0.81, 22.53]	
Zhou 2016 ³³	32	34	18	30	4.4%	10.67 [2.14, 53.07]	
Zhu 2012 34	48	50	32	46	5.2%	10.50 [2.23, 49.35]	
Subtotal (95% CI)		321		281	43.9%	6.96 [4.00, 12.11]	•
Total events	304		201				
Heterogeneity: Chi ² = 4	4.18, df = 7	(P = 0.	76); l² = C	%			
Test for overall effect:	Z = 6.87 (F	P < 0.000	001)				
3.3.3 Holographic the	vrany						
Xu 2008 ³¹	62	62	38	47	1 30/	30.84 [1.75, 545.10]	
Subtotal (95% CI)	02	62	50	47		30.84 [1.75, 545.10]	
Total events	62	01	38		1.070	00.04 [1.10, 040.10]	
Heterogeneity: Not app			50				
Test for overall effect:		p = 0.02					
	L = 2.04 (i	- 0.02)					
Total (95% CI)		542		487	100.0%	4.87 [3.29, 7.20]	•
Total events	506		357				
Heterogeneity: Chi ² = ²	12.32, df =	10 (P =	0.26); l ² :	= 19%			-+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
Test for overall effect:	Z = 7.94 (F	, < 0.000	001)				0.002 0.1 1 10 500 Favours [control] Favours [experimental]
Test for subgroup diffe	rences: Ch	ni² = 7.57	7, df = 2 (P = 0.0	2), l² = 73	.6%	Favours (control) Favours (experimental)

Figure 11 Overall and various manual therapies subgroup forest plot of weighted OR (95% Cl) for effective rate for manual therapy versus NSAIDs.

indicates that manual therapy has an advantage over NSAIDs in improving effective rate, particularly in the short-term (n=949, OR=4.77, 95% CI: 3.17~7.17) and intermediate (n=80, OR=6.13, 95% CI: 1.57~23.98), as depicted in Figure 12.

MPQ

The reported results from the single study⁴⁰ indicated a greater reduction in pain for acupressure compared to NSAIDs in short-term (n=80, MD=-6.92, 95% CI: -10.90~-2.94), which was proven by MPQ scores.

Adverse Events

Among the 32 studies analyzed, adverse events associated with the interventions were documented in only 2 studies. 1 study⁴⁵ highlighted soreness in the lower back region associated with spinal manipulative therapy. In contrast, another study²⁸ reported adverse events linked to self-acupressure, including bruises, deterioration, hand pain, pressure pain, menstrual cycle shifts, dizziness, nausea, leg pain, and finger tingling. The majority of these adverse events were considered minor, as they either resolved spontaneously or were treated effectively.

Quality of Evidence

To assess quality, GRADEpro GDT was employed, incorporating outcomes from the enrolled studies. The evidence was generally appraised as being of low or very low quality based on GRADE criteria, attributable to the elevated risk of bias and pronounced heterogeneity. Notably, self-rating scales employed as a primary outcome for pain assessment were considered low-quality evidence. The summarized findings of interventions are presented in Table 3.

