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Simple Summary: Meishan pig is a local pig breed in China, which has higher immunity than
commercial pig breeds for some diseases. The spleen has hematopoietic and immune response
functions, making it a good organ model for studying immunity. We depicted the expression profiles
of lncRNA-mRNA in the spleen of Meishan pigs at different developmental time points (7 d, 21 d,
35 d, 120 d and 180 d). In addition, we found that AKT3, CBL and PTK2B may be involved in immune
regulation in Meishan pigs through a competing endogenous RNA network. This result provides
valuable genomic resources for studying immune regulation in animals and finds potential molecular
markers for pig disease resistance breeding.

Abstract: Meishan is a well-established local Chinese breed known for its high fecundity, strong immune
response and high meat quality. However, the molecular mechanism of immune regulation during the
development of Meishan pigs still remains unclear. Here, we performed the transcriptional sequencing
of spleen tissues from Meishan pigs at different development stages. In total, 10,268 lncRNAs were
identified, including 1254 novel lncRNAs and 9014 known lncRNAs. Time series analysis revealed
that genes of the up-regulated module were enriched in pathways associated with transport, immunity,
and histone acetylation modifications, while genes of the down-regulated module were enriched in
DNA metabolic process and cell cycle. Weighted gene co-expression network analysis (WGCNA)
showed the functional linkage between mRNAs and lncRNAs, indicating that lncRNAs are important
regulatory elements of mRNAs. Notably, a lncRNA-miRNA-mRNA competing endogenous RNA
(ceRNA) network that contained 3 mRNAs (AKT3, CBL and PTK2B), 17 lncRNAs and 67 miRNAs were
screened out, which probably plays a critical role in immune regulation of Meishan pigs. Our findings
not only revealed the transcriptome profile of spleen development, but also provide novel insights into
the mechanism of lncRNA-miRNA-mRNA axis in the immune response in Meishan pigs.

Keywords: mRNA; lncRNA; Meishan pig; spleen; co-expression; ceRNA; development

1. Introduction

Pigs (Sus scrofa) have significant agricultural importance around the world and are
increasingly employed as a disease model for humans as well as a source of tissues for
xenotransplantation [1–3]. The Meishan pig is a Chinese native breed that is famous for
its high fertility [4]. As a Chinese local pig breed, Meishan pigs have higher resistance
to certain diseases than the commercial pig breeds. It has previously been observed that
Meishan pigs are more resistant to enterotoxigenic Escherichia coli K88 than European Large
White pigs [5]. Nowak et al. have suggested that Meishan pigs do not display alterations in
intestinal permeability in response to lipopolysaccharide (LPS) exposure, whereas Yorkshire
pigs demonstrate increased intestinal permeability in response to LPS challenge [6]. Recent
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evidence also suggests that Meishan piglets have higher intestinal immune function than
crossbred piglets [7]. It is widely accepted in China that Meishan pigs have high disease
resistance and immunity, but the underlying molecular mechanisms remain unclear. As
the spleen is an essential immunological organ, it is crucial to comprehend the mechanism
of spleen development in Meishan pigs at different growth stages.

Long noncoding RNAs (lncRNAs) are a heterogeneous type of non-protein-coding
transcripts exceeding 200 nucleotides in length [8]. As emerging regulators of gene ex-
pression, lncRNAs participate in a variety of physiological and pathological processes.
Accumulating evidence suggests that lncRNAs play important functional roles in regulat-
ing cell differentiation and tissue development. A previous study has showed that LncRNA
Snhg6 modulates the ubiquitination of EZH2 to control the development of Myeloid-
derived suppressor cells [9]. Another study has established that LncRNA-Cox2 regulates
macrophage polarization and inflammatory responses in septic mice via the CREB-C/EBP
signaling pathway [10]. In addition, Qiao et al. [11] have provided transcriptome profiles
of mRNAs and lncRNAs at development stages in Yorkshire pigs. However, no studies
have explored lncRNA-mRNA interactions during the spleen developmental stages of
Meishan pigs. Therefore, we need to explore the spleen lncRNA and mRNA profiles of
Meishan pigs at different developmental stages to reveal the potential developmental
regulatory mechanisms.

