
fmed-09-970495 October 8, 2022 Time: 15:7 # 1

TYPE Original Research
PUBLISHED 13 October 2022
DOI 10.3389/fmed.2022.970495

OPEN ACCESS

EDITED BY

Sinéad Weldon,
Queen’s University Belfast,
United Kingdom

REVIEWED BY

Giuseppe Guida,
University of Turin, Italy
Mariaenrica Tinè,
University of Padua, Italy

*CORRESPONDENCE

Lisa Cameron
lisa.cameron@schulich.uwo.ca

SPECIALTY SECTION

This article was submitted to
Pulmonary Medicine,
a section of the journal
Frontiers in Medicine

RECEIVED 16 June 2022
ACCEPTED 22 September 2022
PUBLISHED 13 October 2022

CITATION

Shrestha Palikhe N, Mackenzie CA,
Licskai C, Kim RB, Vliagoftis H and
Cameron L (2022) The CRTh2
polymorphism rs533116 G > A
associates with asthma severity
in older females.
Front. Med. 9:970495.
doi: 10.3389/fmed.2022.970495

COPYRIGHT

© 2022 Shrestha Palikhe, Mackenzie,
Licskai, Kim, Vliagoftis and Cameron.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

The CRTh2 polymorphism
rs533116 G > A associates with
asthma severity in older females
Nami Shrestha Palikhe1, Constance A. Mackenzie2,3,4,
Christopher Licskai2, Richard B. Kim3, Harissios Vliagoftis1

and Lisa Cameron1,5*
1Division of Pulmonary Medicine, Department of Medicine and Alberta Respiratory Centre,
University of Alberta, Edmonton, AB, Canada, 2Division of Respirology, Department of Medicine,
Western University, London, ON, Canada, 3Division of Clinical Pharmacology, Department
of Medicine, Western University, London, ON, Canada, 4Division of Clinical Pharmacology
and Toxicology, Ontario Poison Centre, The Hospital for Sick Children, Toronto, ON, Canada,
5Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry,
Western University, London, ON, Canada

Background: CRTh2 is G protein coupled receptor for prostaglandin D2

(PGD)2 expressed by immune cells that drive type 2 inflammation such as

CD4+ T cells (Th2), eosinophils and group 2 innate lymphoid cells (ILC2)

as well as structural cells including smooth muscle and epithelium. CRTh2-

expressing cells are increased in the blood and airways of asthmatics and

severe asthma is characterized by increased activity of the PGD2-CRTh2

pathway. The CRTh2 single nucleotide polymorphism (SNP) rs533116 G > A is

associated with development of asthma and increased Th2 cell differentiation.

Objective: To examine whether CRTh2 rs533116G > A associates with asthma

severity. Since severe asthma is more common in females than males, we

performed a sex-stratified analysis.

Methods: Clinical data from asthmatics (n = 170) were obtained from clinic

visits and chart review. Asthma severity was assessed according to ERS/ATS

guidelines. Peripheral blood cells were characterized by flow cytometry and

qRT-PCR. Genotyping was performed by TaqMan assay.

Results: Older females (≥45 years) homozygous for minor A allele of rs533116

were more likely to have severe asthma, lower FEV1, a higher prescribed dose

of inhaled corticosteroid and more type 2 inflammation than females carrying

GA or GG genotypes. Comparing females and males with the AA genotype

also revealed that women had more type 2 inflammation.

Conclusions and significance: The polymorphism CRTh2 rs533116 G > A

associates with severe asthma and type 2 inflammation in older females. This

study reveals a gene-sex-aging interaction influencing the effect of CRTh2 on

asthma severity.
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Introduction

Asthma is a heterogeneous disease with many endotypes.
Type 2 high asthma is the most common form and is mediated
by the cytokines IL-4, IL-5, and IL-13 (1). These cytokines
are produced primarily by Th2 (T-helper 2) cells and ILC2s
(group 2 innate lymphoid cells) and together promote type 2
inflammation and infiltration of other important inflammatory
cells such as eosinophils and basophils (2–4). Th2 cells (5–
7) and ILC2 (4) are defined by the expression of CRTh2
(chemoattractant homologous receptor expressed by Th2 cells).
Other inflammatory cells including eosinophils and basophils
and structural cells such as smooth muscle and epithelium also
express CRTh2 (8–10).