	Experime	ental	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
3.4.1 Short-term							
Guo 2015 ²⁰	31	34	24	34	8.2%	4.31 [1.07, 17.39]	
Liu 2012 ²⁶	52	55	49	55	10.3%	2.12 [0.50, 8.96]	
Ru 2015 ²⁷	47	50	29	50	6.7%	11.34 [3.11, 41.43]	
Wang 2003 ²⁹	60	62	23	30	3.9%	9.13 [1.77, 47.23]	
Xu 2008 ³¹	62	62	38	47	1.3%	30.84 [1.75, 545.10]	
Zhao 2015 ³²	28	30	23	30	5.9%	4.26 [0.81, 22.53]	
Zhou 2016 ³³	32	34	18	30	4.4%	10.67 [2.14, 53.07]	
Zhu 2012 ³⁴	48	50	32	46	5.2%	10.50 [2.23, 49.35]	· · · · · · · · · · · · · · · · · · ·
Zhu 2015 ³⁵	109	125	94	125	46.5%	2.25 [1.16, 4.36]	
Subtotal (95% CI)		502		447	92.5%	4.77 [3.17, 7.17]	\bullet
Total events	469		330				
Heterogeneity: Chi ² =	12.10, df =	8 (P = 0	0.15); l² =	34%			
Test for overall effect:	Z = 7.50 (P	? < 0.000	001)				
3.4.2 Intermediate							
Lin 2017 ²⁴	19	20	15	20	2.9%	6.33 [0.67, 60.16]	
Lin 2018 ²⁵	18	20	12	20	4.6%	6.00 [1.08, 33.27]	
Subtotal (95% CI)		40		40	7.5%	6.13 [1.57, 23.98]	
Total events	37		27				
Heterogeneity: Chi ² =	0.00, df = 1	(P = 0.9)	97); l² = 0	1%			
Test for overall effect:	. Z = 2.60 (P	e = 0.009	9)				
Total (95% CI)		542		487	100.0%	4.87 [3.29, 7.20]	•
10141 (3370 01)	500		357				
Total events	506						
· · ·		10 (P =	0.26); l ² :	= 19%			
Total events	12.32, df =	•	,.	= 19%			0.01 0.1 1 10 10 Favours [control] Favours [experimental]

Figure 12 Overall and different follow-up times subgroup forest plot of weighted OR (95% CI) for effective rate for manual therapy versus NSAIDs.

Sensitivity Analysis

Sensitivity analyses demonstrated robustness by excluding those with a sample size less than 30, or those with unclear randomization procedures (Table S3).

Table	3	Summery	of	Finding
-------	---	---------	----	---------

Outcome No of Participants (Studies)	Relative Effect (95% Cl)	Anticipated Absolute Effects (95% CI)			Certainty
		Without Manual Therapy	With Manual Therapy	Difference	
Manual therapy compared to	no treatment for	PD		· · ·	
Pain intensity № of participants: 629 (8 RCTs)	-	-	-	MD 0.81 higher (0.35 higher to 1.28 higher)	⊕⊖⊖⊖ Very low ^{a,b,c}
Effective rate № of participants: 106 (3 RCTs)	OR 8.73 (3.03 to 25.19)	50.9%	90.1% (86.1 to 97.6)	39.1% more (24.9 more to 45.4 more)	⊕⊕⊖⊖ Low ^d
MDQ № of participants: 309 (3 RCTs)	-	-	-	MD 3.84 higher (2.27 higher to 5.4 higher)	⊕○○○ Very low ^{a,d}
Manual therapy compared to	placebo control f	or PD		· · ·	
Pain intensity № of participants: 507 (9 RCTs)	-	-	-	MD 0.10 higher (0.37 lower to 0.58 higher)	⊕⊖⊖⊖ Very low ^{a,b,c}

(Continued)

Table 3 (Continued).

Outcome No of Participants (Studies)	Relative Effect (95% CI)	Anticipated Absolute Effects (95% CI)			Certainty			
		Without Manual Therapy	With Manual Therapy	Difference				
Manual therapy compared to NSAIDs for PD								
Pain intensity No of participants: 507 (9 RCTs)	-	-	_	MD 3.01 higher (1.08 higher to 4.94 higher)	⊕○○○ Very low ^{a,b,c}			
Effective rate № of participants: 1029 (11 RCTs)	OR 4.87 (3.29 to 7.20)	73.3%	93.0% (90 to 95.2)	19.7% more (16.7 more to 21.9 more)	⊕⊕⊖⊖ Low ^{a,c}			

Notes: The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI). GRADE Working Group grades of evidence: High certainty: we are very confident that the true effect lies close to that of the estimate of the effect; Moderate certainty: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect; but there is a possibility that it is substantially different; Low certainty: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect; Very low certainty: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect. ^aDownload one level for serious risk of bias: included studies did not conduct the blinding method, and unclear risk of bias in one or two domains. ^bDowngraded one level for serious inconsistent: interventions of included studies inconsistent, or the outcome indicators exist statistical heterogeneous. ^cDowngraded one level for wide confidence intervals. ^dDowngraded two level for serious imprecision: very small sample size. **Abbreviations**: CI, confidence interval; MD, mean difference; OR, odds ratio.

