
RESEARCH ARTICLE

Machine learning on genome-wide

association studies to predict the risk of

radiation-associated contralateral breast

cancer in the WECARE Study

Sangkyu Lee1, Xiaolin Liang2, Meghan Woods2, Anne S. ReinerID
2, Patrick Concannon3,

Leslie Bernstein4, Charles F. Lynch5, John D. BoiceID
6, Joseph O. Deasy1, Jonine

L. Bernstein2‡, Jung Hun OhID
1‡*

1 Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of

America, 2 Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New

York, NY, United States of America, 3 Genetics Institute and Department of Pathology, Immunology and

Laboratory Medicine, University of Florida, Gainesville, FL, United States of America, 4 Department of

Population Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, United States of America,

5 Department of Epidemiology, The University of Iowa, Iowa City, IA, United States of America,

6 Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America

‡ These authors are co- senior authors on this work.

* ohj@mskcc.org

Abstract

The purpose of this study was to identify germline single nucleotide polymorphisms (SNPs)

that optimally predict radiation-associated contralateral breast cancer (RCBC) and to pro-

vide new biological insights into the carcinogenic process. Fifty-two women with contralat-

eral breast cancer and 153 women with unilateral breast cancer were identified within the

Women’s Environmental Cancer and Radiation Epidemiology (WECARE) Study who were

at increased risk of RCBC because they were� 40 years of age at first diagnosis of breast

cancer and received a scatter radiation dose > 1 Gy to the contralateral breast. A previously

reported algorithm, preconditioned random forest regression, was applied to predict the risk

of developing RCBC. The resulting model produced an area under the curve (AUC) of 0.62

(p = 0.04) on hold-out validation data. The biological analysis identified the cyclic AMP-medi-

ated signaling and Ephrin-A as significant biological correlates, which were previously

shown to influence cell survival after radiation in an ATM-dependent manner. The key con-

nected genes and proteins that are identified in this analysis were previously identified as

relevant to breast cancer, radiation response, or both. In summary, machine learning/bioin-

formatics methods applied to genome-wide genotyping data have great potential to reveal

plausible biological correlates associated with the risk of RCBC.
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Introduction

Radiation-associated contralateral breast cancer (RCBC) is a rare adverse health outcome fol-

lowing radiation therapy for primary breast cancer. Young women at the time of exposure are

at greater risk than older women [1–4]; the risk of RCBC has been found to be elevated in

women� 40 years of age, particularly in those who received a scatter radiation dose> 1.0 Gy

to a quadrant of the contralateral breast [5]. A number of risk or modifying factors have been

found to be associated with developing contralateral breast cancer (CBC) such as the number

of full-term pregnancies [6], age at menarche [7–9], treatment with chemotherapy or duration

of tamoxifen therapy for first breast cancer [10–12], family history of breast cancer [13–15],

and radiotherapy dose [3]. Genetic factors also have been identified [16–20], suggesting that

certain rare genetic variations in deoxyribonucleic acid (DNA) damage response genes, such

as ATM, might make it difficult to repair the damage induced by radiation and eventually may

lead to CBC. Germline variations in genes associated with damage response also have been

reported as breast cancer susceptibility loci among the general population [21–23]. However,

the candidate gene approach used in these studies has provided limited biological insights

beyond the already known DNA damage response such as DNA repair or cell cycle arrest.

Genome-wide association studies (GWAS)—agnostic testing of associations between a phe-

notype and common single nucleotide polymorphisms (SNPs) sampled across the genome—

can complement the candidate gene approach in discovering new genes associated with CBC.

For example, GWAS have identified loci that confer risk for breast cancer [24] as well as radia-

tion-associated thyroid cancer [25] and malignancies following radiotherapy for lymphoma

[26]. Recently, it has been found that common breast cancer risk loci from GWAS [24] are

related to CBC risk in a manner consistent with a polygenic risk score (PRS) [27]. However, a

gap in understanding is the contribution to CBC risk of biological factors other than the

known breast cancer or DNA response genes and any interactions between SNPs that are not

accounted for in a PRS. When applied to GWAS data, an agnostic non-linear modeling

approach could fill this gap, thereby enabling the discovery of new biomarkers associated with

CBC and improving the ability to predict the risk of CBC following radiotherapy.

The specific goal of this study was to apply an agnostic machine learning approach to

GWAS data to develop a predictive risk model for RCBC. A secondary goal was to gain novel

biological insights from the predictive model using a systematic bioinformatics approach and

a knowledge mining method from curated biological databases. In the current study, the focus

is on a subgroup of women who received scatter and leakage radiation dose> 1 Gy to the con-

tralateral breast at a young age (� 40 years) from the Women’s Environmental Cancer and

Radiation Epidemiology (WECARE) Study [5, 28]. A machine-learning/bioinformatics meth-

odology was employed, which was previously used to model radiation-induced complications

of late rectal bleeding and erectile dysfunction [29], and chronic urinary dysfunction following

radiotherapy [30].

