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Orphan genes are associated with regulatory patterns, but experimental methods
for identifying orphan genes are both time-consuming and expensive. Designing an
accurate and robust classification model to detect orphan and non-orphan genes in
unbalanced distribution datasets poses a particularly huge challenge. Synthetic minority
over-sampling algorithms (SMOTE) are selected in a preliminary step to deal with
unbalanced gene datasets. To identify orphan genes in balanced and unbalanced
Arabidopsis thaliana gene datasets, SMOTE algorithms were then combined with
traditional and advanced ensemble classified algorithms respectively, using Support
Vector Machine, Random Forest (RF), AdaBoost (adaptive boosting), GBDT (gradient
boosting decision tree), and XGBoost (extreme gradient boosting). After comparing the
performance of these ensemble models, SMOTE algorithms with XGBoost achieved an
F1 score of 0.94 with the balanced A. thaliana gene datasets, but a lower score with
the unbalanced datasets. The proposed ensemble method combines different balanced
data algorithms including Borderline SMOTE (BSMOTE), Adaptive Synthetic Sampling
(ADSYN), SMOTE-Tomek, and SMOTE-ENN with the XGBoost model separately. The
performances of the SMOTE-ENN-XGBoost model, which combined over-sampling and
under-sampling algorithms with XGBoost, achieved higher predictive accuracy than
the other balanced algorithms with XGBoost models. Thus, SMOTE-ENN-XGBoost
provides a theoretical basis for developing evaluation criteria for identifying orphan genes
in unbalanced and biological datasets.

Keywords: unbalanced dataset, ensemble learning, orphan genes, XGBoost model, two-class

INTRODUCTION

The process of identifying orphan genes is an emerging field. Orphan genes play critical roles
in the evolution of species and the adaptability of the environment (Davies and Davies, 2010;
Donoghue et al., 2011; Huang, 2013; Cooper, 2014; Gao et al., 2014). In most plant species, orphan
genes make up about 10–20% of the number of genes (Khalturin et al., 2009; Tautz and Domazet-
Loso, 2011), and each species has a specific proportion of orphan genes (Khalturin et al., 2009;
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Arendsee et al., 2014), Many attempts have been made to
identify orphan genes in multiple species or taxa and to
analyze their functions. The whole genome and transcriptome
sequences of many species have been published, including those
of Arabidopsis thaliana (Arabidopsis Genome Initiative, 2002),
Oryza sativa (Goff et al., 2002), Populus (Tuskan et al., 2006),
and the discovery of orphan genes among these sequences
has helped to clarify the special biological characteristics and
environmental adaptability of angiosperm. For example, the
A. thaliana orphan genes qua-quine starch (QQS) alter the carbon
and nitrogen content of the plant, increasing the protein content
and decreasing the starch content (Li et al., 2009; Arendsee
et al., 2014); the wheat, TaFROG (Triticum aestivum fusarium
resistance orphan gene) contributes to disease resistance genes
for crop-breeding programs (Perochon et al., 2015); and the rice
orphan gene GN2 (GRAINS NO. 2) can affect plant height and
rice yield (Chen et al., 2017).

Currently, orphan genes are detected mainly by comparison
of genome and transcriptome sequences of related species using
BLAST (Blast-Basic Local Alignment Search Tool; Altschul et al.,
1990; Tollriera et al., 2009). However, this approach requires
large server resources and time, and common problems with
complexity and timeliness occur (Ye et al., 2012).

Computational technology and machine learning (ML)
algorithms are widely used in the detection of orphan genes
in big datasets. The method of ML can be used to make two
kinds of field classification from an enormous genome dataset
(Libbrecht and Noble, 2015; Syahrani, 2019). Orphan genes
are widely distributed in plant species and generally exhibit
significant differences in gene length, the number of exons, GC
content, and expression level compared to protein-coding genes
(Donoghue et al., 2011; Neme and Tautz, 2013; Yang et al., 2013;
Arendsee et al., 2014; Xu et al., 2015; Ma et al., 2020). In systems
biology, traditional classification methods, such as Support
Vector Machines (SVMs; Zhu et al., 2009) or Random Forest
(RF; Pang et al., 2006; Dimitrakopoulos et al., 2016) have been
applied in the classification scheme. More recently, ensemble
classification algorithms have achieved remarkable results in the
fields of biology and medicine (Chen and Guestrin, 2016).