While both Th2 cells and ILC2 produce type 2 cytokines,
these cells are considered to play inherently different roles in
immune responses. Th2 cells are differentiated and activated
by allergen-primed dendritic cells (11) and are memory T cells
that circulate between the lymph nodes and periphery providing
surveillance and allergen specific responses (12, 13). ILC2 can
be found in the blood, but at 1,000-fold lower numbers than
Th2 cells (14); this is considered to be due to their role as innate
cells residing primarily at mucosal sites. ILC2 are activated by
IL-25 and IL-33, cytokines released from the airway epithelium
following exposure to allergens (15) or other environmental
factors such as cigarette smoke or viral and/or bacterial
infections [reviewed in (16)]. Both Th2 cells and ILC2 have
been shown to be increased in the blood and airways of severe
compared to mild/moderate asthmatics (14, 17, 18). CRTh2 is
a G protein coupled receptor for prostaglandin D2 (PGD)2 (19,
20) and activation of CRTh2 mediates chemotaxis (19) as well
as type 2 cytokine expression (21). Since PGD2 is produced by
both allergen-activated mast cells (22) and microbial-activated
macrophages (23), the PGD2-CRTh2 pathway is considered to
play a role in contributing to both day to day asthma symptoms
as well as exacerbations [reviewed in (24, 25)].

Genetic variations in CRTh2 have been associated with
development of asthma and other allergic phenotypes (26,
27). We reported that the minor allele of rs533116 G > A,
within a CRTh2 enhancer region, was associated with higher
levels of CRTh2 expression on circulating CD4+ T cells and
eosinophils and in vitro differentiated Th2 cells (28). We
recently observed that the proportion of CD4+CRTh2+ T cells
(Th2 cells) are increased in severe asthma (17). Others have
shown more CRTh2-expressing cells and higher PGD2 levels in
bronchial alveolar lavage and epithelial brushings from severe
asthmatics (18). To date, no studies have investigated whether
this polymorphism is associated with clinical characteristics of
asthma including severity of the disease.

In this study, we investigated whether the genotype status
of rs533116 is associated with severe asthma and/or indices
of asthma severity. In light of our emerging understanding
of the importance of sex differences in health and disease,

coupled with reports that females are more likely to suffer
from severe asthma and to have more severe symptoms
(29), we additionally performed a sex-stratified analysis. We
found that the homogeneous minor allele of rs533116 (AA
genotype) associated with asthma severity and degree of type
2 inflammation exclusively in females. Collectively, our results
suggest that genetic variation in CRTh2 may play a sex-specific
role in asthma severity.

Materials and methods

Subjects

The institutional ethics review boards of the University of
Alberta and Western University approved this study. Patients
were recruited and consented from the tertiary care Asthma
Clinics at the University of Alberta, Edmonton Alberta and
London Health Sciences Centre/St. Joseph’s Health Care,
London, Ontario. Inclusion criteria were age >18 years and
a physician diagnosis of asthma. Severe asthma was defined
as asthma that requires treatment with high dose inhaled
corticosteroids plus a second controller (and/or systemic
corticosteroids) to prevent it from becoming “uncontrolled” or
that remains “uncontrolled” despite this therapy. Inadequate
symptom control was defined by any one of the following: (i)
airflow limitation (FEV1 < 80% predicted after bronchodilator
medication withheld); (ii) Asthma Control Questionnaire
(ACQ) > 1.5; (iii) frequent severe exacerbations (two or more
systemic corticosteroids bursts (>3 days each); (iv) serious
exacerbation (at least one hospitalization or ICU stay in the
previous year) (30).

Genotyping

Using the Wizard R© Genomic DNA Purification Kit
(Promega, Madison, WI, USA), DNA was isolated from
peripheral blood mononuclear cells or whole blood following
manufacturer instructions. CRTh2 rs533116 [g. −6,391 bp
(G > A), upstream of the translation start site] genotyping was
performed using TaqMan R© allelic discrimination assay (Applied
Biosystems, Foster City, CA, USA).