Publication Bias

As depicted in Figure 13, the likelihood of publishing bias appeared to be minimal, as indicated by the study of the funnel plot, which did not reveal any significant asymmetry. However, it is essential to approach the interpretation of funnel plot results with caution, considering inherent heterogeneity in the meta-analysis and acknowledging other potential sources of bias.



Figure 13 Funnel plot of effective rate for manual therapy versus NSAIDs.

Discussion

Summary of Main Results

We methodically examined and compiled the data from a diverse array of studies investigating manual therapy for PD in this meta-analysis. 32 studies included covered a wide variety of manual therapeutic techniques, such as massage, acupressure, foot reflexology, holographic therapy, spinal manipulative therapy, and neuromuscular therapy. By amalgamating data from these RCTs, our analysis provided a thorough overview of the effectiveness of manual therapy in addressing PD. Notably, the adverse events reported across the studies were predominantly minor in nature, with many resolving spontaneously or responding well to effective treatment.

The evidence, rated as low to very low, indicates that manual therapy for dysmenorrhea may demonstrate superior efficacy compared to both no treatment and oral NSAIDs, resulting in a more substantial alleviation of pain. These results endorse the preference for manual treatment over no treatment in patients with PD. The treatment impact estimates exceed the MCID threshold of 20%, with an effect rate of 39.1%. Nonetheless, our meta-analyses revealed that the treatment impact estimates for quality of life (MDQ, 3.84 points on a 30-to-150-point scale) and pain (NRS, 0.81 points on a 0-to-10-point scale) were marginally below thresholds of MCID thresholds among patients with PD. These results bolstered the case for utilizing manual treatment rather than oral medication in PD patients. The decrease in pain intensity by 3.01 points (95% CI: 1.08~4.94) surpassed the MCID of 2 points, while the improvement in effective rate by 19.7% (16.7~21.9) is close the MCID of 19.9%.

In studies comparing manual therapy with a placebo control (n=255, MD=0.10, 95% CI: -0.37~0.58), the results suggest that manual therapy did not exhibit superiority. Concerning this outcome, considerations arise on two fronts. Firstly, there is contemplation of the limited number of included studies and an insufficient sample size. Secondly, attention is drawn to the potential influence of the placebo effect. The placebo effect is defined as a genuine positive psychological or physiological response solely attributed to the knowledge of receiving a substance or undergoing a procedure, rather than the inherent efficacy of that substance or procedure.⁵⁰ This improvement is not initiated by the treatment itself but rather by the patient's beliefs and expectations. Previous research underscores the significance of acknowledging the placebo effect in the context of physical therapy, especially when compared with placebos associated with pharmaceuticals or other intervention measures.^{51–53}

Subgroup analyses were conducted following significant heterogeneity in outcomes related to pain. In a subset characterized by a small sample size and a limited number of studies, conflicting results were observed. It is crucial to approach the interpretation of this specific subset with caution, considering its restricted representation and smaller study population, which could contribute to the observed discrepancies.

We discerned a prevalent trend of subpar research quality in the scrutinized papers, as evidenced by our comprehensive analysis of bias risk and evidence quality. The primary factor contributing to this observation is the lack of transparent data in most studies regarding the generation of random sequences and participant assignment. Furthermore, the application of blinding procedures proves challenging due to the distinctive nature of manual therapy interventions; nevertheless, a body of research³⁶ has demonstrated the feasibility of blinding in this context. These methodological deficiencies underscore the imperative for enhanced reporting guidelines and innovative approaches to address the challenges associated with blinding and randomization in studies focusing on manual therapy interventions.