Additionally, the number of orphan genes is much less than
the numbers of non-orphan gene datasets, therefore unbalanced
datasets pose significant problems for developers of classifiers.
The original method of over-sampling and under-sampling
(Drummond and Holte, 2003; Chen and Guestrin, 2016) can
help address the problems of an unbalanced dataset (Weiss, 2004;
Zhou and Liu, 2006). In over-sampling methods, the synthetic
minority over-sampling technique (SMOTE) (Demidova and
Klyueva, 2017) can add new minority class examples, but
the deleted information of majority samples may contain
representative information of the majority class. Then, the
improved SMOTE which combines with edited nearest neighbors
(SMOTE-ENN) algorithm (Zhang et al., 2019), is used in the
K-nearest neighbor (KNN) method to classify the sampled
dataset, by the theory of over-sampling and under-sampling.

The bagging and boosting methods are two important
approaches to ensemble learning (Breiman, 1996) that can
improve the accuracy of a model significantly. The boosting

family algorithm adaptively fits a series of weak models and
combines them. Because the number of minority samples in an
unbalanced dataset is small, they are easily misclassified, so the
results of the previous classifier determine the parameters of the
later model and let the next classifier focus on training the last
misclassified sample. Therefore, the Boosting family algorithm
pays more attention to samples that are difficult to classify, which
can effectively improve the prediction accuracy.

In the study described in this manuscript, over-sampling
and under-sampling algorithms were introduced to clean up
unbalanced data (Chawla et al., 2002). Representative serial
classified algorithms of the Boosting family are AdaBoost
(adaptive boosting), GBDT (gradient boosting decision tree),
XGBoost (extreme gradient boosting), and the representative
parallel classified algorithm are SVM and RF. The performance
of these five classification models with over-sampling SMOTE
is better than those with single classifiers. The relevant features
of the whole gene sequencing of A. thaliana were designed as a
model for the identification and prediction of orphan genes. The
result could show that balancing algorithms play a more effective
guiding role in identifying the orphan genes in a species.

MATERIALS AND METHODS

Data Processing Method for Unbalanced
Data
Data preprocessing is the first step for data mining and affects the
result. Preprocessing includes data discretization, missing values,
attribute coding, and data standard regularization. In practice,
each industry has unique data characteristics, so different
methods are used to analyze the data and perform preprocessing.

The processing of unbalanced data describes classes with
obviously uneven distribution. The traditional method used
random over-sampling to increase the number of small-class
samples to achieve a consistent number. Because this method
achieves balance by a single random over-sampling strategy
of copying data, the added repeated data will increase the
complexity of data training and induce over-fitting.

To deal with the problem of unbalanced data classification,
some algorithms have been used effectively to improve the
performance of classification. Common methods for processing
datasets included mainly: over-sampling and under-sampling, or
a combination of under-sampling and over-sampling.

Over-Sampling SMOTE and Borderline
SMOTE
To solve the problem of over-fitting associated with unbalanced
data when the learning information is not generalized, Chawla
et al. (2002) proposed the SMOTE algorithm for preprocessing
over-sampling data of synthetic minority categories. SMOTE was
designed based on a random over-sampling method in the feature
space. By analyzing data with few categories, many new data
are generated by linear interpolation and added to the original
data set. SMOTE first selects each sample from the minority
samples successively as the root sample for the synthesis of the
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new sample. Then according to the up-sampling rate n, SMOTE
randomly selects one of K (K is generally odd, such as K = 5)
neighboring samples of the same category, which is used as an
auxiliary sample to synthesize a new sample and repeated n times.
Finally, linear interpolation is performed between the sample and
each auxiliary sample to generate n synthesized samples. The
basic flow of the algorithm is:

(i) Find K samples of the nearest neighbor for each sample xi,
whose label is “1”;

(ii) A sample xj belonging with few categories is selected
randomly from K;

(iii) Linearly interpolate randomly between xi and xj to
construct a new minority sample.