Materials and methods

Study population

The WECARE Study is an institutional review board-approved, multi-center, population-

based case-control study of breast cancer survivors designed to evaluate CBC risk following

breast cancer treatments. The study protocol was approved by the Ethics Committee System in

Denmark and by the institutional review boards at the University of Iowa, University of South-

ern California, University of California at Irvine, and Fred Hutchinson Cancer Research Cen-

ter. All patients provided informed consent. All experiments were performed in accordance
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with relevant guidelines. Data from the first phase of the WECARE Study, WECARE Study I

[28] was used; participants were recruited from five cancer registries in the United States and

Denmark: Surveillance Epidemiology and End Results (SEER) registries in Iowa; Seattle, Wash-

ington; Los Angeles County, California; Orange County, California; and the Danish Breast Can-

cer Cooperative Group registry. Controls were individually matched to cases in a 2:1 ratio by

age at first breast cancer diagnosis, year of first cancer diagnosis, reporting area, and race. The

cases were women who had a first primary breast cancer diagnosis and developed CBC one or

more years later. The individually matched controls were women with primary breast cancer

who did not develop CBC after having been followed for at least as long as their matched case.

The study participants were genotyped using the Illumina HumanOmni1-Quad version 1.0,

reporting 822,778 germline SNPs. Quality control filters were used, including minor allele fre-

quency (MAF)� 0.01, missing rate� 0.05 for SNPs and individuals, and Hardy-Weinberg

Equilibrium (HWE) p> 10−5. The genotyped SNPs were imputed for sporadic missing geno-

types using IMPUTE2 software and the 1000 Genomes reference panel [31, 32]. As a result,

767,207 SNPs with the resulting imputation probability> 0.9 were used for further analysis.

Because previous analyses from the WECARE Study showed that CBC risk is greater in

younger women who received contralateral breast doses > 1 Gy, the cohort of this study was

restricted to women (cases and controls) who met the following criteria: 1) Caucasian with

European origin, 2) age� 40 years at first breast cancer diagnosis, and 3) radiation scatter

dose to the contralateral breast> 1 Gy (dosimetric procedures are described in [5]). These cri-

teria resulted in 205 eligible women (52 cases and 153 controls) selected from the WECARE I

Study of 2,102 women (705 cases and 1,397 controls). The study sample was randomly split

into training (N = 137) and validation (N = 68) sets to rigorously test the results. The training

and validation datasets were balanced with respect to case-control ratio, age at diagnosis, aver-

age radiation dose to the contralateral breast, and cancer registry; in dividing the dataset, prior-

ity was given in the order listed because a perfect split could not be achieved for all variables

(Table 1).

Univariate analysis of SNPs and clinical variables

Univariate associations in the training set between RCBC status and all the candidate predic-

tors, including SNPs and clinical variables, were examined. For the SNPs, the association was

tested using the chi-square test under an additive model. Based on prior analyses within the

WECARE I Study, we evaluated the following 6 clinical variables: family history of breast can-

cer [33], number of full-term pregnancies [6], age at menarche [6, 7], treatment with chemo-

therapy or duration of tamoxifen therapy for first breast cancer [34], age at diagnosis of the

first breast cancer, and scatter radiation dose to the contralateral breast [5]. The statistical sig-

nificance of variability in RCBC rates among the 5 registry locations was tested (Table 2). To

assess the difference between cases and controls, categorical and continuous variables were

tested using the chi-square test and univariate logistic regression, respectively. To reduce high-

dimensionality burden to predictive model training, a filtering approach was employed where

SNPs were removed based on univariate association strength prior to the modeling [35]: SNPs

with association p-values < 0.001 and the clinical variables with association p-values < 0.05

were incorporated into predictive model building. The univariate p-value cutoff value was

taken as in previous studies [29, 30].

RCBC prediction model training and validation

Using the reduced set of SNPs, we trained a multivariate model for predicting RCBC status

based on genotypes and clinical characteristics. Specifically, the Preconditioned Random

Genome-wide association studies on radiation-associated contralateral breast cancer
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Forest Regression (PRFR) method was used as the learning strategy (see [29] and [30]). In

brief, an initial preconditioning task transforms the original binary outcomes (1: occurrence of

RCBC, 0: no occurrence) into continuous ([0,1]) probability-based estimations of outcome

Table 1. Patient characteristics of training and validation datasets.