Currently, the spleen serves as a better organ model for studying immunity. In
this study, spleen tissues from Meishan pigs at five distinct developmental stages were
obtained for lncRNA and mRNA sequencing to uncover molecular networks that regulate
immunological interactions during spleen development. The competitive endogenous
RNA (ceRNA) hypothesis assumes that LncRNAs can act as adsorption sponges for target
miRNAs to regulate mRNA expression levels. By providing a comprehensive view of the
transcriptional and regulatory landscape in the developing pig spleen, we demonstrate
that the ceRNA interactions network may play an important role in spleen development
and help us better understand the regulation of immune development in Meishan pigs.

2. Materials and Methods
2.1. Animal Collection and Sample Collection

All Meishan piglets were purchased from Kunshan Conservation Ltd. (Suzhou City,
Jiangsu Province, China). The Meishan breed is a well-known native Chinese breed
renowned for its high fecundity, strong immune system, and high meat quality. In
this study, we collected spleens from a total of 5 developmental stages: day 7, day 21,
day 35, day 120 and day 180, with 3 healthy male pigs in each stage. Experimental animals
were treated using intravenous injection of 2% pentobarbital sodium to minimize pain,
followed by rapid dissection of the spleen from each carcass and immediate freezing in
liquid nitrogen. Before total RNA extraction, all obtained spleen samples were kept in a
freezer at –80 ◦C.

2.2. RNA Extraction and Sequencing Analysis

Following the manufacturer’s instructions, total RNA was isolated using the mirVana
miRNA Isolation Kit (Ambion). The Agilent 2100 Bioanalyzer was utilized to assess the
integrity of the RNA (Agilent Technologies, Santa Clara, CA, USA). The samples with an
RNA Integrity Number (RIN) of less than 7 were used in the following analysis. Following
the manufacturer’s instructions, the libraries were created using TruSeq Stranded Total
RNA with Ribo-Zero Gold. Afterwards, 150 bp paired-end reads were produced using the
Illumina sequencing platform (HiSeqTM 2500 or another platform).

2.3. Raw Data Processing and Genomic Alignment

Raw reads generated by high-throughput sequencing are saved in a fastq format
file. The raw reads are filtered based on quality values using Trim Galore (https://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/, accessed on 5 December 2021).

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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Quality control reports are generated for the filtered clean reads using Fastqc (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/, accessed on 5 December 2021).
Quality-qualified clean reads are aligned to the porcine reference genome using hisat2
(version: 2.2.1) [12].

2.4. lncRNA Prediction and Gene Quantification

The results of the alignment to the reference genome are saved in a bam file. Reads
were assembled using Stringtie software (version: 2.1.5) [13] and subsequently candidate
lncRNA transcripts were selected by comparing the gene annotation information generated
by Cuffcompare software (version: 2.2.1) [14]. Finally, the transcripts with coding ability
were de-filtered by CPC [15], CNCI [16], Pfam [17] and PLEK [18] to obtain the newly
predicted lncRANs.

Count value and TPM value were obtained by aligning the reads of each sample using
bowtie2 (version: 2.3.5.1) [19] to the mRNA transcripts as well as known and predicted
lncRNA sequences.

2.5. Differentially Expressed Gene Analysis and Enrichment Analysis

Differential expression gene analysis was performed between the groups (21 d vs.
7 d, 35 d vs. 7 d, 120 d vs. 7 d, 180 d vs. 7 d) using the R package DESeq2 (version:
1.34.0) [20], and genes with p-adj < 0.05 and |log2FC| >1 were selected as differential
genes. Functional enrichment analysis of genes based on GO and KEGG databases was
performed by hypergeometric distribution test using enrichGO and enrichKEGG in the R
package clusterProfiler (version: 4.2.2) [21], and enriched pathways with p-values less than
0.05 were retained.

2.6. Time-Series Analysis

The fuzzy c-means algorithm provided by the R package Mfuzz (version: 2.54.0) [22]
was used to perform soft-clustering analysis to identify different expression patterns of
genes in time series experimental designs. For this analysis, two parameters, c (number
of clusters) and m (fuzzification parameter), are required. We determined the value of the
parameter c by evaluating the sum of squared error between the increasing number of
clusters and obtain the value of the parameter m by using the mestimate function in the
Mfuzz package. After determining the two main parameters, we performed clustering and
ensured that the genetic trends of each group were the same by setting membership >0.8.