The SMOTE algorithm effectively solves the problem of over-
fitting caused by the blind replication of random over-sampling
techniques. However, the selection of the nearest neighbor
sample in step 1 exits is purposeless. Users need to determine
the number of K values of the neighbor samples themselves, so
it is difficult to determine the optimal value. Additionally, the
newly synthesized samples may fall into the sample area labeled
"0," which confuses the boundaries between them and interferes
with the correct classification of the data.

Therefore, to address these two problems, Wang et al.
(2015) proposed Borderline SMOTE (an over-sampling method
in unbalanced datasets learning), which is an improved over-
sampling algorithm based on SMOTE. By finding suitable areas
that can better reflect the characteristics of the data to be
interpolated, the problem of sample overlap can be solved. The
Borderline SMOTE algorithm uses only a few samples on the
boundary to synthesize new samples, thereby improving the
internal distribution of samples.

Adaptive Synthetic Sampling
Adaptive Synthetic Sampling adaptively generates different
numbers of sampling samples according to data distribution (He
et al., 2008). The basic flow of the algorithm is below:

(i) Calculate the number of samples to be synthesized, as
follows: G = (ml −ms)× β, where ml is the number of
majority samples, andms is the number of minority
samples. If β = 1, the number of positive and negative
samples is the same after sampling, indicating that the data
is balanced at this time.

(ii) Calculate the number of K nearest neighbor value of each
minority sample, 1 is the number of majority samples
in the K neighbors, the formula is as follows: ri = 1i/K,
where 1i is the number of majority samples in K nearest
neighbors, i = 1,2,3......., ms

(iii) To normalize ri, the formula is r̂ = ri/
ms∑
i=1

ri

(iv) According to the sample weights, calculate the number of
new samples that need to be generated for every minority
sample. The formula is g = r̂ × G.

Select one sample from the K neighbors around each data
with the label “1” to be synthesized, calculate the number to be
generated according to g the formulasi = xi + (xzi − xi)× λ ,

where si is the synthetic sample, xi is the ith minority samples,
and xzi is a random number of the minority sample λ ∈ [0,1]
selected from the K nearest neighbors of xi .

Combining Algorithms
Apart from using a single under-sampling or over-sampling
method, two resampling methods can be combined. For example,
SMOTE-ENN (Zhang et al., 2019), ENN is an under-sampling
method focusing on eliminating noise samples, which is added to
the pipeline after SMOTE to obtain cleaner combined samples.
For each combined sample, its nearest-neighbors are computed
according to the Euclidean distance. These samples will be
removed whose most KNN samples are different from other
classes (shown in Figure 1).

SMOTE-Tomek (Batista et al., 2004) also combine SMOTE
with Tome-links (Tomek), a data cleaning method to handle the
overlapping parts, which are difficult to classify for a few classes
and most surrounding samples. A Tome link can be defined as
follows: given that sample x and y belong to two classes, and be
the distance between x to y as d (x,y). If there is not a sample
z, such as d (x,z) < d (x,y) or d (y,z) < d (x,y), A (x,y) pair is
called a Tome link.

Ensemble Learning Methods
The main idea of the ensemble learning algorithm is to
construct multiple classifiers with weak performance and use a
certain strategy to combine them into a classifier with strong
generalization performance. Consequently, the performance of
the ensemble is better than that of a single classifier.

This study created two classification models for unbalanced
datasets and used Python to build five integrated learning models
of SVM, RF, AdaBoost, GBDT, and XGBoost and conducted
comparative experiments to find the optimal model. XGBoost
performed best in the classification, Five kinds of balanced data
learning methods of resampling: SMOTE, BSMOTE, ADASYN,
SMOTE-ENN, and SMOTE-Tomek, were then combined with
XGBoost to build an ensemble model that produced excellent
classification results (Lemaitre et al., 2017; Wu et al., 2018).