Training Validation

Sample size 137 68

Control 102 (74.4%) 51 (75.0%)

Case 35 (25.6%) 17 (25.0%)

Age at diagnosis (years)

Median 37 37

Minimum 23 24

Maximum 40 40

Age at menarche

Before 13 71 (51.8%) 32 (47%)

After 13 66 (48.2%) 36 (53%)

Number of full-term pregnancies

0 44 (32.1%) 23 (33.8%)

1 32 (23.4%) 12 (17.6%)

2 47 (34.3%) 23 (33.8%)

3 12 (8.8%) 6 (8.8%)

>3 2 (1.5%) 4 (5.9%)

Receptor status

ER+/PR+ 38 (27.7%) 23 (33.8%)

ER+/PR- 9 (6.6%) 2 (2.9%)

ER-/PR+ 8 (5.8%) 1 (1.5%)

ER-/PR- 46 (33.6%) 19 (27.9%)

Unknown 36 (26.3%) 23 (33.8%)

Family history

1+ 40 (29.2%) 13 (19.1%)

None 97 (70.8%) 55 (80.9%)

Average radiation dose to the contralateral breast (Gy)

Median 1.32 1.37

Minimum 1.01 1.01

Maximum 3.74 2.90

Other therapy

Chemotherapy and hormone therapy 33 (24.1%) 12 (17.6%)

Chemotherapy alone 4 (2.9%) 2 (2.9%)

Hormone therapy alone 72 (52.6%) 38 (55.9%)

None 28 (20.4%) 16 (23.5%)

Stage of 1st breast cancer

Localized 86 (62.8%) 41 (60.3%)

Regional 51 (37.2%) 27 (39.7%)

Registry

Denmark 16 (11.7%) 7 (10.3%)

Iowa 32 (23.4%) 16 (23.5%)

Orange County, California 24 (17.5%) 11 (16.2%)

Los Angeles County, California 57 (41.6%) 28 (41.2%)

Seattle, Washington 8 (5.8%) 6 (8.8%)

https://doi.org/10.1371/journal.pone.0226157.t001
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risk (preconditioned outcomes) by regressing the original outcomes on supervised principal

components of the most highly associated SNPs (note that this transformation only takes place

for outcomes in the training set; the outcomes in the validation set are retained as binary for

evaluation of classification accuracy). Subsequently, a random forest (RF) model was built to

optimally predict the preconditioned outcomes with respect to the predictors (SNPs). The RF

is a multivariate method that consists of an ensemble (forest) of decision trees. Each tree is

built with a bootstrap subsample of the training data. It is expected that these types of trees are

well suited to consider non-linear biological dependencies. RF has been used for GWAS

because of its flexibility in accounting for non-linear effects between SNPs and the robustness

in high-dimensional problems [36]. Each tree produces a predicted probability for a validation

sample at a terminal leaf in the following way: each validation sample passes down through the

built tree and reaches to a terminal leaf. The average preconditioned outcome of the samples

in the terminal leaf is used as prediction for that tree. The overall prediction for the sample is

then the average prediction across the whole forest. For PRFR modeling, we used the same

parameters as those described in [29]: two principal components, number of trees = 1000,

node size = 5, and mtry = square root of number of features.

To assess predictive power, the area under the curve (AUC) was calculated between the

binary outcomes and the probability of RCBC, as predicted by the PRFR model. The model

used in this work is designed to provide a continuous risk score to individuals, not binary out-

comes. Although it is possible to set a threshold to dichotomize the predicted scores and obtain

the precision/recall/F-measure, the results depend heavily on the choice of threshold. Thus, we

evaluated predictive performance of the model using AUC, which is independent of the

threshold. Performance of the PRFR was compared against other multivariate models such as

conventional RF classification and least absolute shrinkage and selection operator (LASSO)

models. Variability of predictive performance on the validation dataset was assessed. Specifi-

cally, a 5-fold process using 80% of the training set was repeated 100 times, with random data

Table 2. Statistical significance of associations between radiation-associated contralateral breast cancer and clini-

cal variables in the training dataset of the study cohort. Numbers in parentheses: 95% confidence intervals for odds

ratios.

Variables Levels Odds ratio P-value

Age at menarche (years) < 13 (Reference) 1.00

� 13 0.98 (0.42, 2.27)

Family history of breast cancer None (Reference) 0.25

1+ 1.78 (0.70, 4.44)

Chemotherapy or hormonal treatment None (Reference) 0.79

Yes 0.80 (0.30, 2.22)

Number of full-term pregnancies None (Reference) 0.88

1 1.60 (0.48, 5.29)

2 1.01 (0.34, 3.03)

3 1.35 (0.25, 6.13)

>3 1.68 (0.03, 35.50)

Age at first breast cancer diagnosis Continuous 1.02 (0.91, 1.13) 0.76

Average radiation dose to the contralateral breast Continuous 1.47 (0.69, 3.11) 0.32

Registry Denmark (Reference) 0.65

Iowa 0.42 (0.08, 2.20)

Orange County, California 0.74 (0.15, 3.86)

Los Angeles County, California 0.94 (0.25, 3.98)

Seattle, Washington 0.74 (0.05, 6.55)

https://doi.org/10.1371/journal.pone.0226157.t002
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shuffling between runs, resulting in 500 models. Each model was then tested on the hold-out

validation data, resulting in the range of validation AUCs. The resulting distribution of valida-

tion AUC was compared between the modeling approaches.