Quantitative real time polymerase
chain reaction

Whole blood (2 ml) was collected in PAX gene tubes and
total RNA was isolated using the PAXgene Blood RNA Kit
(PreAnalytiX, Qiagen, BD, Mississauga, ON, Canada) according
to the manufacturer’s instruction. Reverse transcription (RT)
reactions were performed using 1 µg of RNA, oligo-dT
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primers and Superscript II Reverse Transcriptase (Invitrogen,
Burlington, ON, Canada). TaqMan gene expression assays
for CRTh2 (Hs00173717_ml) and GATA3 (Hs00231122_ml)
were quantified using pre-designed Taqman assays (Applied
Biosystems, Carlsbad, CA, USA), 19 µl of TaqMan gene
expression master mix and 1 µl of cDNA. GAPDH mRNA was
used as an internal control (housekeeping control) and was
quantified by a custom 6FAM-labeled TAMRA probe (5′-AAA
TCC CAT CAC CAT CTT CCA GGA GCG A-3′) (Applied
Biosystems) and the following primers GAPDH-F (5′-CAA
GGCT GAG AAC GGG AAG-3′) and GAPDH-R (5′-GCA AAT
GAG CCC CAG CCT T-3′). The PCR protocol consisted of 10
min at 95◦C followed by 40 cycles of 30 s at 95◦C and 60 s at
60◦C. All samples were run in triplicate. Differences in Ct values
of the gene of interest and the house keeping gene GAPDH were
used to calculate delta Ct (1Ct). Relative fold changes (RFC)
were then calculated using the 2−11Ct algorithm. All 1Ct were
subtracted from one subjects’ 1Ct (lowest Ct value) to calculate
11Ct and fold increase then calculated using the 11Ct as a
negative exponent to the base of 2 (2−11Ct).

Flow cytometry

Determining the proportion of circulating cells expressing
CRTh2 was performed as we described previously (17, 31).
Briefly, whole peripheral blood was stained using antibodies
against CD4, CCR3, CRTh2, or isotype control and fixed
with paraformaldehyde (2%). Flow cytometry analysis was
performed using a BD LSR II Flow Cytometer, with gates
set in accordance with the profiles of the isotype control
and/or negative control beads. The proportion of Th2 cells was
determine as the proportion of CD4+CRTh2+ cells/peripheral
white blood cells (pWBC). CRTh2+eosinophils were identified
as the proportion of high side scatter (SSchigh) cells expressing
CCR3 and CRTh2/WBC. Results were analyzed using FlowJo R©

(TreeStar, Ashland OR, USA).

Statistical analyses

Difference in the mean value of phenotypic clinical
characteristics was compared using the Mann-Whitney U-test
or independent t-test (based on normality test) for continuous
variables and Fisher exact t-test for categorical variables.
Significant departures of genotype frequency from Hardy-
Weinberg equilibrium were determined by Fisher exact
t-test. For associations of the CRTh2 rs533116 polymorphism
(dominant and recessive model) with severe asthma, odds ratios
were calculated by binary logistic regression adjusted for sex,
age and/or BMI according to analysis and p-values determined
by Chi-Square. Statistical analyses were performed using SPSS
(version 28, Chicago, IL, USA). Statistical significance was set at
P < 0.05.

Results

Asthma population

Table 1 represents the clinical and demographic data
of the population with physician diagnosed asthmatics
(n = 170) recruited from specialty asthma clinics, separated
into patients with severe or mild/moderate asthma determined
by ERS/ATS guidelines (30). There were no differences
in age, BMI or sex distribution between the two groups.
Severe asthmatics had lower forced expiratory volume in
one second (FEV1;% predicted), ratio of FEV1/forced vital
capacity (FVC) and were taking higher doses of inhaled
corticosteroids (ICS). Those in the severe asthma group
were more likely to have FEV1 < 80% predicted and to
have needed oral corticosteroids, indicating poorer symptom
control (Table 1). A sex-stratified analysis showed that males
had lower FEV1 and FEV1/FVC than females and in older
subjects (>45 years) that males were more likely to require
oral corticosteroids (39%) than females (17%, p = 0.014;
Supplementary Table 1).

CRTh2 rs533116 G > A is associated
with severe asthma in older females

We previously reported CRTh2 rs533116 G > A to be
associated with susceptibility to develop asthma (28, 32). In
this study, after confirming that genotype frequencies within
this asthma cohort exhibited Hardy Weinberg equilibrium
(Supplementary Table 2), we assessed the relationship between
this polymorphism and diagnosis of severe asthma. Examining
the entire population, we found no significant associations
with severe asthma, although those homozygous for minor A
allele (AA genotype) showed a trend for significance in females
(OR = 1.48 [95% CI = 0.86–2.52]), but not males (OR = 0.87
[95% CI = 0.46–1.63]; Supplementary Table 3). Recently, the
probability of having severe asthma was shown to increase
with each year of life until age 45 (33). We therefore restricted
our further analyses to older asthmatics. In females 45 years
or older, the AA genotype was significantly associated with
having severe asthma (OR = 2.50 [95% CI = 1.26–4.98], p =
0.009), while no association was observed in males (OR = 0.84
[95% CI = 0.38–1.86]; p = 0.660; Supplementary Table 4 and
Figure 1).