XGBoost was modified by adding regular items to the
GBDT algorithm that can predict the orphan gene binary
classification problem and increase the calculation speed.
XGBoost uses the gradient boosting algorithm of the based
learner classification and regression tree (CART) to calculate
the complexity of the leaf nodes of each tree and uses the
gradient descent algorithm to minimize the loss for finding the
optimal prediction score, thus avoiding over-fitting the learned
model and effectively controlling the complexity of the model
(Chen and Guestrin, 2016).

The derivation process is as follows:

(i) Objective function: obj (θ) =
n∑
i

l
(
yi, ŷi

)
+

K∑
k=1

�(fk)

(ii) Using the first and second derivatives, the Taylor formula
expands:

obj(t)
= [

n∑
i

l
(
yi, ŷi

t−1)
+ gift(xi)] +�

(
ft
)
+ constant
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FIGURE 1 | The process of SMOTE-ENN algorithm: (A) SMOTE selected each sample from the minority samples successively as the root sample for the synthesis
of the new sample. (B) The following result was obtained by employing ENN to eliminate noise samples when the process of SMOTE is caused.

(iii) Measuring the complexity of the decision tree as:�
(
f
)
=

γT+ 1
2λ

T∑
j=1

w2
j , where T is the number of leaf nodes in the

decision tree, and w is the prediction result corresponding
to the leaf node.

(iv) Substituting the above two steps into the objective function
(1), it is organized as:

obj(t)
≈

n∑
i=1

[giwq(xi) +
1
2

(
hiw2

q(xi)

)
] + γT+

1
2

T∑
j=1

w2
j

=

T∑
j=1

[
Gjwj +

1
2
(
Hj + λ

)
w2

j

]
+ γT

(v) Then, Ij =
{

i|q (xi) = j
}

, represents the sample set
belonging to the j-th leaf node.

Gj =
∑
i∈Ij

gi, Hj =
∑
i∈Ij

hi,

(vi) To minimize the objective function, let the derivative be 0
and find the optimal prediction score for each leaf node:

w
∗

j = −
Gj

Hj + λ

(vii) Substitute the objective function again to get its
minimum value:

obj(t)
= −

1
2

T∑
J=1

G2
j

Hj + λ
+ γT

(viii) Find the optimization goal of each layer of the build tree
through obj to find the optimal tree structure, and split the
left and right subtrees as:

Gain (φ) =
1
2

[ (∑
i⊆IL

gi
)2∑

i⊆IL
hi + λ

+

(∑
i⊆IR

gi
)2∑

i⊆IR
hi + λ

−

(∑
i⊆I gi

)2∑
i⊆I hi + λ

]
− γ
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TABLE 1 | Binary confusion matrix.

Real positive Real negative

Predict positive TP FP

Predict negative FN TN

Confusion Matrix
The confusion matrix (error matrix) is a matrix table
(shown in Table 1) that is used to judge whether a sample
is 0 or 1 and reflects the accuracy of classification. The
results of the classification model are analyzed using
four basic indicators: true positive (TP), true negative
(TN), false positive (FP), and false negative (FN). The
prediction classification model that gives the best results
will have a large number of TPs and TNs and a small
number of TPs and TNs.

(i) True positive (TP): the actual value of the model is
the orphan genes, so the model predicts the number
of orphan genes.

(ii) False positive (FP): the actual value of the model is the
orphan gene, but the model predicts the number of non-
orphan genes.

(iii) False negative (FN): the true value of the model is
non-orphan genes, so the model predicts the number
of orphan genes.

TABLE 2 | Training and testing datasets used to design and evaluate the
model classifiers.

Class Train dataset Test dataset Original dataset

None-orphan genes 24833 6208 31041

Orphan genes 1427 357 1784

(iv) True negative (TN): the true value of the model is non-
orphan genes, but the model predicts the number of non-
orphan genes.