SNP prioritization and identification of biological correlates

The impact of individual SNPs on model prediction of RCBC was assessed by a variable

importance measure (VIM). The VIM was computed through the RF modeling for each pre-

dictor to quantify its contribution to prediction accuracy. To compute VIM, a permutation-

based approach was used, where the values of each predictor were shuffled across samples

while keeping other predictors fixed. The resulting increase in prediction mean squared error,

due to loss of predictive information caused by the shuffling, was calculated using out-of-bag

samples. We used the VIM metric as a secondary filtering approach to complement the pre-

ceding univariate test to further isolate the SNPs that are more important in predicting RCBC

and thus more likely to be biologically relevant [37]. Thus, we further conducted predictive

modeling using the SNPs in the top 25%, 50%, and 75% based on the VIM, and identified bio-

logical correlates using a set of SNPs that maximized the AUC on the validation data.

For the biological analysis, SNPs were mapped to genes by including the genes that are

located within 50,000 base pairs of each SNP. Gene and SNP coordinates were taken from the

human genome build 19 (hg19; GRCh37). Using the resulting gene list, the enrichment of bio-

logical process terms in the Gene Ontology (GO) annotation database was investigated [38].

The ClueGO software [39] (version 2.3.3) was used to perform a gene set enrichment analysis

(GSEA) and to organize the significant processes into relevant groups based on the number of

common annotated genes. Details of the GSEA methodology can be found in the Supplemen-

tary material in Lee, et al. [30]. GO terms with a false discovery rate (FDR) p� 0.05 were

reported. We also searched for a cluster of interacting gene products from the list to identify

those most likely to manifest similar biological functions. MetaCoreTM (version 19.3; Thomp-

son Reuters, New York, NY) was used for mining previously known interactions between the

queried gene products. Precise MetaCore inputs are detailed in S1 Data. A systematic literature

survey was conducted on the gene products that formed the clusters. The search intended to

test two independent hypotheses: 1) these markers are involved in breast cancer carcinogenesis

independently of radiation, and 2) these markers are known to respond to radiation that

increases breast cancer risk. To this end, the literature search within PubMed was conducted

in January 2018 using the following keywords for each hypothesis: 1) “breast neoplasms”

[MeSH Terms] AND (candidate protein name), or 2) (“radiation, ionizing” [MeSH Terms]

NOT “ultraviolet rays” [MeSH Terms]) AND (“neoplasms” [MeSH Terms] OR “carcinogene-

sis” [MeSH Terms]) AND (candidate protein name).
Moreover, the impact of different ways in prioritizing SNPs on biological interpretation

was investigated. In addition to the VIM-based ranking from the PRFR model, the following

were considered: 1) the relative SNP importance defined as the frequency of selection by the

LASSO model over 100 iterations, and 2) SNP ranking by univariate association p-values. The

GSEA results were compared between the three SNP prioritization methods keeping the num-

ber of genes used for the GSEA fixed at the same number as in the VIM-based ranking.

Lastly, to complement the biological interpretation based on the nearest genes that were

mapped from the PRFR modeling SNPs, we searched for the SNPs that are in linkage disequi-

librium (LD) with the modeling SNPs and have been previously shown to impact gene expres-

sion (also known as expression quantitative trait loci, or eQTL). The web-based tool HaploReg

[40] was used for mining eQTL data across all tissue types and LD within Caucasian popula-

tions. An LD r2 measure of 0.8 was used for identifying the SNPs in LD with the modeling

Genome-wide association studies on radiation-associated contralateral breast cancer
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SNPs. The genes that were identified as eQTL targets for the eQTL SNPs were investigated for

the presence of biological correlates using the same procedures as mentioned above. This pro-

cess was also applied to the SNPs prioritized by LASSO and univariate analysis methods.

Effects of the previously published SNPs on RCBC

We investigated the effects of previously reported breast cancer susceptibility SNPs and radio-

sensitivity marker SNPs on RCBC. A list of the breast cancer susceptibility SNPs was obtained

from the National Human Genome Research Institute (NHGRI) GWAS database associated

with a trait “breast carcinoma” (downloaded on October 27, 2019 from https://www.ebi.ac.uk/

gwas/efotraits/EFO_0000305). Similarly, the radiosensitivity markers were extracted from the

NHGRI database with a trait “response to radiation” (downloaded on October 27, 2019 from

https://www.ebi.ac.uk/gwas/efotraits/GO_0009314). The SNPs identified from the populations

of non-European ancestry were excluded.