Advantages of Manual Therapy for PD

Manual therapy provides a non-pharmacological option for addressing PD, catering to individuals who prefer non-drug interventions or seek complementary approaches alongside conventional medical treatments. The personalized nature of manual therapy allows for tailored interventions with therapists adjusting techniques based on pain severity, preferences, and overall health.

The specific mechanisms underlying the efficacy of manual therapy in addressing PD are not fully understood. However, a study by Chen et al⁵⁴ revealed that massage therapy was beneficial for PD. Because it may relieve pain by enhancing uterine blood flow and regulating aberrant levels of prostaglandin F2a (PGF2a) and prostaglandin E2 (PGE2). Farzaneh et al⁵⁵ suggested that acupressure at the *Sanyinjiao* point (SP6) can be an effective, feasible, and cost-effective intervention for mitigating PD. The SP6 acupoint serves as the junction point of the liver, spleen, and kidney meridians. According to the traditional Chinese medicine, this intervention can strengthen the spleen function, resolve and expel dampness, and restore balance to Yin and blood, liver, and kidneys.⁵⁶ Furthermore, some individuals believe that manual therapy for dysmenorrhea is closely associated with reflex points. For instance, Mur et al^{57,58} reported increased intestinal blood flow during stimulation of corresponding reflex points compared to subjects intervened with reflex stimulation on unrelated points. Similarly, Sudmeier et al⁵⁹ demonstrated increased renal blood flow, measured with Doppler sono-graphy, with reflexology on foot points related to the kidney compared with individuals given placebo reflexology at points not associated with the kidney.

Strengths and Limitations

Prior to this research, a systematic review⁶⁰ evaluated the effect of manual therapy for PD, incorporating four studies published in 2017. In contrast to this earlier review, our study involved a more comprehensive search strategy, encompassing a greater number of studies meeting the criteria. Meanwhile, different analytical methods were employed herein. Our research aimed to extensively explore various manual therapy modalities and considered the cyclical nature of dysmenorrhea. Additionally, we defined a minimum treatment duration of at least two months, acknowledging the periodicity of menstrual pain. The control group exclusively comprised placebos and NSAIDs. This design, with a placebo control, facilitates the evaluation of the specific effects of manual therapy. Additionally, the comparison of manual therapy with NSAIDs offers insights into the relative effectiveness and potential advantages of manual therapy over standard pharmacological interventions.

This research was subjected to several limitations. Firstly, the included studies were of low quality, restricting the availability of high-quality evidence supporting the efficacy of manual therapy in treating dysmenorrhea. Secondly, various manual therapy modalities were not classified and quantified when assessing the overall effectiveness due to their diverse range. Lastly, despite conducting subgroup analyses to address significant heterogeneity observed in the meta-analysis, the issue persisted without resolution.

Implications for Clinical Practice and Research

In clinical practice, the findings underscored the potential efficacy of manual therapy in alleviating menstrual pain. Healthcare practitioners may contemplate incorporating manual therapy into their treatment protocols for individuals experiencing PD. From a research perspective, this research highlights the necessity for further investigating distinct manual therapy modalities and their comparative efficacy. Future research endeavors should strive to enhance the quality of evidence based on high-quality studies with rigorous methodologies. Additionally, exploring the mechanisms behind the effects of manual therapy on dysmenorrhea could contribute valuable insights to the field.

Conclusion

The results in this work suggested that manual therapy might alleviate menstrual pain in short-term, surpassing both no treatment and NSAIDs. However, it is impossible to rule off an effective placebo effect during manual therapy. Manual therapy demonstrated only mild adverse events, indicating a relatively safe profile. It's important to note that our study recommendations are constrained by limitations stemming from the low quality of the included RCTs. More rigorously designed trials are imperative to validate and confirm our findings.

