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Purpose: Ultrasound biomicroscopy (UBM) is a noninvasive method for assessing
anterior segment anatomy. Previous studieswere prone to intergrader variability, lacked
assessment of the lens-iris diaphragm, and excluded pediatric subjects. Lens status
classification is anobjective task applicable inpediatric andadult populations.Wedevel-
oped and validated a neural network to classify lens status from UBM images.

Methods: Two hundred eighty-five UBM imageswere collected in the Pediatric Anterior
Segment Imaging Innovation Study (PASIIS) from 80 eyes of 51 pediatric and adult
subjects (median age = 4.6 years, range = 3 weeks to 90 years) with lens status phakic,
aphakic, or pseudophakic (n = 33, 7, and 21 subjects, respectively). Following transfer
learning, a pretrained Densenet-121 model was fine-tuned on these images. Metrics
were calculated for testing dataset results aggregated from fivefold cross-validation. For
each fold, 20% of total subjects were partitioned for testing and the remaining subjects
were used for training and validation (80:20 split).

Results:Our neural network trained across 60 epochs achieved recall 96.15%, precision
96.14%, F1-score 96.14%, false positive rate 3.74%, andareaunder the curve (AUC) 0.992.
Feature saliency heatmaps consistently involved the lens. Algorithm performance was
compared using 2 image sets, 1 from subjects of all ages, and the second from only
subjects under age 10 years, with similar performance under both circumstances.

Conclusions: A neural network trained on a relatively small UBM image set classified
lens status with satisfactory recall and precision. Adult and pediatric image sets offered
roughly equivalent performance. Future studies will explore automated UBM image
classification for complex anterior segment pathology.

Translational Relevance: Deep learning models can evaluate lens status from UBM
images in adult and pediatric subjects using a limited image set.

Introduction

Artificial intelligence-based image recognition
models are an expanding field that shows promise to
automate the evaluation and diagnosis of ophthal-
mologic pathologies.1 However, these models have
focused primarily on fundus photographs, optical
coherence tomography (OCT), and visual field analy-
sis,2 with relatively little exploration of ultrasound
biomicroscopy images.

Ultrasound biomicroscopy (UBM) is an imaging
modality that allows for noninvasive, in vivo imaging
of structural details of the anterior segment of the
eye. This technique is capable of evaluating structures
that are normally obscured from direct view, such as
the lens-iris diaphragm, or pathologically obscured, as
in cases of anterior segment dysgenesis and congen-
ital glaucoma.3 Additionally, UBM uniquely offers
the ability to evaluate the ciliary body.4 Previous
case-control studies have shown UBM findings in
various anatomic locations, including the ciliary body,
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iridocorneal angle, and iris, are associatedwith primary
congenital glaucoma.5–10 Although the prognostic and
diagnostic impact of these features are still under inves-
tigation, there is a current need to produce methods
for successful automatic characterization of multiple
anatomic locations in UBM to aid these efforts.

A barrier to developing traditional machine learn-
ing algorithms de novo for UBM images is the sizeable
image dataset often necessary to build a robust model
from scratch. Although there are already large image
databases available for common diseases, such as
diabetic retinopathy11 and age-related macular degen-
eration,12 UBM image database development is an
ongoing effort, particularly for images of relatively
low-incidence congenital and pediatric disease. Trans-
fer learning is a machine learning technique that lever-
ages the weight parameters from a model pretrained
on a source task and applies them to a related target
task. Transfer learning allows a neural network to train
on larger datasets and then fine-tune the output of
those models using the smaller medical datasets for the
specific target task. Previous studies have demonstrated
the ability of convolutional neural networks to identify
anterior segment structures on smaller numbers of
UBM images with transfer learning.13 However, these
studies have primarily aimed to assess acute angle
closure glaucoma and glaucomatous changes in the
adult anterior eye, and have not studied performance in
the pediatric population dataset where techniques that
improve performance on small datasets would have a
significant benefit.