All statistical analyses were conducted using the R language (version 3.4.0) and its statistical

libraries. A simplified description of the data analysis pipeline is shown in Fig 1.

Results

Statistical significance of the genome-wide SNPs and clinical factors

No notable inflation (λ~0.994) from the p-values of the genome-wide associations was found

(Fig 2), indicating negligible evidence of population stratification [41]. In the initial filtering

using a p-value cutoff of 0.001, 712 SNPs were left as predictors for the modeling steps (S2

Data). No clinical variables, including registry, reached nominal significance (p< 0.05)

(Table 2). Thus, the subsequent PRFR model was built using only the 712 SNP predictors.

In this cohort, estrogen receptor (ER) and progesterone receptor (PR) status was available

with a missing rate of approximately 30%, but ERBB2 status was not available. The correlation

between these two receptors’ status and RCBC was tested and was not statistically significant

(p = 0.11).

Predictive performance of the PRFR model

Using a 5-fold cross validation, the PRFR model on 712 SNPs achieved an average AUC of

0.57 (95% confidence interval [CI]: 0.57–0.58) on the validation data. Based on the VIM, the

modeling was repeated using the top 25%, 50%, and 75% of SNPs. When the top 50% of SNPs

(356 SNPs) were used, the best predictive power was achieved with an average AUC of 0.60

(95% CI: 0.59–0.60), implying that the machine learning-based secondary filtering approach

following a statistics-based initial filtering process can improve predictive power (Fig 3). Both

results described above were statistically significantly (t-test p< 0.001) higher than the AUCs

for the conventional RF (AUC = 0.55, 95% CI: 0.55–0.56), LASSO (AUC = 0.55, 95% CI: 0.55–

0.56), or preconditioned LASSO (AUC = 0.53, 95% CI: 0.53–0.54). An average shrinkage

parameter (λ) of the LASSO model over the 100 iterations was 0.024, which led to 58 non-zero

coefficients on average. In addition, when the PRFR was retrained using all the training set,

the AUC on the validation data increased to 0.62 (bootstrap estimated 95% CI: 0.48–0.75, p =
0.04).

Biological correlates and plausibility

In the analysis using subsets of the SNPs ranked by the VIM, the validation AUC of the PRFR

model was the largest when only the top 50% of SNPs were considered (Fig 3). This resulted in

356 SNPs, among which 149 SNPs were located in intergenic regions (out of the range of
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50,000 base pairs from genes). The remaining 207 SNPs were mapped to 188 genes (S2 Data).

The GSEA on the 188 genes resulted in 7 significant biological processes (Fig 4, S3 Data),

forming 3 GO term groups, each containing more than one related GO term. The lowest p-

value as a single term was observed for “cyclic adenosine monophosphate (cAMP)-mediated

signaling” (GO:0019933, p = 2.6 × 10−4). This term, along with a term “second-messenger-

mediated signaling” (GO:0019932, p = 2.8 × 10−3), formed a GO term group with the lowest

group p-value of 2.6 × 10−4.

Alternatively, when LASSO selection frequency was used to prioritize the SNPs, 216 genes

were linked to the top 50% most frequently selected SNPs. Four significant biological processes

were observed. Two of them were in line with the results obtained from the PRFR-VIM priori-

tization (positive regulation of developmental growth and negative regulation of cell growth;

Fig 4). On the other hand, when the univariate p-value-based ranking was used, 186 genes

were identified from the resulting top 50% SNPs. The GSEA found 2 GO terms to be signifi-

cant that did not overlap with those in the PRFR- or LASSO-based prioritization (Fig 4). Fig 5

shows the number of overlapping SNPs with higher importance and the genes that are linked

to the SNPs between different modeling methods.

In an analysis of protein-protein interactions among the 188 genes from the PRFR

model, MetaCore returned 8 interconnected proteins, forming 2 distinct clusters (Fig 6).

The larger cluster contained 5 proteins, including B-cell lymphoma 6 (Bcl-6) that had con-

nections with three proteins. The smaller cluster consisted of 3 proteins, where the Receptor

tyrosine-protein kinase (ErbB)-4 was linked to Neuregulin 1 and 3. Separately, the literature

survey indicated that all 8 proteins in the 2 clusters had previously been reported to be asso-

ciated with breast cancer (Table 3). For 3 of the 8 proteins–CD63, Ephrin A, and ERBB4 –

the PubMed search found relevant publications linking the proteins to both radiation and

carcinogenesis.