Abbreviations

RCTs, randomized controlled trials; PD, primary dysmenorrhea; GRADE, grading of recommendations, assessment, development, and evaluation; NSAIDs, non-steroidal anti-inflammatory drugs; PRISMA, Preferred Reporting Items for Systematic Review and Meta-Analyses; MeSH, medical subject headings; VAS, *Visual Analogue Scale*; NRS, *Numeric Rating Scale*; MPQ, *McGill Pain Questionnaire*; MDQ, *Moos Menstrual Distress* questionnaire; MCID, minimum clinically important difference; ORs, odds ratios; CIs, confidence intervals; SMD, standardized mean difference; MD, mean difference.

Ethics Approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author Contributions

All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis and interpretation, or in all these areas; took part in drafting, revising or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work.

Funding

This work was supported by the Beijing First Youth Outstanding Talent Project (No.2020-4-4195); Capital Clinical Characteristic Application Research (No.Z181100001718165); National Natural Science Foundation of China (No.81803956, 82374617); Central Public Welfare Research Institutes (ZZ-JQ2023002).

Disclosure

The authors report no conflicts of interest in this work.

References

- 1. Kho KA, Shields JK. Diagnosis and management of primary dysmenorrhea. JAMA. 2020;323(3):268. doi:10.1001/jama.2019.16921
- Ju H, Jones M, Mishra G. The prevalence and risk factors of dysmenorrhea. *Epidemiol Rev.* 2014;36(1):104–113. doi:10.1093/epirev/mxt009
 Schoep ME, Adang EMM, Maas JWM, De Bie B, Aarts JWM, Nieboer TE. Productivity loss due to menstruation-related symptoms: a nationwide cross-sectional survey among 32 748 women. *BMJ Open.* 2019;9(6):e026186. doi:10.1136/bmjopen-2018-026186
- MacGregor B, Allaire C, Bedaiwy MA, Yong PJ, Bougie O. Disease burden of dysmenorrhea: impact on life course potential. Int J Womens Health. 2023;15:499–509. doi:10.2147/IJWH.S380006
- 5. Ferries-Rowe E, Corey E, Archer JS. Primary dysmenorrhea: diagnosis and therapy. Obstetrics Gynecol. 2020;136(5):1047-1058. doi:10.1097/AOG.0000000000004096
- Marjoribanks J, Ayeleke RO, Farquhar C, Proctor M; Cochrane Gynaecology and Fertility Group. Nonsteroidal anti-inflammatory drugs for dysmenorrhoea. *Cochrane Database Syst Rev.* 2015. doi:10.1002/14651858.CD001751.pub3
- Nesrin Y, Nesrin Y, Orcin TA, Tuba CA, Ozlem KC. Long-term follow-up result of connective tissue manipulation in young women with primary dysmenorrhea: different intervention durations. *Reprod Sci.* 2023;30(7). doi:10.1007/s43032-023-01172-5
- Fernández-Martínez E, Onieva-Zafra MD, Parra-Fernández ML. The impact of dysmenorrhea on quality of life among Spanish Female University students. Int J Environ Res Public Health. 2019;16(5):713. doi:10.3390/ijerph16050713
- 9. López-Liria R, Torres-álamo L, Vega-Ramírez FA, et al. Efficacy of physiotherapy treatment in primary dysmenorrhea: a systematic review and meta-analysis. *Int J Environ Res Public Health*. 2021;18(15):7832. doi:10.3390/ijerph18157832