What clinical parameters of severity are
influenced by CRTh2 rs533116 G > A?

Since this polymorphism was associated with severe asthma,
we next assessed its relationship to clinical outcomes of asthma
severity. Examining ICS usage, we found similarly to severe
asthma, that females 45 years and older homozygous for

Frontiers in Medicine 03 frontiersin.org

https://doi.org/10.3389/fmed.2022.970495
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-970495 October 8, 2022 Time: 15:7 # 4

Shrestha Palikhe et al. 10.3389/fmed.2022.970495

TABLE 1 Clinical characteristics of study subjects.

Characteristics Total
(N = 170)

Mild/moderate
(N = 109)

Severe
(N = 61)

p

Age 52.0± 1.2 53.0± 1.5 50.3± 1.9 0.296

Sex (% female) 106 (62.4) 73 (67.0) 33 (54.1) 0.097

BMI 31.1± 0.6 31.4± 0.8 30.5± 0.9 0.538

FEV1 (% predicted) 79.7± 20.2 82.2± 19.1 75.1± 21.5 0.027

FVC (% predicted) 93.0± 17.1 93.1± 16.1 92.7± 19.0 0.872

FEV1/FVC 65.9± 0.9 67.8± 1.2 62.4± 1.7 0.004

Total daily ICS 1091.6± 53.2 712.5± 31.4 1769.1± 84.1 <0.0001

Smoking status ∗∗No (%) 79 (46.5) 49 (45.0) 30 (50.0) 0.565

Criteria to determine inadequate asthma control

FEV1 (<80% predicted), No (%) 84 (49.4) 47 (43) 37 (61) 0.029

OCS usage, No (%) 28 (16.5) 5 (4.6) 23 (37.7) <0.001

ACQ score (No) 1.72 (136) 1.64 (89) 1.86 (47) 0.218

Urgent care visit/hospitalization last year, No (%) 16 (23.9) 8 (20) 8 (29.6) 0.225

FEV1 , Forced expiratory volume in 1 s; FVC, Forced vital capacity; ICS, Inhaled Corticosteroid, budesonide equivalent; Smoking status ever **Total: n = 168; Mild/moderate: n = 108;
Severe: n = 60; No, Number of subjects. Bold values are to indicate significance.

the A allele (AA genotype) were significantly more likely to
be prescribed more than 1,600 µg/day of ICS (budesonide
equivalent) than those of GG/GA genotype (Figure 2A).
In contrast, this association was not observed in males
(Figure 2B).

FIGURE 1

The CRTh2 rs533116 G > A polymorphism increases risk of
severe asthma in older females. Asthmatics with mild/moderate
(n = 109) and severe asthma (n = 61) were genotyped and odds
ratio (OR) and 95% CI were determined. Females 45 years and
older carrying the AA genotype were at increased risk of having
severe asthma compared to those of GG/GA genotype. Analysis
using binary logistic regression were adjusted for age, sex and
BMI.

Another critical determinant of asthma severity is lung
function. Unlike analysis for severe asthma and ICS usage, we
found no evidence that homozygosity for A allele (AA genotype)
was associated with having lower FEV1 compared to those
with GG/GA. However, examining those with GG and AA
genotypes showed significantly lower FEV1 in the combined
population 45 years and older (p = 0.005) as well as older
females (p = 0.023), though not males. As such, we examined
this polymorphism under the dominant model and found that
older asthmatics with GA or AA genotype had FEV1 levels
lower than GG in the combined group (p = 0.001), females