In this study, we seek to demonstrate the feasi-
bility of transfer learning in classifying lens status
in pediatric and adult subjects. Automatic lens status
classification alone has limited clinical utility; however,
previous studies have demonstrated the value of utiliz-
ing a simplified task on larger sets of data to generate
a model that can be fine-tuned for more specific tasks
with necessarily smaller datasets.14,15 A successful lens
classification model in UBM images is an important
initial step towardmodels that can recognize and evalu-
ate rare disease states with smaller available datasets,
such as pediatric and congenital disease. Addition-
ally, unlike prior studies that are prone to intergrader
variability and subjectivity, lens status classification is a
ground-truth task that should prompt a model to learn
this clinically relevant fundamental task, lens localiza-
tion, to apply in complex anterior segment pathology
classification. For these reasons, lens status classifica-
tion is an ideal initial task to evaluate the potential of
convolutional neural networks in identifying anterior
segment anatomic features inUBM images at the depth
of the lens and posterior iris.

Methods

Our cohort included both prospective and retro-
spective subjects who underwent UBM imaging at
participating institutions between December 2014 and
December 2019. Prospective subjects were previously
consented and enrolled in the multicenter image
database, the Pediatric Anterior Segment Imaging and
Innovation Study (PASIIS; Baltimore, MD). PASIIS
is a collaborative program between the University of
Maryland and Children’s National Medical Center
designed to apply advances in technology and image
analysis specifically to clinical evaluation and manage-
ment of pediatric anterior segment disease. Retro-
spective subjects were included after review of image
database and chart review.

Subject age at the time of examination ranged from
3 weeks to age 89 years (median age of 4.6 years,
range = 3 weeks to 90 years) (Table 1). UBM images
were obtained using the Aviso Ultrasound Platform
A/B UBM with 50 MHz linear transducer (Quantel
Medical, Bozeman, MT) or the Accutome UBM
Plus Platform with 48 MHz linear transducer (Keeler
Accutome, Inc., Malvern, PA). Forty-six of 285 images
were collected on the Accutome platform and the
remaining 239 of 285 images were collected on the
Aviso platform. Lens status composition and resolu-
tions, as well as representative images for each device
can be found in Supplementary Tables S1 and S2 and
Figures S1 and S2.

Complete UBM image databases of adult images
and pediatric images were reviewed from participat-
ing institutions for retrospective inclusion. Inclusion
criteria included availability of clinical history and
central axial UBM images. The only requirement for
image quality was the lens (or area where the lens
would typically be situated in the case of aphakia)
was visible in the frame. UBM was performed by
various operators, including ophthalmic photogra-
phers, trained technicians, attending physicians, and
trainees. Subjects had undergone a variety of types of
UBM imaging for various clinical indications (ranging
from voluntary participation as a control subject,
to clinical evaluation of lens position after cataract
surgery, to unrelated evaluation of anterior segment
pathology). Most subjects had imaging of both eyes
performed. Several adult subjects were enrolled as
controls after consent and compensation for time
and travel. Images were captured in still image and
video clip formats. For video clips, image stacks were
exported and reviewed and appropriate images were
included.



Deep Learning to Determine Phakic Status in UBM TVST | Special Issue | Vol. 9 | No. 2 | Article 63 | 3

Table 1. Demographic Data for Each Lens Status Class With Percentage of Subjects for Sex, Age, Race, and
Ethnicity

Phakic Aphakic Pseudophakic

Subjects (n = 51) 33 7 21
Eyes (n = 80) 46 8 26
Sex
Male 40.63% 71.43% 47.62%
Female 59.38% 28.57% 52.38%

Age
<10 years old 65.63% 100% 52.38%
10–20 years 9.38% 0% 4.76%
20–30 years 18.75% 0% 14.29%
30–40 years 6.25% 0% 0%
>40 years old 0% 0% 28.57%

Race and ethnicity
Black 62.50% 100% 57.14%
White 18.75% 0% 28.57%
Hispanic 18.75% 0% 14.29%

Total images (n = 285) 177 27 81

Most young children and some older subjects
were imaged under general anesthesia concurrent
with planned surgical procedure. Subjects imaged
under general anesthesia were in supine position. The
Alfonso eyelid speculum was used for eyelid opening
and stabilization. Cotton tip applicators were used
to position the globe when needed. Children and
adults imaged while awake in an outpatient clinical
setting received proparacaine anesthetic drops prior to
imaging. Outpatients were imaged in supine or reclined
position without eyelid speculum. For these awake
subjects, eyelid opening and stabilization was achieved
using cotton tipped applicators. Fixation targets and/or
verbal instruction was used to position the globe when
needed. Prior to imaging, a viscous ocular lubricant gel
was applied to the ocular surface. The transducer probe
was covered with a water-filled single-use ClearScan
probe cover.