- 10. Proctor ML, Hing W, Johnson TC, Murphy PA. Spinal manipulation for primary and secondary dysmenorrhoea. *Cochrane Database Syst Rev.* 2006;2006(3):CD002119. doi:10.1002/14651858.CD002119.pub3
- 11. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *J Clin Epidemiol*. 2021;134:178–189. doi:10.1016/j.jclinepi.2021.03.001
- 12. Xu Y, Zhao W, Li T, et al. Effects of acupoint-stimulation for the treatment of primary dysmenorrhoea compared with NSAIDs: a systematic review and meta-analysis of 19 RCTs. *BMC Complement Altern Med.* 2017;17:436. doi:10.1186/s12906-017-1924-8
- 13. Cochrane handbook for systematic reviews of interventions. Available from: https://training.cochrane.org/handbook/current. Accessed December 26, 2023.
- 14. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. *BMJ*. 2008;336(7650):924–926. doi:10.1136/bmj.39489.470347.AD
- Gallagher EJ, Liebman M, Bijur PE. Prospective validation of clinically important changes in pain severity measured on a visual analog scale. Ann Emerg Med. 2001;38(6):633–638. doi:10.1067/mem.2001.118863
- 16. Moos RH. The development of a menstrual distress questionnaire. Psychosom Med. 1968;30(6):853-867. doi:10.1097/0006842-196811000-00006
- 17. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ*. 2003;327(7414):557–560. doi:10.1136/ bmj.327.7414.557
- 18. Chen Y, Shang GD, Fu GB, et al. Effects of massage on uterine artery hemodynamic parameters and serum prostaglandins in patients with primary dysmenorrhea. *Chi J Integrat Trad Chin Western Med.* 2011;31(10):1355–1358.
- 19. Chen XY, Ma YT, Li P, et al. Clinical observation on the effect of Wentong manipulation combined with acupoint massage on primary dysmenorrhea. *Health Today*. 2016;15(7):327–328.
- 20. Guo DM. Observation and nursing of acupoint massage in relieving primary dysmenorrhea. J Ration Use Drugs Clin Pract. 2015;8(11):135-136.
- 21. Hu L. Clinical observation on 40 cases of dysmenorrhea treated by massage. Chin Natl Folk Med. 2015;24(6):74.
- 22. Jia Q. Application of Second Metacarpal Side Holotherapy in the Treatment of Dysmenorrhea in Female College Students [Dissertation]. China: Shandong Sport University; 2011.
- 23. Lin HQ. Clinical observation of treatment of primary dysmenorrhea with massage. Massage Rehabilitat Med. 2010;1:37-38.
- 24. Lin XH, Yu L, Zhou J, et al. Study on the therapeutic effect of massage on sports dysmenorrhea in college entrance examination girls. J Anhui Normal Univ. 2017;40(04):404–408.
- 25. Lin XH. Study on the Effect of Massage Therapy on Female College Students with Primary Dysmenorrhea [Dissertation]. China: Anhui Normal University; 2018.
- 26. Liu Y. Clinical observation of manual treatment of primary dysmenorrhea. China TCM Emergency. 2012;21(01):137-138.
- 27. Ru YJ, Zheng XY. Clinical effect of massage in the treatment of primary dysmenorrhea. Prim Med China. 2015;12:1890–1891.