Recall, Precision, and F1 Value as
Performance Indicators
A large number of confusion matrix statistics make it difficult
to measure the pros and cons of a model. Therefore, we added
using Recall, Precision, and F1-score, as performance indicators
to better evaluate the performance of the model:

(i) Recall rate (accuracy rate of positive samples):

Recall =
TP

TP+ FN

(ii) Precision (precision rate of positive samples):

Precision =
TP

TP+ FP

(iii) F1-score value:

F1SCORE =
2PR

P+ R

ROC Curve and AUC Value
The receiver operating characteristic (ROC) curve reflects
the probability of identifying correct and wrong results
according to different thresholds. The curve passes (0, 0)
and (1, 1), and the validity of the model is generally
determined by the diagonal of the curve in the upper left
section of the graph.

The AUC value is the value of the area under the ROC curve,
which is generally between 0.5 and 1. The quantized index value
can better compare the performance of the classifiers: a high
performance classifier AUC value is close to 1.

FIGURE 2 | Ratio of orphan to non-orphan and orphan genes. (A) The distribution of an unbalanced dataset in the original A. thaliana. (B) The distribution of
A. thaliana datasets are balanced after using a balanced algorithm.
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TABLE 3 | Compute time compared among Adaboost, GBDT, XGBoost models
with SMOTE algorithm.

Traing model Time (s)

AdaBoost 11.7

GBDT 10.3

XGBoost 0.3

TABLE 4 | F1 scores of GBDT, Adaboost, XGBoost models with the SMOTE
algorithm on test datasets.

n_estimator Learning_rate Testing Algorithm (%)

GBDT AdaBoost XGBoost

200 0.2 90 87.6 93

200 0.1 89 88 92

200 0.01 87 87.4 88

150 0.2 90 87.9 93

150 0.1 89 87.4 91

150 0.01 87 87.4 88

100 0.2 89 87.5 92

100 0.1 88 87.5 90

100 0.01 87 87.5 88

RESULTS

Collating Feature Data of Orphan and
Non-orphan Genes
The whole genome data of the angiosperm A. thaliana
were obtained from The Arabidopsis Information Resource
(TAIR8) dataset ftp://ftp.arabidopsis.org/home/tair/Genes/
TAIR8_genome_release, which contained a total of 32825 gene
sequences. The known orphan genes of A. thaliana downloaded
from the public website https://www.biomedcentral.com/
content/supplementary/1471-2148-10-%2041-S2.TXT (Lin
et al., 2010). The protein sequences and coding sequences
were downloaded from TAIR. GC percent, protein length,
molecular mass, protein isoelectric point (pI), average exon
number were selected.

The six features of the protein and coding sequences were
recorded as V1-V6 (Perochon et al., 2015; Shah, 2018; Ji et al.,
2019). The class of orphan genes is recorded as a Class problem,
where the label of orphan genes is recorded as 1 and the non-
orphan genes are recorded as 0, combined with V1–V6 features
(Ji et al., 2019; Li et al., 2019).

Analyzing Orphan and Non-orphan Gene
Dataset
There were 32825 samples in the gene datasets, but only
about 4.08% of them were orphan genes, so the distribution
of orphan and non-orphan samples was uneven. We evaluated
whether the models can identify the orphan genes. For
traditional ML classification algorithms, the premise is that
the amount of data between categories is balanced, or that
the cost of misclassification for each category is the same.
Therefore, the direct application of many algorithms leads

to more predictions being made for the category with
a larger number.

To solve the problem, of unbalanced data sets, we first
used over-sampling to copy small sample data, which
increased the number of categories with fewer samples.
This method balanced the numbers of orphan and non-
orphan samples to improve the learning ability of the
classifier. The random sampling method was used to
divide the samples into training and testing sets with
a ratio of 8:2 which is the same ratio as the original
dataset (Table 2).

The training set was used to design the model, and the test
set was used to test the performance of the model. The Precision,
Recall, F1, and AUC evaluation indicators were used to compare
the model classifiers to determine the effectiveness of the models
and select the best model.