FIGURE 2

The CRTh2 rs533116 G > A polymorphism is associated with ICS
usage. Asthmatics were genotyped and assessed for the
likelihood of being prescribed high dose ICS (>1600 µg/day,
budesonide equivalent), an indicator of asthma severity.
(A) Older females (AA = 11, GG/GA = 68) and (B) older males
(AA = 8, GG/GA = 31) were assessed for the influence of the A
allele on this outcome. Statistical differences determined
Mann-Whitney U-test.
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(p= 0.004) and males (p= 0.036; Supplementary Table 5). We
also examined association of this polymorphism with symptom
control, assessing its association with having FEV1 below the
normal range. This analysis revealed, with the dominant and
genotypic models, that older females (Figure 3A) and older
males (Figure 3B) carrying the A allele were more likely to
have FEV1 < 80% than those with the GG. As such, these
results suggest both GA and AA genotypes influence FEV1.
Other measures of symptom control were only available in
subjects recruited from the University of Alberta (n = 59,
Supplementary Table 6) and showed no significant differences
across genotypes. Although there was a promising trend for
CRTh2 rs533116 AA to coincide with increased likelihood of
exacerbation in females (Supplementary Figure 1), suggesting
this should be studied further. Only a few subjects (n = 5)
needed > 3 cycles of oral corticosteroid/year. Collectively,
the nature by which CRTh2 rs533116 G > A associates
with asthma severity appears to depend on biological sex
and age.

Does CRTh2 rs533116G > A influence
type 2 inflammation?

To assess whether CRTh2 rs533116G > A influences the
degree of type 2 inflammation, the subset recruited from the
University of Alberta were extensively characterized (n = 59;

Supplementary Table 6). This analysis showed that females
of AA genotype had more CD4+ T cells, eosinophils, GATA3
and CRTh2 mRNA than those carrying GA/GG genotype, but
only a trend for elevated levels of circulating Th2 cells. No
significant differences in type 2 inflammation were observed
across genotypes in males (Table 2). These findings were similar
even when those on oral corticosteroids were removed from the
analysis (females, n = 1; males, n = 4; data not shown). Since
a gradual increase in type 2 inflammation with age has been
reported (34), we specifically examined older asthmatics. This
analysis revealed that in older females carrying the AA genotype
coincided with having significantly more Th2 cells (Figure 4A)
compared to those females with GG or GA genotypes. Moreover,
in older asthmatics the level of GATA3 mRNA (Figure 4B) and
proportion of Th2 cells (Figure 4C) were higher in females than
males of AA genotype. These results suggest this polymorphism
enhances type 2 inflammation in females, but not males, and that
the effect is more evident with age.

Discussion

Development of chronic inflammatory diseases involve
gene-by-environment interactions (35). Although many studies
have focused on external environmental exposures, such as air
pollution (36), the internal environment generated by biological
sex is perhaps the most fundamental and complex of interacting

FIGURE 3

The CRTh2 rs533116 G > A polymorphism is associated with lung function. Asthmatics were genotyped and assessed for the likelihood of
having FEV1 below the normal range of 80%, an indicator of asthma severity. (A) Older females (AA = 11, GA = 41, GG = 27) and (B) older males
(AA = 8, GA = 14, GG = 17) were assessed for the influence of A allele on this outcome. Statistical differences determined Mann-Whitney U-test.
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TABLE 2 Association of CRTh2 rs533116 G > A with type 2 inflammation in all asthmatics.

CD4+ T cells *Eos CRTh2 mRNA GATA3 mRNA Th2 cells

Female

GG/GA (n= 25) 6.65± 1.13 1.47± 0.29 4.20± 0.74 3.42± 0.47 0.29± 0.04

AA (n= 6) 12.76± 1.53$ 3.20± 0.36$ 8.50± 2.35$ 8.57± 2.39 0.46± 0.07$

P 0.007 0.003 0.022 0.019 0.061

Male

GG/GA (n= 20) 6.59± 0.86 1.83± 0.57 4.69± 0.87 3.72± 0.67 0.26± 0.03

AA (n= 7) 6.75± 1.43 1.33± 0.36 3.72± 0.78 4.47± 0.83 0.21± 0.04

p ns ns ns ns ns

*Eos, eosinophils; p: Mann-Whitney Rank U-test; $p < 0.05, females vs. males with AA.

factors. Males and females have different gene complements that
shape the internal environment and this sex-specific genetic
architecture contributes to human disease (37). Age is another
factor potentially influencing the impact of genetic variation,
with physiologic changes occurring throughout the lifespan
(38). The prevalence of asthma is known to differ with age and
sex. In childhood, higher prevalence is observed in males than
in females, while asthma risk increases in girls after puberty
(39). This shift is attributed to internal changes in hormonal
milieu (40). By adulthood, females are twice as likely as males
to have a severe asthma diagnosis and severe asthma symptoms
(29, 41).