2.7. Construction of Weighted Gene Co-expression Network

Gene co-expression modules can be created utilizing gene expression profiles by
weighted gene co-expression network analysis (WGCNA) [23,24]. The gene relationship
matrix was first obtained from the gene expression profile using Pearson correlation co-
efficient. The results of the gene relationship matrix obtained from Pearson correlation
coefficients were converted into a adjacency matrix by setting a soft threshold β of 6. The
topological overlap matrix (TOM) was then calculated to measure the interconnectedness
of the network. We used the difference degree of TOM as the clustering distance to classify
genes into different modules. The dynamic tree algorithm was also used to merge similar
gene modules by setting a threshold of 0.25.

2.8. Prediction of miRNA Target Gene and CeRNA Network Construction

The miRNA sequences were downloaded from the miRbase (https://mirbase.org/,
accessed on 10 August 2021) website and mRNA 3’UTR sequences were obtained from
BioMart (https://asia.ensembl.org/index.html, accessed on 5 May 2022) [25]. The 3’UTR
sequences of miRNA-targeted mRNAs and lncRNA sequences were then predicted using
miRanda (version: 3.3a) [26] software. To improve the accuracy of prediction, we set max
score >150 and max energy <–20 as thresholds to screen miRNA-targeted mRNAs and
lncRNAs. Finally, ceRNA networks were constructed based on miRNAs shared by mRNAs

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://mirbase.org/
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and lncRNAs. The lncRNA-mRNA co-expression network is visualized using Cytoscape
software (version: 3.9.0) [27].

2.9. Statistical Analysis and Data Visualization

All statistical analysis is done in R environment (version: 4.1.3) [28] and the visualiza-
tion of the data is done using the R package ggplot2 (version: 3.3.5) [29].

3. Results
3.1. The Dynamic Changes of Transcriptional Landscape during Five Different Developmental
Stages of the Spleen

The experimental design and data analysis process is depicted in Figure 1. The first
set of analysis aimed to demonstrate differences at the transcriptome level at five different
developmental time points. The boxplot distribution of TPM shows the median and quartile
values of mRNA and lncRNA expression among different time points. (Figure 2A and
Tables S1 and S2). Principal component analysis revealed that the different groups may
be distinguished from one another with relative ease, ranked according to their day of the
sample (Figure 2B). Furthermore, Differential gene expression analysis was conducted, and
great changes were shown at day 21, day 35 and day 120 compared to day 7 (Figure 2C).
More specifically, differentially expressed genes (DEGs) showed an upward trend in the
different comparison groups, with 1978 mRNA and 275 lncRNA in the comparison group
day 21 vs. day 7, 3314 mRNA and 699 lncRNA in the group day 35 vs. day 7, 4300
mRNA and 937 lncRNA in the group day 120 vs. day 7, 4890 mRNA and 1058 lncRNA
in the group day 180 vs. day 7 (Figure 2d). In order to assess the biological processes
of up-regulated differential genes and down-regulated differential genes in the different
comparison groups, gene set enrichment analyses were used (Tables S3–S10). Gene ontology
(GO) characteristics related to innate immune response were detected across up-regulated
differential genes, whereas the down-regulated differential genes were enriched in cell
cycle and DNA replication (Figure S1A). KEGG pathway enrichment analysis suggested
that cell differentiation, DNA replication and cell cycle are co-enriched in DEGs in different
comparison groups to the pathway.
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Figure 1. Graphical summary of the experimental design and bioinformatics analysis process. 
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Figure 1. Graphical summary of the experimental design and bioinformatics analysis process. Spleen
samples from five different time points (7 d, 21 d, 35 d, 120 d and 180 d) were collected and subjected
to RNA-seq (n = 3 samples per time point), followed by downstream analyses.
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(pink) and lncRNA (blue) across different time points. (B) PCA diagram on normalized mRNA ex-
pression values illuminating the general relationship between datasets. The arrows show the devel-
opmental trajectory during the different periods. (C) Differential gene expression results displaying 
up- and down-regulated genes in mRNA (left) and lncRNA (right) database between four compar-
ison groups (21d vs 7d, 15d vs 7d, 120d vs 7d, and 180d vs 7d). The threshold for differential expres-
sion genes is |log2(FC)| >1 and adjust pvalue <0.05. Blue dots indicate down-regulated genes, and 
red dots indicate up-regulated genes. The top 5 up- and down-regulated gene symbols are shown 
in the graph. (D) Histogram of the number of differential expression genes for mRNA (left) and 
lncRNA (right) database. 
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Figure 2. Analysis of differentially expressed genes. (A) Box plot of log2(TPM) values for mRNA
(pink) and lncRNA (blue) across different time points. (B) PCA diagram on normalized mRNA
expression values illuminating the general relationship between datasets. The arrows show the
developmental trajectory during the different periods. (C) Differential gene expression results
displaying up- and down-regulated genes in mRNA (left) and lncRNA (right) database between four
comparison groups (21 d vs. 7 d, 15 d vs. 7 d, 120 d vs. 7 d, and 180 d vs. 7 d). The threshold for
differential expression genes is |log2(FC)| >1 and adjust p value <0.05. Blue dots indicate down-
regulated genes, and red dots indicate up-regulated genes. The top 5 up- and down-regulated gene
symbols are shown in the graph. (D) Histogram of the number of differential expression genes for
mRNA (left) and lncRNA (right) database.