Eligible images were de-identified and reviewed by
the principal investigator (J.L.A.) and trained clini-
cal research coordinators (M.B. and A.V.). The probe
location was determined from the image to be at or
near the center of the cornea, and the pupil landmark
in view. The direction of the marker and quality of
the image were not factors considered for inclusion in
this study, provided the pupil could be identified. Lens
status was ascertained from chart review of clinical and
surgical history.

We cropped the 285 raw images to exclude any
text or labeling generated from the native UBM
software while maximizing the ocular anatomy in the

frame. We then partitioned our dataset into a train-
ing dataset that our model would learn from, a valida-
tion dataset, which we used to iteratively score our
model and prevent overfitting, and a testing dataset
that would remain unseen by the model’s training
process and could be used as an independent evaluation
of a model’s classification. We used random sampling
without replacement to partition subjects, placing 20%
of the total subjects in an independent test dataset,
20% of the remaining subjects in a validation dataset,
and the subsequently remaining subjects in a train-
ing dataset. The overall proportion of pseudophakic,
aphakic, and phakic subjects were maintained while
partitioning, meaning that for all testing folds there
were 1 to 2 aphakic subjects, 7 to 8 phakic subjects,
and 4 to 5 pseudophakic subjects.We then balanced our
training dataset by randomly oversampling the under-
represented classes until there were an equal number
of images for each lens status. The entire training set,
including the oversampled images, underwent random
augmentation that simulated real-world variance, such
as horizontal flipping, a modest affine transformation,
and contrast and brightness jittering. By selecting these
transformations, the model can learn features that are
independent of some user variance. These transforma-
tions helped mitigate the risk of oversampling leading
to overfitting as there was a 6.25 * 10−6 chance that the
same transformation would be applied to any image.
Images in all datasets were uniformly resized to 108
pixels in height by 262 pixels in width and underwent
normalization of pixel values in the range of −1 to 1.
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Figure 1. Equations for precision (true positive rate), recall, F1 score, false positive rate, and weighted average metrics.

This final resolution was selected as it represented an
approximate balance between the smallest resolution
of the images in either height or width in order to
prevent up-sampling, while still maintaining an aspect
ratio representative of most images. These transfor-
mations were randomly re-applied to untransformed
images every epoch.

Rather than build a model from scratch that might
be prone to overfitting due to a limited sample size,
we used a pretrained model, Densenet-121, and then
fine-tuned the final layer’s parameters and customized
a classifier to classify our images. Densenet, a convolu-
tional neural network architecture described by Huang
et al.,16 has the advantage of efficient accuracy returns
for fewer parameters andmemory allocation,17 making
it an ideal starting point for our model. The Densenet-
121 model had been pretrained on ImageNet, a bench-
mark dataset containing over 14 million images with
1000 classes. As the target task of classifying the
lens in UBM images differs from the source task of
classifying ImageNet color images, we unfroze the
further downstream dense block 4’s weight parame-
ters while freezing all other earlier layer’s parameters.
Doing this allowed us to take advantage of the earlier
frozen layers to retain general image feature recogni-
tion from Densenet and use the deeper layer param-
eters to classify lens status based on these extracted
features.18 The final, fully connected linear classifica-
tion layer used a dropout rate of 0.6 before apply-
ing a log SoftMax function to generate the final likeli-
hood of a certain lens class. The final model’s unfrozen
parameters and classification layer were trained using
a stochastic gradient descent optimization at a learn-
ing rate of 0.0006 and a momentum of 0.9. We trained
the model using a negative log-likelihood loss function
for 60 epochs with a batch size of 32. We used early
stopping criteria with a patience of 10 epochs to further
mitigate overfitting.