The mining of an eQTL database revealed 1728 eQTL hits and 95 genes from 876 SNPs in

LD with the 356 SNPs from the PRFR modeling (S4 Data). Thirty out of the 95 genes were

linked to the 356 SNPs using the nearest gene approach. The network analysis on the 95 eQTL

genes could not identify connected components. However, GSEA detected a significant

enrichment with one GO process “negative regulation of G1/S transition of mitotic cell cycle”

(GO: 2000134, p = 4.4 x 10−5). The enrichment originated from the following 4 genes:

CDKN1A, CFH, PLK2, and TNKS1BP1. In comparison, the LASSO-based prioritization led to

121 eQTL genes from 1431 hits and no enriched GO process. The univariate prioritization

resulted in 97 genes from 1899 eQTL hits and 4 enriched GO processes. Consistent with the

PRFR results, the G1/S cell cycle transition was discovered from the univariate prioritization,

in addition to 2 other processes pertaining to glucose homeostasis (see S5 Data).

Effects of the previously published SNPs on RCBC

The queries on the GWAS catalog, as of October 27, 2019, resulted in 1066 SNPs for breast

cancer susceptibility and 121 SNPs for radiosensitivity. Among those, our genotype data con-

tained 202 SNPs and 18 SNPs for the breast cancer and radiosensitivity endpoints, respectively.

There was no overlap between the 712 SNPs identified for the RCBC endpoint and the previ-

ously reported breast cancer and radiosensitivity SNPs. The lowest p-values for the associa-

tions between the published SNPs and RCBC in the entire dataset were 3.1 x 10−3 and 2.6 x

10−2 for the breast cancer and radiosensitivity, respectively. We trained the PRFR models

using the published SNPs that were genotyped in our dataset, but the resulting models were

not validated successfully with a hold-out validation AUC of 0.52 for breast cancer SNPs and

0.48 for radiosensitivity SNPs.
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Discussion

Traditional GWAS methods have focused on finding SNPs with main effects large enough to

reach genome-wide significance (typically p< 5 × 10−8). However, any such genome-wide sig-

nificant SNPs are typically not enough to account for the range of biological mechanisms

responsible for the phenotype. The use of non-linear machine learning methods may allow for

a more natural ranking of genetic importance within a many-SNP interaction paradigm. Our

methodology serves dual purposes: 1) the non-linear multi-SNP models appear to yield better

predictions of risk and thus can aid in clinical decision-making, and 2) these methods can be

Fig 1. A flowchart summarizing the data analysis pipeline. Abbreviations: RT—radiotherapy; PC—principal component; sPCA—supervised principal component

analysis; LR—logistic regression; GWAS—genome-wide association studies; AUC—area under the curve; CV—cross-validation; PRFR—preconditioned random forest

regression; SNP—single nucleotide polymorphism; VIM—variable importance measure; y—outcomes (RCBC).

https://doi.org/10.1371/journal.pone.0226157.g001
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used to deduce possible biological mechanisms for the phenotype from the commonalities in

known biology among the SNPs. Nonetheless, a fair number of SNPs used in the models are

expected to be false positives under the relaxed p-value cutoff of 0.001. However, as shown in

the results, the process of ranking SNPs using variable importance within the RF modeling

could help to select SNPs for identifying more biologically relevant biomarkers, as has been

suggested in previous studies [37, 60]. The p-value cutoff of 0.001 can be arbitrary. However,

several studies have used the threshold for initial filtering before further analysis [61, 62].

This work focused on a subgroup of the WECARE I Study that consisted of young women

(� 40 years of age) who received a moderate level of scatter radiation dose to the contralateral

breast (> 1 Gy) because this subgroup is at high risk of developing RCBC [5]. Using agnostic

machine learning algorithms and bioinformatics tools that map to prior biological knowledge,

a group of biological correlates were discovered that are linked to breast carcinogenesis, with

some links to pathways affecting radiation response.

Fig 2. A quantile-quantile plot indicating association p-values between 767,207 single nucleotide polymorphisms and case/control status of contralateral breast

cancer. The gray area indicates the 95% confidence interval of the normal distribution.

https://doi.org/10.1371/journal.pone.0226157.g002
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The four biological process groups identified (Fig 4) were partly aligned with the biological

mechanisms known to be pertinent to radiation response, including cAMP-mediated signaling

and regulation of response to wounding (GO:1903034, p = 7.8 × 10−3). The most significant

GO term in the analysis, cAMP-mediated signaling, has been shown to promote radiation-

induced apoptosis in human lung cancer cells via interaction with the ATM gene [63]. The

regulation of response to wounding has been previously identified by the transcriptome exper-

iment by Yeles, et al. [64] as a significantly enriched process in bystander cells adjacent to the

region irradiated with alpha particles.