3.2. Temporary and Continuously Changing Transcriptional Programs in the Spleen Development

Next, we aimed to describe broad patterns and shifts among the transcriptional
changes using clustering (Table S11). Based on their scaled and centered average expres-
sion values, the fuzzy c-means clustering algorithm was applied to protein-coding genes
(Figure 3A), using calculated optimal cluster number (k = 6) via gap statistics (Figure S2A).
Heatmap (Figure 3B) and line plots (Figures 3C and S2B–F) show the dynamically changing
transcriptomic profile in spleen development. Among the six clusters, we can distinguish
transcriptional programs with unsteady (clusters 1, 3, 4, and 5) or steady changing (clusters
2 and 6) dynamics (Figures 3C and S2E). Clusters 1 (green) and 3 (blue) contain 2778 and
1984 protein-coding genes, respectively, which have a low expression level at day 7, steadily
rise, and then begin to decline at day 120 (Figures S2B and S2C). The difference is that
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cluster 5 (purple) contains 2140 genes that rise at the very beginning but remain flat from
120 to 180 days and then start rising again (Figure S2E). Cluster 4 (red) contains 970 genes
that up-regulated before day 35 but then down-regulated (Figure S2D). Cluster 6 (brown)
contains 1822 genes, which have been in a decreasing expression pattern (Figure S2E). We
found that the gene expression in cluster 2 increased with time (Figure 3b). Therefore, we
chose to concentrate on cluster 2 (yellow), which comprises 2982 protein-coding genes and
has a steadily growing pattern of gene expression (Figure 3C). Categories associated with
biological processes were found using gene ontology (GO) analysis (Table S12). Specifically
in cluster 2, we observed an enrichment in pathways such as those associated with Golgi
vesicle transport, vesicle-mediated transport, histone H4 acetylation, i.e., (Figure S2G). In
the next step, the genes with a membership score greater than 0.8 were used for protein
interaction network analysis, and the nodes with a degree greater than 10 were shown. The
genes with rank in the top 10 according to degree were used as hub genes (AKT3, RHOA,
PTPN1, ITGB1, CBL, PTK2B, SIRT1, TNFRSF1A, CANX, and SMARCA2; Figure 3D and
Table S13). The heatmap shows a steady upward expression pattern of the hub genes at
different time points (Figure 3E). Collectively, our findings provide information on possible
genes involved in the development of the pig spleen.
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the fuzzy c-means algorithm at different developmental time points. (B) Heatmap displaying six
obtained clusters with dynamic gene expression patterns. The clusters’ overall gene expression
dynamics are displayed in area plots (on the left) (visualized in relation to cluster centroids). (C) Line
plot displaying the dynamics of all genes (expression Z-score) within cluster 2. Black lines are used
to depict centroids. The correlation between a specific gene and its centroid is displayed by color
density. (D) The protein-protein interaction (PPI) network constructed using the STRING database
for genes in cluster 2 (membership > 0.8). The size of each node in the network indicates its degree,
and nodes with degrees greater than 10 are displayed. The 10 red nodes in the middle of the network
are the hub genes. (E) Heatmap showing the expression pattern of genes in the PPI network.