We performed fivefold cross-validation to evalu-
ate the performance of our model. The original

dataset was randomly partitioned into five mutually
exclusive testing datasets, and a model was trained
on the remaining data for each fold. The compo-
sition of images by lens status within each fold is
included in Supplementary Figure S3. Each model’s
predicted labels for testing dataset were aggregated
and used to generate a confusion matrix. From these
values, we calculated a precision, recall, F1 score, and
false positive rate for each lens status using formu-
las described in Figure 1. Additionally, a receiver
operating characteristic curve (ROC) was plotted for
each fold and the mean of each fold’s true and false
positive rate in order to calculate the area under the
curve (AUC) and SD.We calculated aweighted-average
precision, recall, F1 scores, false positive rate, andAUC
to describe the model’s overall performance. Finally,
we created heat-map visualizations using gradient-
weighted class activation mapping to localize regions
with high activation. These heatmaps were qualitatively
analyzed to assess whether the classification model was
activating image regions relevant to lens status evalua-
tion.

In order to evaluate whether performance metrics
were affected by patient-related factors within the
pediatric subset, two experiments were performed.
First, a model was trained and evaluated using the
subgroup of all patients < 10 years old at the time of
the (181 total images; 67 less phakic images and 37 less
pseudophakic images and the same number of aphakic
images as the all-ages group). The performance metrics
and heatmaps of this under 10 subgroup model was
compared to the performance of the model that used
images from patients of all ages. In the second exper-
iment, two models were trained using 20 subjects (11
phakic and 9 pseudophakic) from2 conditions: patients
< 10 years old at the time of the examination and
patients > 10 years old at the time of the examination.
These models were then evaluated on a test set of 8
subjects under age 10 (5 phakic and 3 pseudophakic)
that had not been included in model training. Aphakic



Deep Learning to Determine Phakic Status in UBM TVST | Special Issue | Vol. 9 | No. 2 | Article 63 | 5

Table2. AggregatedPrecision, Recall, F1-Scores, False Positive Rate, andMeanAUC for Each Individual Lens Status
Class and the Weighted-Average Scores for the All-Ages Analysis

Class Precision Recall F1-Score False Positive Rate Mean AUC

Aphakic (n = 27) 85.19% 85.19% 85.19% 1.55% 0.991
Phakic (n = 177) 96.63% 97.18% 96.90% 5.56% 0.992
Pseudophakic (n = 81) 98.75% 97.53% 98.14% 0.49% 0.994
Weighted average 96.15% 96.14% 96.14% 3.74% 0.992

Corresponding ROC curves can be found in Supplementary Figure S4.

Table3. AggregatedPrecision, Recall, F1-Scores, False Positive Rate, andMeanAUC for Each Individual Lens Status
Class and the Weighted-Average Scores for the Subgroup Modeling for Subjects Under Age 10 Years

Class Precision Recall F1-Score False Positive Rate Mean AUC

Aphakic (n = 27) 80.77% 77.78% 79.25% 3.25% 0.981
Phakic (n = 110) 94.50% 93.64% 94.06% 8.45% 0.984
Pseudophakic (n = 44) 93.48% 97.73% 95.56% 2.19% 0.995
Weighted average 92.20% 92.27% 92.22% 6.15% 0.986

Corresponding ROC curves can be found in Supplementary Figures S2 and S3.

Table 4. Precision, Recall, F1-Scores, False Positive Rate, and AUC for Models Trained Using Images from Phakic
and Pseudophakic Patients Under Age 10 Years Only and Over Age 10 Years Only and Then Tested on Only Under
Age 10 Years Patient Images

Number of Images in False Positive
Class Training/Validation Set Precision Recall F1-Score Rate AUC

Under age 10 y only
Phakic 40 train, 8 val 100.00% 97.37% 98.67% 0.00% 0.995
Pseudophakic 23 train, 6 val 93.75% 100.00% 98.67% 0.00% 0.995

Over age 10 y
Phakic 54 train, 13 val 97.37% 97.37% 97.37% 6.67% 0.991
Pseudophakic 31 train, 6 val 93.33% 93.33% 93.33% 2.73% 0.992

Corresponding ROC curves can be found in Supplementary Figure S5.

subjects were not included in the modeling, as there
were no aphakic subjects over the age of 10 years and
the goal was to compare themodel’s performance when
the training set was restricted to patients only above
the age of 10 years but tested on images from subjects
under 10 years. Other than the parameters involv-
ing the number of classes and removing the cross-
validation for evaluation, the modeling hyperparame-
ters remained the same as described above.

The source code for the training and evaluation
of this model is available at https://github.com/cle801/
Lens-Classification.19 It is implemented in Python 3.