Despite the plethora of studies examining genetics of
asthma and the progress toward personalized medicine (42),
sex-specific analyses are often not considered. Mersha et al.
showed the importance of stratifying by sex as 55% of the
genetic variants identified in sex-specific analyses were not
found in the combined analysis and effect sizes were often
larger (43). Though some sex-specific risk alleles for asthma
(44), asthma-related quantitative traits IgE and FEV1 (45)
and regulatory pathways have now been identified (46, 47),
a deeper understanding is still needed. Further, age-related
changes influencing asthma risk and asthma severity throughout
life may also exhibit sex-specific effects. Lung function, for
instance, peaks ∼20 years (48) and then declines with age (49).
Type 2 inflammation was recently shown to increase with age,
particularly in the fourth decade (34).

Our study revealed a gene-sex-aging relationship between
CRTh2 533116 G > A and various parameters related to
asthma severity. Indeed, we found that in older females the
AA genotype was associated with having a diagnosis of severe
asthma, increased likelihood of taking high dose ICS and
having FEV1 (% predicted) below the normal range (<80%).
Many aspects of type 2 inflammation were also increased in
females, but not males with the AA genotype, though the
proportion of Th2 cells was only significantly higher in those
older than 45 years. The mechanism underlying why the AA
genotype associates with increased type 2 inflammation only
in females remains unclear but we hypothesize that this may

be related to their stronger propensity to develop type 2
responses (50–52). Estrogen has been shown to induce IL-4
and IL-13 expression in murine models of asthma (53, 54),

FIGURE 4

The CRTh2 rs533116 G > A polymorphism is associated with
increased type 2 inflammation. A subset of asthmatics were
characterized for type 2 inflammation. (A) Influence of the AA
genotype on the proportion of Th2 cells
(CD4+CRTh2+/peripheral white blood cells) determined by flow
cytometry in older females (45 years and older; AA = 3,
GG/GA = 13). (B) Level of GATA3 mRNA from whole blood and
(C) proportion of Th2 cells in older females (n = 3) and males (n
= 3) carrying the AA genotype. Statistical differences determined
Mann-Whitney U-test.
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while serum estradiol during the luteal phase was positively
correlated with airway levels of IL-5 (55). In males, the AA
genotype did not influence risk of having severe asthma,
coincide with higher ICS usage or type 2 inflammation,
which in turn may be due to androgen levels; androgens
have been shown to suppress type 2 inflammation (50–52).
In our study males were more likely to be taking systemic
corticosteroids, which could blunt detection of type 2 responses.
Removing these subjects from the analysis, however, gave similar
results and so it seems unlikely the lack of association of
AA with increased type 2 inflammation in males is due to
corticosteroid usage. Although peripheral detection of type
2 inflammation (blood eosinophil counts) has become the
standard for determining eligibility for anti-type 2 medications
(56), airway assessment is considered more accurate (57).
As such, additional studies examining association of CRTh2
rs533116 AA and airway levels of CRTh2+ cells in males and
females are still needed to fully understand its influence on
type 2 inflammation. Intriguingly, there may be sex differences
in the role of peripheral vs. lung cell contribution to type 2
inflammation, since androgens directly reduced ILC2-mediated
(50, 51), but indirectly reduced Th2 cell-mediated type 2
inflammation (52).

In terms of the influence of the CRTh2 rs533116 G > A
polymorphism on FEV1, the combined analysis of males and
females showed a trend for significance for the AA genotype
to influence risk for lower FEV1 (recessive model, p = 0.055)
but, in contrast to diagnosis of severe asthma, no effect was
observed in sex-stratified analysis. Instead, we observed a graded
gene dose effect of 1 and 2 copies of the A allele (GA and
AA genotypes) on FEV1. A number of studies now report
preference for assessing genetic association using a genotypic
model as they can be more sensitive than the additive model,
even when there is an intermediate heterozygote effect (58, 59).
Association between the FTO (Fat mass and obesity-associated)
genetic variant rs1421085 and severe obesity, for example, was
higher using a comparison of homozygous genotypes than the
additive model (60). Using this approach, we found the AA
genotype was associated with increased likelihood of having
FEV1 below the normal range (<80%) than those of GG
genotype, in both females and males. Taken together, our results
suggest the influence of CRTh2 rs533116 G > A on asthma
severity emerges in females as they age, when declining lung
function (49) interacts with genotype- and/or age-mediated
increases in type 2 inflammation (34). The fact that in males this
polymorphism associates with lower lung function, but not type
2 inflammation and asthma severity, suggests the potential for
sex differences in asthma etiology. Moreover, it highlights the
importance of future work assessing whether CRTh2 rs533116
G > A directly influences lung function per se and its impact on
other lung conditions.