We used SMOTE to balance the numbers of orphan and non-
orphan genes in the original A. thaliana gene dataset shown
in Figure 2.

Training Model Using Ensemble Learning
Methods
Among the ensemble learning methods, some members of the
Boosting family, such as AdaBoost., GBDT, XGBoost, can be used
to train classifying models, which can save the compute time
remarkably (Table 3).

Two parameters, train_node and learning_rate were
considered to reduce the complexity in modeling. However,
selecting the best parameters for the ensemble learning
algorithms is important to avoid an over-fitting problem. For
this study, we set the learning_rate as 0.01, 0.1, and 0.2 and
train_node as 100, 150, 200 to compute the F1 score.

AdaBoost, GBDT, XGBoost with the two parameters are
used to classify the samples in the training and testing datasets
(Table 2). The results are shown in Table 4.

Overall, the XGBoost with SMOTE performed better than
AdaBoost and GBDT models with SMOTE.

Performance of Different Models With
Balanced and Unbalanced Datasets
Five models, SVM, RF, GBDT, AdaBoost, and XGBoost
were used as baseline classifiers to distinguish orphan
and non-orphan genes in the unbalanced and balanced
A. thaliana gene datasets. The results are shown
in Table 5.

Overall, the five models produced better results with the
balanced datasets. However, the accuracy of the models with
the balanced datasets was lower than with the unbalanced
dataset, which indicates the classification of orphan genes
was towards the majority samples of non-orphan genes.
These results clearly show that designing models using
unbalanced datasets will lead to significant inaccuracies,
which cannot identify orphan genes VS non-orphan
genes precisely. This indicates the importance of using a
balancing algorithm to balance datasets in the first step of the
classification process.
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TABLE 5 | Performance of models in distinguishing orphan vs. non-orphan genes in A. thaliana gene balanced and unbalanced datasets with 8:2 training-testing ratios.

Best Model Unbalanced datasets (%) Balanced datasets (SMOTE) (%)

Accuracy Precision Recall F1 AUC Accuracy Precision Recall F1 AUC

SVM 97 78 47 58 74 83 83 83 83 88

RF 96 47 58 52 93 84 77 98 86 95

GBDT 96 60 59 60 94 87 87 87 87 94

Adaboost 97 56 73 45 93 87 87 86 89 95

XGBoost 97 81 50 62 94 92 91 95 93 97

FIGURE 3 | Performance indices of five classifiers model with the SMOTE
algorithm on the testing dataset to distinguishing orphan and non-orphan
genes after balancing the distribution of A. thaliana gene dataset.

On the balanced A. thaliana gene dataset, the performance
indices of five classifier models on the testing datasets are
shown in Figure 3. Overall, the ensemble models were better

than the single classifiers, as determined by the performance
indicators, among them, the AUC and precision values of
XGBoost, GBDT, AdaBoost with SMOTE were higher than SVM,
RF with SMOTE algorithm. Particularly, XGBoost with SMOTE
produced the highest results among all classifier models (t-
test, P < 0.05). In particular, the F1 value indicates that the
XGBoost model can distinguish orphan genes and non-orphan
genes precisely.

We found that the ROC curve of SMOTE-XGBoost
completely wrapped the ROC curves of the other methods,
and the Precision-Recall (PR) curve confirmed that XGBoost
produced the best performance among the five balancing
algorithm methods (Figure 4).

The PR curve (Figure 4) indicated that when the
classification threshold was near 1, all the samples were
classified as non-orphan genes, and the Precision and
Recall values were 0 at this time. When the classification
threshold was 0.9, there were no FPs, so the Precision
was 1, which means all the genes were classified as
orphans. Because the number of TPs was small, the Recall
was small and the Precision value declined continually.
When the threshold declined to 0, all the samples
were classified as non-orphan genes, meaning that the
Precision will not be 0, because there were no FNs, and
the Recall value was 1. This indicates that the prediction
result is reasonable.