In addition, the genes for important SNPs were mapped onto the known network of

human protein-protein interactions to identify key connected components, based on the

premise that proteins that interact with each other tend to possess similar biological functions

(Fig 6). The literature survey indicated that all the proteins in the two connected components

were known to be involved in breast cancer. Moreover, in the GSEA results, significant biolog-

ical processes pertaining to cell growth were revealed (Fig 4, S3 Data). These results corrobo-

rate the study by Robson, et al. [27], indicating the overlap of genetic risk factors for RCBC

with those for breast cancer risk among the general population. This is consistent with a mech-

anistic viewpoint that genetic defects that increase cancer risk might also be involved in radio-

sensitivity (e.g., DNA repair, cell cycle checkpoint control) [65]. Interestingly, some of the

clustered proteins have been identified as radiation responders or modifiers of radiation

response. For example, Ephrin A, ERBB4, and Neuregulins have been identified for their

potential roles as radiation-associated carcinogenesis biomarkers. Cheema, et al. [52] showed

that the Ephrin signaling pathway responds to irradiation in an ATM-dependent manner.

ERBB4 is part of the epidermal growth factor receptor pathway that is activated by radiation,

resulting in downstream effects on MAPK and cell proliferation [55]. Neuregulin-1 binds to

and activates ERBB4, providing radio-protective signals [58].

To complement the distance-based mapping between SNPs and genes, we further searched

for the presence of functional SNPs with high genetic correlation to the modeling SNPs, and

the relevant genes whose expressions are shown to be altered by these functional SNPs from

Fig 3. Comparison of prediction areas under the curve (AUCs) on the hold-out validation dataset between different multivariate radiation-associated

contralateral breast cancer models. Each box plot indicates the fluctuation of AUCs over 100 iterations of 5-fold cross validation. Abbreviations: LASSO—least absolute

shrinkage and selection operator; PRFR—preconditioned random forest regression; RF—random forest; SNPs—single nucleotide polymorphisms. The dotted line

indicates the prediction AUC when the first 3 principal components for ancestry were used as the only predictors.

https://doi.org/10.1371/journal.pone.0226157.g003
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eQTL studies. Interestingly, the only enriched process from the eQTL gene list is relevant to

cell cycle regulation, which is hypothesized as one of the key components of the radiation

response pathway [66]. One of the key genetic constituents of this process is CDKN1A, a gene

that regulates progression of cell cycle from G1 in response to external stimuli such as radia-

tion. Post-irradiation expression of this gene has been shown to be significantly low for the

group of patients who suffered from acute skin reaction after breast cancer radiotherapy [67].

The published SNPs for breast cancer or radiosensitivity from the previous GWAS were not

found in our list of SNPs that were likely associated with RCBC. However, this lack of common

SNPs should be interpreted with caution because the vast majority of the reported SNPs were

not genotyped in our dataset. Nevertheless, this might indicate that RCBC is not entirely the

outcome of genetic susceptibility for only breast cancer or only radiation, but rather a

Fig 4. The biological processes that are significantly enriched from the 188 genes that were prioritized by preconditioned random forest regression (top), least absolute

shrinkage and selection operator (bottom left), and univariate association strength (bottom right). The label in bold indicates the biological process with the lowest

enrichment p-value in the group that it belongs to. The processes with lower p-values were drawn with larger node sizes. Undirected lines indicate empirical associations

based on kappa index whereas the connecting line with an arrow indicates previously known relationships between GO terms. The distances between the nodes were set

for visualization purposes. A list of genes associated with each process is shown in S2 Data.

https://doi.org/10.1371/journal.pone.0226157.g004
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Fig 5. The number of overlapping top 50% prioritized SNPs between the three different methods (left); note that due to equally ranked SNPs, we used 354 and 355

highly ranked SNPs for LASSO and univariate methods, respectively, to closely match with the number for the PRFR method (356). The number of overlapping genes

that were linked to the prioritized SNPs (right). Abbreviations: PRFR—preconditioned random forest regression; LASSO—least absolute shrinkage and selection

operator.

https://doi.org/10.1371/journal.pone.0226157.g005

Fig 6. Two connected components among the 188 genes of high importance. †: associated with breast cancer, ‡: associated with radiation-induced carcinogenesis.

The line colors indicate the activation (green), inhibition (red), and unspecified (grey) effect. Detailed legend is available at: https://portal.genego.com/legends/

MetaCoreQuickReferenceGuide.pdf.

https://doi.org/10.1371/journal.pone.0226157.g006
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consequence complex interaction of both components, which is also reflected in the biological

interpretation of the model.

The impact of selecting between PRFR and LASSO methods on biological interpretation

was assessed. LASSO is designed to find a parsimonious linear weighted sum of predictor vari-

ables. On the other hand, RF makes no prior assumption in model structures and is more flexi-

ble in accounting for interaction effects between predictors. Due to explicit regularization,

LASSO induces sparsity in the modeling and thus effectively uses a fewer SNPs than PRFR.