- 28. Tang N. Clinical Observation of Immediate Analgesic Effect of Chiropractic Therapy on Patients with Blood Stasis Type Primary Dysmenorrhea [Dissertation]. China: Shandong University of Traditional Chinese Medicine; 2012.
- 29. Wang HL, Feng YH. Treatment of 62 cases of primary dysmenorrhea with tuina. Shanghai J TCM. 2003;04:34-35.
- 30. Wu DY. Effect of "Dysmenorrhea Regulating Manipulation" on Female College Students with Primary Dysmenorrhea [Dissertation]. Beijing Sport University; 2017.
- 31. Xu YQ, Qiao GS. Holographic therapy for primary dysmenorrhea. Chin Commun Phys Med Spec. 2008;10(23):156.
- 32. Zhao J, Wang JH. Thirty cases of primary dysmenorrhea were treated by syndrome differentiation and tuina. *Chin J Exter Treat TCM*. 2015;2015:288–291.
- 33. Zhou Y, Dong SQ. To observe the effect of Chinese medicine manipulation in the treatment of 64 patients with dysmenorrhea. *Mater Child Health China*. 2016;31(24):5511–5512.
- 34. Zhu JL. The experience of massage combined with ibuprofen in the treatment of primary dysmenorrhea in female vocational school. *Med Innovat China*. 2012;9(2):105–106.
- 35. Zhu ZQ. Effect of point massage combined with nursing intervention on primary dysmenorrhea. Med Inf. 2015;10:89-90.
- 36. Atrian MK, Abbaszadeh F, Sarvieh M, Sarafraz N, Jafarabadi MA. Investigating the effect of pressure on third liver point on primary dysmenorrhea: a randomized controlled clinical trial. *Iranian Red Crescent Med J.* 2013;15(9):848–853. doi:10.5812/ircmj.12719
- Azima S, Bakhshayesh HR, Kaviani M, Abbasnia K, Sayadi M. Comparison of the effect of massage therapy and isometric exercises on primary dysmenorrhea: a randomized controlled clinical trial. J Pediatr Adolesc Gynecol. 2015;28(6):486–491. doi:10.1016/j.jpag.2015.02.003
- Barassi G, Bellomo RG, Porreca A, Di Felice PA, Prosperi L, Saggini R. Somato-visceral effects in the treatment of dysmenorrhea: neuromuscular manual therapy and standard pharmacological treatment. J Alternat Complement Med. 2018;24(3):291–299. doi:10.1089/acm.2017.0182
- 39. Bazarganipour F, Taghavi SA, Allan H, et al. A randomized controlled clinical trial evaluating quality of life when using a simple acupressure protocol in women with primary dysmenorrhea. *Complementary Ther Med.* 2017;34:10–15. doi:10.1016/j.ctim.2017.07.004
- 40. Behbahani BM, Ansaripour L, Akbarzadeh M, Zare N, Hadianfard MJ. Comparison of the effects of acupressure and self-care behaviors training on the intensity of primary dysmenorrhea based on McGill pain questionnaire among Shiraz University students. J Res Med Sci. 2016;21. doi:10.4103/1735-1995.193176
- 41. Chen HM, Chen CH. Effects of acupressure at the Sanyinjiao point on primary dysmenorrhoea. J Adv Nurs. 2004;48(4):380–387. doi:10.1111/j.1365-2648.2004.03236.x
- 42. Chen HM, Chen CH. Effects of acupressure on menstrual distress in adolescent girls: a comparison between Hegu-Sanyinjiao matched points and Hegu, Zusanli single point. J Clin Nurs. 2010;19(7–8):998–1007. doi:10.1111/j.1365-2702.2009.02872.x
- 43. Chen HM, Wang HH, Chiu MH, Hu HM. Effects of acupressure on menstrual distress and low back pain in dysmenorrheic young adult women: an experimental study. *Pain Manag Nurs*. 2015;16(3):188–197. doi:10.1016/j.pmn.2014.06.002
- 44. Hondras MA, Long CR, Brennan PC. Spinal manipulative therapy versus a low force mimic maneuver for women with primary dysmenorrhea: a randomized, observer-blinded, clinical trial. *Pain*. 1999;81(1–2):105–114. doi:10.1016/S0304-3959(99)00004-4
- 45. Blödt S, Pach D, Eisenhart-Rothe SV, et al. Effectiveness of app-based self-acupressure for women with menstrual pain compared to usual care: a randomized pragmatic trial. *Am J Clin Exp Obstet Gynecol.* 2018;218(2):227.e1–227.e9. doi:10.1016/j.ajog.2017.11.570
- 46. Vagedes J, Fazeli A, Boening A, Helmert E, Berger B, Martin D. Efficacy of rhythmical massage in comparison to heart rate variability biofeedback in patients with dysmenorrhea—A randomized, controlled trial. *Complementary Ther Med.* 2019;42:438–444. doi:10.1016/j. ctim.2018.11.009