This study adhered to the ethical principles outlined
in the Declaration of Helsinki as amended in 2013.
The Institutional Review Board has approved the

above referenced protocol. Collection and evaluation
of protected health informationwas compliant with the
Health Insurance Portability and Accountability Act
of 1996.

Results

Our neural network trained across 60 epochs
achieved an aggregated weighted-average recall of
96.15%, a precision of 96.14%, an F1-score of 96.14%,
a false positive rate of 3.74%, and an AUC of 0.992
(Tables 2, 3, and 4, Fig. 2). Feature saliency heatmaps
generated for testing data consistently involved the lens
or adjacent structures (Fig. 3).

https://github.com/cle801/Lens-Classification
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Figure 2. Confusion matrix of the model’s classification on all
testing set data aggregated across fivefold cross validation. Element
(x, y) of this matrix represents the number of UBM images predicted
as “x” lens status with a true lens status, “y.”

Discussion

We have successfully demonstrated the feasibility
of lens classification in adult and pediatric subjects
using convolutional neural networkwith transfer learn-
ing. Our model produced good weighted-average preci-
sion, recall, F1-scores, false positive rate, and AUC.
The heatmaps demonstrate that, for all classes, features
most relevant to classification involve the center of the
anterior chamber, the pupil, and the central lens.

The rationale for developing this model was as a
foundation for future expansion to create algorithms
designed to identify complex anterior segment pathol-
ogy among pediatric subjects with low incidence
diseases, such as congenital glaucoma or anterior
segment dysgenesis. For pediatric patients with rare
diseases, it was necessary to determine the importance
of training the algorithm using pediatric versus adult
images. An adult image set may be equally effective,
and thus extremely useful in training certain features
in future models, given the paucity of imaging data
from a pediatric population. The under 10-year-old
model had slightly worse performance metrics when
compared to the all-ages model, except for pseudopha-
kic recall, which had a marginal gain of 0.2%. This is
likely due to the smaller size of the training dataset,
which was already relatively small. However, in the
model using only 181 pediatric images, all weighted-
average metrics were still above 90% with an AUC
of 0.986 and a weighted-average false positive rate
of 6.15%. The model trained only using the under
10-year-old subgroup demonstrated a slight improve-
ment of recall of pseudophakic lens when compared to

the all-ages model, likely due to an increased propor-
tion of aphakic images relative to pseudophakic and
phakic images within the training dataset. However,
the under 10 model had worse overall performance
in every other metric, notably a decrease in preci-
sion and F1-score, which we attribute to a decrease
in overall samples (i.e. 67 fewer phakic images and 37
fewer pseudophakic images) (Fig. 4). Additionally, the
comparison of saliency heatmaps in Figure 5 demon-
strate, for the same images in Figure 3, the model
has slightly larger and thus less lens-specific heatmaps.
These results suggest that a larger sample size benefits
model performance over a more balanced dataset with
fewer oversamples.

The models trained on with the same number of
patients with pseudophakia and phakia in different age
groups performedwell on the same testing data set with
just under age 10 patient images. There was at most one
misclassification per class in both models, although the
under age 10 only condition had one less misclassifi-
cation (Fig. 6). This was consistent with classification
errors with all previous models that were largely associ-
ated with the aphakic class, which was excluded from
this model. These results suggest that the task perfor-
mance of our modeling method is not dependent on
any age-associated features within our data set, at least
within the phakic and pseudophakic task.

Training models on labeling tasks that are virtually
resistant to mislabeling secondary to grader-dependent
diagnostic errors, imperfect gold standard tests, or
preclinical disease states, allows for generation of
more robust models. As transfer learning continues to
develop, we anticipate models, such as this, that classify
ground-truth classes within a medical context will be
an important intermediate to improve the reliability
of further specialized tools within the same medical
domain. Ideally, the lens localization features learned
by a model trained on a lens status image set could
be transferred to future deep learning models trained
to identify more nuanced anterior segment pathol-
ogy from smaller datasets. Additionally, the output of
this classification model can be used in an automated
combinatory diagnostic model that requires the inten-
tional inclusion of lens status in the decision making.
This model’s good performance, despite a limited
dataset, demonstrates the potential for an approach
that automates simple tasks using a small dataset with
the hopes of eventually combining the output in amore
complex diagnostic workflow.