FIGURE 4 | Precision-Recall (PR) curve and ROC curve “True” area and for the five classifiers with an unbalanced dataset.
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FIGURE 5 | Model confusion matrices for XGBoost combined with five over-sampling models: (A) ADASYN-XGB; (B) SMOTE-Tomek-XGB; (C) BSMOTE-XGB;
(D) SMOTE-XGB; (E) SMOTE-ENN-XGB.
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TABLE 6 | Performance indices of the ensemble of composite XGBoost classifiers.

Evaluation value ADASYN-XGB (%) BSMOTE-XGB (%) SMOTE-XGB (%) SMOTE-ENN-XGB (%) SMOTE-Tomek-XGB (%)

Accuracy 85 92 88 95 89

Precision 83 89 87 94 88

Recall 89 97 89 95 90

F1 86 93 88 95 89

AUC 92 97 95 98 96

Performance of XGboost With Different
Balanced Algorithm Methods
We also tested five different models, XGBoost combined
with a balanced algorithm including SMOTE, BSMOTE,
ADASYN, SMOTE-Tomek, SMOTE-ENN, to further explore
the result of the unbalanced datasets. The results of the
confusion matrices of five models are shown in Figure 5.
The performance of the SMOTE-ENN-XGBoost model is
better and the predicted value is higher,which indicates fewer
incorrect classifiers.

The performance indices of the five balanced algorithms
with ensemble XGBoost classifiers models are shown in
Table 6. The ensemble SMOTE-ENN-XGB model had
the highest among the other ensemble models to predict
orphan genes (ORFans).

Therefore, the SMOTE-ENN-XGBoost model is used to
classify and analyze the orphan genes in unbalanced datasets and
applied to the actual predictions.

DISCUSSION

Our research indicates that in the classification of orphan
vs Non-orphan genes the ML method is preferred because
the traditional biological method is time-consuming and
labor-intense. Since the orphan genes of plant species
have similar characteristics, we selected 6 features of the
A. thaliana dataset to build training and testing models
(Donoghue et al., 2011).

The datasets of orphan genes and non-orphan genes are
often unbalanced, which tends to produce a bias towards
majority samples. To overcome this problem, we combined
over-sampling and under-sampling algorithms, making
the trained model with balanced datasets, which improves
the generalization ability of the model, and eventually,
the precision, recall, F1, and AUC for the test set are
significantly increased. To further compare the result of
the evaluation, the balanced algorithm combines classifying
learning algorithms, RF, SVM, Adaboost, GBDT, XGBoost,
which have similar improved results. Furthermore, the
boosting methods containing Adaboost, GBDT, XGBoost
have a better performance than those that use RF and
SVM. Thus, ensemble boosting learning models are an
important method in advancing the identification of orphan
genes and non-orphan genes in unbalanced datasets. At
the same time, the same training node and learning_rate
parameters were automatically used for parallel computing

among the boosting methods, which revealed that the
XGBoost model was more practical than other models
for classifying orphan genes. In particular, since it saves
time and labor, classifying orphan versus non-orphan
genes experimentally in this way could benefit this field
and future studies.

To increase the precision of these ensemble models,
we compared five different balanced algorithms including
SMOTE, BSMOTE, ADASYN, SMOTE-Tomek, SOMTE-
ENN combing with XGBoost models. SMOTE-ENN with
XGBoost has a better evaluation result, especially the
value of Recall. In this paper, we propose the SMOTE-
ENN-XGBoost model for efficiently identifying unbalanced
datasets of orphan genes. We built the SMOTE-ENN-
XGBoost model to classify genes by predicting 0 or 1
values. The results showed that the ensemble classifiers
method classified the orphan and non-orphan genes more
precisely than the single classifiers, and among the five
ensemble models with XGBoost, the SMOTE-ENN-XGBoost
model performed best.

This study provides a new method for the identification
of unbalanced datasets of orphan genes, which can be
applied in the classification of unbalanced biological
datasets. Meanwhile, the method can support the
evolution of species.
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