- Valiani M, Babaei E, Heshmat R, Zare Z. Comparing the effects of reflexology methods and Ibuprofen administration on dysmenorrhea in female students of Isfahan University of Medical Sciences. *Iran J Nurs Midwifery Res.* 2010;15(Suppl 1):371–378.
- Wong CL, Lai KY, Tse HM. Effects of SP6 acupressure on pain and menstrual distress in young women with dysmenorrhea. Complement Ther Clin Pract. 2010;16(2):64–69. doi:10.1016/j.ctcp.2009.10.002
- 49. Yilmaz FA, Baser M. Effects of foot reflexology on dysmenorrhea: a randomized controlled trial. Cukurova Med J. 2019;44:54-60. doi:10.17826/ cumj.550663
- 50. Stewart-Williams S, Podd J. The placebo effect: dissolving the expectancy versus conditioning debate. *Psychol Bull.* 2004;130(2):324–340. doi:10.1037/0033-2909.130.2.324
- 51. Linde K, Niemann K, Meissner K. Are sham acupuncture interventions more effective than (other) placebos? A re-analysis of data from the Cochrane review on placebo effects. *Forsch Komplementmed*. 2010;17(5):259–264. doi:10.1159/000320374
- 52. Sun CY, Xiong ZY, Sun CY, et al. Placebo response of sham acupuncture in patients with primary dysmenorrhea: a meta-analysis. *J Integr Med.* 2023;21(5):455–463. doi:10.1016/j.joim.2023.08.005
- 53. Molina-Álvarez M, Arribas-Romano A, Rodríguez-Rivera C, et al. Manual therapy effect in placebo-controlled trials: a systematic review and meta-analysis. *Int J Environ Res Public Health*. 2022;19(21). doi:10.3390/ijerph192114021
- 54. Chen Y, Shang G-D, Fu G-B. 推拿对原发性痛经患者子宫动脉血流动力学参数及血清前列腺素的影响 [Effect of massage on hemodynamics parameters of uterine artery and serum prostaglandin in treating patients with primary dysmenorrhea]. *Chinese Journal of Integrative Medicine*. 2011;31(10):1355–1358. Chinese.
- 55. Kashefi F, Ziyadlou S, Khajehei M, Ashraf AR, Reza Fadaee A, Jafari P. Effect of acupressure at the Sanyinjiao point on primary dysmenorrhea: a randomized controlled trial. *Complement Therap Clin Pract.* 2010;16(4):198–202. doi:10.1016/j.ctcp.2010.04.003
- 56. Abaraogu UO, Igwe SE, Tabansi-Ochiogu CS. Effectiveness of SP6 (Sanyinjiao) acupressure for relief of primary dysmenorrhea symptoms: a systematic review with meta- and sensitivity analyses. *Complement Therap Clin Pract.* 2016;25:92–105. doi:10.1016/j. ctcp.2016.09.003
- 57. Mur E, et al. Influence of reflex zone therapy of the feet on intestinal blood flow measured by color doppler sonography. *Forsch Komplementarmed Klass Naturheilkd*. 2001;8:86–89.
- Demirtürk F, Yilar Erkek Z, Alparslan Ö, Demirtürk F, Demir O, Inanir A. Comparison of reflexology and connective tissue manipulation in participants with primary dysmenorrhea. J Altern Complementary Med. 2016;22(1):38–44. doi:10.1089/acm.2015.0050

- 59. Sudmeier I, Bodner G, Egger I, Mur E, Ulmer H, Herold M. Ønderung der Nierendurchblutung durch organ assoziierte Reflexzonentherapie am Fuss ge messen mit farbkodierter Doppler-Sonograp [Changes of renal blood flow during organ-associated foot reflexology measured by color Doppler sonography]. Forsch Komplementarmed. 1999;6(3):129-134. German. doi:10.1159/000021238
- 60. Abaraogu UO, Igwe SE, Tabansi-Ochiogu CS, Duru DO. A systematic review and meta-analysis of the efficacy of manipulative therapy in women with primary dysmenorrhea. Explore. 2017;13(6):386-392. doi:10.1016/j.explore.2017.08.001

Journal of Pain Research

Dovepress

Publish your work in this journal

The Journal of Pain Research is an international, peer reviewed, open access, online journal that welcomes laboratory and clinical findings in the fields of pain research and the prevention and management of pain. Original research, reviews, symposium reports, hypothesis formation and commentaries are all considered for publication. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.

Submit your manuscript here: https://www.dovepress.com/journal-of-pain-research-journal