PGD2 release from mast cells serves as a chemotactic
factor drawing CRTh2-expressing inflammatory cells to

allergen-exposed tissues (8, 22, 61, 62). On Th2 cells,
PGD2 activation of CRTh2 mediates production of IL-4,
IL-5 and IL-13, amplifying the type 2 response (21). Our
previous study showed association of CRTh2 rs533116 AA
with higher eosinophil and T cell expression of CRTh2
in young adults with self-reported asthma (28). Here we
report this association persists in physician diagnosed
asthma. Whole genome discovery of regulatory regions
identified H3K4me1 binding to the CRTh2 rs533116 locus,
indicating this polymorphism resides within an enhancer
region [HaploReg1; (63)]. Transcription factor binding site
analysis also revealed that the CRTh2 rs533116 G allele (but
not A allele) contains a putative NFAT site. Mechanistically,
this could result in increased CRTh2 expression since we
previously showed this transcription factor reduces CRTh2
transcription (64). If so, CRTh2 rs533116AA could drive
unfettered transcription resulting in high level CRTh2 mRNA
and more CRTh2-expressing cells.

Differences in the influence of this polymorphism on
type 2 inflammation and FEV1 could be the result of
genetic effects on different cell types. CRTh2 is expressed
on airway smooth muscle and the peripheral nervous system
(65). A direct role for CRTh2 in regulating asthma-related
changes in lung function would be in line with a report
of association between other CRTh2 polymorphisms and
lower PC20 (26). In silico analysis of the CRTh2 rs533116
G > A locus suggests the A allele reduces binding of
MEF2 [HaploReg, see text footnote 1; (63)], a transcription
factor expressed by smooth muscle cells that regulates
contraction (66). PGD2 activation of CRTh2 induces myocyte
migration (9) and fibrosis (67) and so an enhanced CRTh2
pathway may increase airway smooth muscle area and tissue
remodeling associated with asthma-related lower lung function
(68). Observed differences in genotypic effects on type 2
inflammation (recessive) and FEV1 (dominant), may be due
to chromatin accessibility at the CRTh2 locus differing within
female and male cells and/or different cell types. Ultimately
these nuclear environments may regulate the impact of CRTh2
rs533116 G > A.

Despite this novel finding of biological sex and age
influencing the contribution of CRTh2 rs533116 G > A to
asthma severity and type 2 inflammation, this study had some
limitations. While data were acquired from two separate centers,
it had to be pooled to achieve sufficient power to detect
genotypic differences. We also lacked power to detect differences
in some indices of symptom control, as number of exacerbations
and cycles of oral corticosteroid/year were acquired only in
a subset of subjects. Another important question is whether
CRTh2 rs533116 G > A associates with a particular subtype
of Type 2 high asthma. Previous cluster analysis identified

1 https://pubs.broadinstitute.org/mammals/haploreg
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two subtypes of female-dominant asthma characterized by
moderate airflow obstruction (>68% predicted FEV1) and type
2 inflammation (either IgE or airway eosinophils) but differing
in age-of-onset (< or >40 years of age) (69). Unfortunately,
we could not assess the influence of CRTh2 rs533116 AA
on age-of-onset or severity of asthma within each subtype
due to low sample size (U of A, n = 59, AA < 40 = 4;
AA > 40 = 2). Since the PGD2-CRTh2 pathway plays a role
in both IgE-mediated and eosinophilic type 2 inflammation,
CRTh2 rs533116AA may serve as a biomarker of severity for
both early and late onset asthma. In light of these remaining
questions, a follow up validation study including these outcomes
and features of asthma is warranted and would extend our
understanding of the current findings.

Severe asthma comprises about 5–10% of asthmatics,
though this group accounts for more than 50% of the asthma
related total health costs due to hospital admissions, use
of emergency service and unscheduled physician visits (70–
72). Our study reveals that CRTh2 rs533116 AA associates
with having more type 2 inflammation, need for ICS and
severe asthma diagnosis exclusively in females. As such, this
variant may serve as a sex-specific biomarker for type 2
high severe asthma and help guide precision delivery of anti-
Th2 therapy.
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