3.3. Construction of mRNA-lncRNA Co-expression Networks using WGCNA

All DEGs from Figure 1 were used to construct co-expressed gene modules using
WGCNA. Thereafter, The heterogeneity of each sample was examined using hierarchical
clustering analysis in order to find and eliminate outliers (Figure S3A). To better match
the scale-free network and have more biological significance, the soft threshold power
β was chosen as 6. When the power value was equal to 6, the independence was very
high, and the average connectedness was relatively low (Figure 3A). Therefore, β = 6 was
used to construct a gene hierarchy clustering tree and 12 gene modules (black, darkgreen,
darkgrey, darkorange, darkred, grey, lightgreen, lightyellow, midnightblue, pink, salmon,
turquoise) were identified by average link clustering to place mRNAs and lncRNAs with
the same expression pattern into the same modules (Figure 4B and Table S14). The heatmap
shows the expression pattern of different modules, where the expression of genes in the
black module tends to increase with time (Figure 4C). Furthermore, analysis of the module–
trait relationship showed that different developmental time points in the spleen were
significantly and positively correlated with the black module (Figure 4D). We hypothesize
that genes in the black module are involved in the developmental process of the spleen in
a deterministic manner and can reveal the mRNA–lncRNA interaction events associated
with this biological process. Subsequently, we performed functional annotation analysis of
the gene set based on the GO database for the genes within the different modules separately
(Figures 4E and S3B–J and Table S15). The results show that the genes within the black
module are involved in biological processes mostly related to immunity, such as defense
response, immune response, and innate immune response i.e., (Figure 4E). Taken together,
these findings suggest that we have constructed mRNA-lncRNA co-expression modules
with different expression patterns and that the black module is significantly positively
correlated with the time trait, which may have an essential role in spleen development.
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Figure 4. WGCNA of mRNA and lncRNA dataset identified gene co-expression module at different
time points. (A) Selection of the soft-thresholding powers (β). The scale-free fit index in relation to
soft-thresholding power was displayed in the left panel. The mean connectivity vs soft-thresholding
power was shown in the right panel. The fit index curve for power 6 was chosen because it flattens
out at high value (>0.8). (B) Hierarchical cluster dendrogram of spleen samples in different time
points showing co-expression modules generated using WGCNA. Modules belonging to branches
are color-coded according to the interconnectedness of genes. 12 modules represented by colors in
the horizontal bar were found using 0.25 threshold merging. (C) Heatmap showing gene expression
of 12 modules across five time points. (D) Relationship between modules and traits. Each column
denotes a trait, and each row denotes an eigengene for a certain module. The matching correlation
and p value are included in each cell. (E) GO enrichment analysis of mRNAs from the black module.
The bar chart displays the top 15 highly enriched biological processes, ordered by p-value.



Animals 2022, 12, 2676 10 of 15

3.4. Construction of CeRNA Network through lncRNA-mRNA Co-expression Relationship

Next, we found that three of the ten core genes from Figure 3 were in the black mRNA-
lncRNA co-expression module, and 17 lncRNAs were co-expressed with it
(Figure 5A and Table S16). Heatmap shows the expression pattern of AKT3, CBL, PTK2B
and their co-expressed lncRNAs with an increasing trend over time (Figure 5B). It is gener-
ally known that lncRNAs and mRNAs exhibit co-expression patterns in ceRNA networks.
To clarify how lncRNAs regulate mRNAs expression by competitively binding miRNAs as
adsorption sponges, we construct the ceRNA network. This ceRNA interaction network
contains a total of three mRNAs (AKT3, CBL, PTK2B), 67 miRNAs (ssc-miR-10391, ssc-
miR-140-3p, ssc-miR-185, ssc-miR-345-5p, ssc-miR-361-3p, ssc-miR-4339, ssc-miR-500-5p,
ssc-miR-574-5p, ssc-miR-670, ssc-miR-671-5p, ssc-miR-9820-5p, ssc-miR-9822-3p, etc.) and
17 lncRNAs (TCONS_00003097, TCONS_00014243, TCONS_00026241, TCONS_00047751,
TCONS_00002102, TCONS_00002228, TCONS_00004889, TCONS_00012474, TCONS_
00013236, etc.) (Figure 5C). In summary, we obtained ceRNA interaction networks for three
hub genes that may potentially be important for spleen development in pigs.
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Figure 5. Co-expression network and ceRNA regulation mechanism. (A) Co-expression mRNA-
lncRNA network of ATK3 (blue), PTK2B (green) and CBL (orange) with its co-expression lncRNAs
(purple) in black module. The circular nodes represent the mRNAs, square nodes represent lncRNAs.
(B) Heatmap showing the trend of gene expression in the co-expression network. (C) Sankey plot for
the ceRNA network predicted by the co-expression network. The size of each rectangle, which stands
for a gene, displays the degree to which that gene is connected to others.