However, the sparsity by LASSO was not beneficial for prediction of RCBC compared with

PRFR (Fig 3) because many potentially important SNPs and interactions may have dropped

out. Despite this limitation, the majority of GO terms from the LASSO-based prioritization

were related or overlapped with those in the PRFR model. However, the biological processes

that are potentially radiation-related, such as cAMP signaling or response to wounding, were

only found in the PRFR-based GSEA. Interestingly, from the eQTL gene list, the univariate

ranking method detected a significant enrichment of glucose homeostasis, which could be

consistent with the previous studies on overweight/obese pre-menopausal breast cancer cases

[68]. However, this process was not discovered by LASSO- or PRFR-based eQTL genes. The

consistencies or discrepancies in biological interpretation between the three prioritization

methods warrant further studies.

Taken together, the results support the concept that RF machine learning can be used not

only as a prediction tool but also for identifying more interpretive biomarkers. Ultimately,

once validated, the results of this study can be used to inform a clinical risk model of RCBC as

a decision-making tool, which could reduce the number of women suffering from secondary

cancers and address a critical problem as to whether a subpopulation of women exist who are

radiation-sensitive due to their genetic makeup. The analysis pipeline developed in this study

Table 3. Summary of literature survey on relevance of the genes/proteins in the protein-protein interaction network to breast cancer or radiation-associated

carcinogenesis.

Protein

name

Breast cancer Radiation-associated carcinogenesis

Number of

PubMed counts�
Summary of evidence Number of

PubMed counts�
Summary of evidence

Bcl-6 30 Highly expressed in breast cancer cells [42]; might promote

invasion, migration, and growth by inducing epithelial-

mesenchymal transition [43]

0

CD63 30 Belongs to exosome family that plays a role in breast cancer

progression [44] and malignancy [45]

1 Its secretion from head and neck carcinoma

is increased after irradiation [46]

PTPRO 4 Inhibits ERBB2-driven breast carcinogenesis [47]; implicated in

tamoxifen sensitivity [48]

0

BACH2 1 DNA methylation marker for pathogenicity of a breast cancer

subtype [49]

0

Ephrin A 65 EphA/Ephrin signaling pathway promotes breast cancer growth

[50] or angiogenesis [51]

4 Ephrin signaling pathway responds to

irradiation in an ATM-dependent manner

[52]

ERBB4 243 Activates growth-related downstream pathways, including MAPK

kinase [53]; overexpression is associated with better prognosis [54]

2 Upon irradiation, triggers downstream

proliferative pathways such as MAPK [55]

Neuregulin

1

250 Promotes tumor growth via ERBB activation [56], promoting cell

migration [57]

2�� Binds to and activates ERBB4, generating

radioprotective signals [58]

Neuregulin

3

217 Binds to and activates ERBB4 [59] 2��

� As of January 29, 2018.

�� The findings did not explicitly mention the proteins as they were discovered due to their associations with the receptor tyrosine-protein kinase (ERBB).

https://doi.org/10.1371/journal.pone.0226157.t003
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is generalizable and can be applied to other outcomes and health conditions far outside the

field of radiotherapy.

A major limitation of the study lies in selection of the study group that was confined to

young Caucasian women who received considerable scatter dose.

Many studies have reported that the effects of radiation are stronger among those exposed

at a younger age and therefore in this study we focused on the younger subgroup [1–4]. Char-

acterizing the older WECARE Study population is the subject of on-going work. The choice of

limiting this analysis to Caucasian women was driven by the fact that non-Caucasians repre-

sented only 8% of our cohort.

Planned future investigations, with additional genotype data from the second phase (the

WECARE Study II), will include: i) comparison of important SNPs or gene sets between

subgroups within the WECARE Study with different characteristics (age, radiation dose), ii)

interaction effects between radiation dose and SNPs across the full range of dose to the contra-

lateral breast, and iii) application of the current methodology to a non-Caucasian subgroup.

Inclusion of the WECARE Study II will double the sample size and increase predictive power.

We also plan to validate the findings using the WECARE Study II and perform more rigorous

analysis using the combined data with more statistical power.

Conclusion

Using GWAS analysis combined with a non-linear machine learning approach, we created a

prediction model of the risk of RCBC for young women who received a moderate level of radi-

ation dose (> 1 Gy) to the contralateral breast. Although limited by sample size, the PRFR

model achieved significant predictive performance in the hold-out validation and revealed

plausible biological correlates associated with breast cancer or radiation response. This work

demonstrates the potential of using machine learning and bioinformatics techniques for

revealing the possible biological mechanisms of RCBC and for predicting risks to aid in clinical

decision-making.
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