This study has limitations. The most important
limitations were related to features of the image
dataset, inclusive of images from various sources, and
with an imbalanced number of images among groups.
Multiple ultrasonographers contributed to our image
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Figure 3. Input images (left) and associated feature saliency heat maps (right) for correctly identified (a) phakic, (b) pseudophakic, and (c)
aphakic images.

Figure 4. Confusion matrix of the model trained and tested only
on patients less than 10 years old.

database, resulting in image variance in our training
and testing image sets. This heterogenous image set
is realistic and may have made the algorithm more
robust to handle classification of diverse images. On
the other hand, use of such variable images for train-
ing and testing likely came at a cost to the algorithm’s
performance. Although all weighted-average metrics
were above 95%, the aphakic class precision, recall,
and F1-score were lower than the weighted averages.
Eight of the 11 total misclassified images were either

mislabeled as aphakic images or aphakic images
mislabeled as phakic or pseudophakic, suggesting
greater difficulty in the model’s ability to identify key
characteristics of aphakic images. Additionally, our
model classified phakia with slightly lower precision
than it classified pseudophakia. This model’s perfor-
mance was based on an unbalanced dataset, with
relatively few aphakic samples and far more phakic
samples. Our image dataset also included only young
aphakic subjects. These imbalances are representative
of real-world conditions that any lens status classifica-
tion model would expect to see, as aphakia is uncom-
mon compared to the phakic norm, and primarily seen
in pediatric patients. We mitigated the effect of an
unbalanced dataset with several strategies, including
data augmentation and resampling to expose themodel
to as many unique aphakic representations as possible.
However, it is likely that the trained model’s perfor-
mance was still affected by the imbalance. Although
this model’s performance is good and thus the number
of images is likely adequate, we anticipate that increas-
ing the number of samples would improve the model’s
ability to classify aphakic images, and therefore its
overall performance metrics.

In summary, this algorithm offers a translational
step toward generating meaningful UBM image analy-
sis tools that may be clinically useful in pediatric
anterior segment disease. The algorithm evaluates at a
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Figure 5. Comparison of the all-age group and the under 10 analysis. (a) Phakic comparison demonstrating that the saliency heatmap is
more dispersed in the under 10 analysis than the all-ages model. (b) Aphakic comparison with a similarly more dispersed heatmap in the
under 10 analysis (bottom) compared to the all-ages analysis (top).

novel depth of UBM focus (the lens-iris diaphragm,
rather than the angle, as has been previously studied
using deep learning),13 and a novel patient popula-
tion (pediatric subjects). Future tasks may build upon

this first step as a foundation. Although lens status is
easily determined without elaborate methods, such as
deep learning, this algorithm may provide diagnostic
utility when combined with other algorithms in a
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Figure 6. Confusion matrices for models trained using images from phakic and pseudophakic patients under age 10 years only and over
age 10 years only and then tested on only under age 10 years patient images.

stepwise format such that lens status informs other
options in the differential diagnosis. Through success-
ful automatic localization and classification of lens
status in isolation, future automated models that build
on a lens status model can explicitly incorporate lens
status as a relevant diagnostic factor. For example, the
two most common types of pediatric glaucoma are
primary congenital glaucoma and glaucoma follow-
ing congenital cataract surgery. Any algorithm that
determined an image that contained features suggestive
of pediatric glaucoma would benefit from automated
lens status classification to help further differentiate
between these subtypes. Therefore, whereas the classi-
fication of lens status itself is trivial to most trained
humans, lens status plays a role when considering
differential diagnoses and therefore has value to be
incorporated in future automated models. The same
principle can be extended in future studies to other
anatomy visualized in UBM beyond lens, such as
the ciliary body, and in pathologies beyond pediatric
glaucoma in which diagnosis is differentiated along a
composite of multiple imaging features. Future work
will use lens status classification concurrent with simul-
taneous evaluation of multiple structures. Lens status
can be incorporated into future models as a known
clinical factor that can shape pretest probabilities for
more complex diagnoses, for example, in distinguish-
ing among common subtypes of pediatric glaucoma.
Further studies will be needed to explore the role
of automated classification in more complex anterior
segment pathology with UBM images.
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