4. Discussion

As a local pig breed in China, Meishan pigs are famous for their high immunity.
Several previous studies have shown that Meishan pigs have stronger immunity and higher
resistance to certain diseases than commercial breed pigs. Recently, splenic transcriptome
profiles of commercial Yorkshire pigs have been provided at different developmental stages
to investigate potential immune regulatory mechanisms. However, the immune regulatory
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mechanisms of the spleen in Meishan pigs at different developmental periods are still
unclear. In this study, we selected spleen tissues from Meishan pigs at 7 days, 21 days,
35 days, 120 days and 180 days for transcriptome sequencing and the findings provide
valuable resources for mRNA-lncRNA profile to further investigate the immunological
properties of Meishan pigs.

In this study, we found 10,268 lncRNAs in spleen tissues of 15 Meishan pigs, including
1254 novel lncRNAs and 9014 known lncRNAs. Using 7 days as the control group, differ-
ential analysis revealed that the number of differential lncRNAs and differential mRNAs
both increased with increasing age, indicating a regulatory relationship between lncRNAs
and mRNAs. Subsequently, we found six modules with different gene expression patterns
by time series analysis, in which genes in the up-regulated module were enriched in GO
biological pathways with histone H4 acetylation, Golgi vesicle transport, immune effector
transport process and defense response, whereas genes in the down-regulated module
were enriched in the cell cycle and DNA metabolic process. This dynamically changing
gene expression pattern can well reflect the biological functions of the spleen. In addition,
we found 10 hub genes (AKT3, RHOA, PTPN1, ITGB1, CBL, PTK2B, SIRT1, TNFRSF1A,
CANX, and SMARCA2) whose expression levels increased with increasing age. The hub
genes identified in this study may serve as valuable candidates for further understand-
ing the mechanisms of immune regulation during spleen development. According to
several studies [30–32], AKT3 (AKT serine/threonine kinase 3) has been associated with
metabolism, growth, and differentiation. In addition, mutations in AKT3 may also lead
to developmental disorders [33,34]. RHOA (ras homolog family member A), a member
of the Rho kinase family, was involved in the growth and migration of B- and T-cells [35].
A previous study had revealed that knockdown of RHOA significantly hampers B cell
development within the mouse spleen, resulting in a significant reduction in the number
of marginal zone, transitional and follicular B cells [36]. PTPN1 (Protein tyrosine phos-
phatase 1B, also known as PTP1B) was an essential regulator of signaling pathways that
regulate metabolic balance, cell proliferation, and immunity [37]. Reth et al. [38] showed
that PTPN1 adversely regulates CD40, B cell-activating factor receptor, and TLR4 signaling
in B cells. ITGB (Integrin-β) was a member of the integrin superfamily and was essential
for hemostasis, tissue repair and immune response [39]. As an upstream molecule of the
Wnt/β-catenin signaling pathway, ITGB1 played a crucial role in immune suppression in
gastric cancer [40]. CBL (Cbl proto-oncogene B) proteins had multiple roles in regulating
signal transduction, and their absence can mentor malignancy and immune disorders [41].
PTK2B (protein tyrosine kinase 2 beta) had recently been found to modulate inflammatory
responses through the IRF5 innate immune sensing pathway in the gut [42]. SIRT1 (sirtuin
1) had been reported to participate in the regulation of inflammation, oxidative stress,
mitochondrial function, immunological responses, cellular differentiation, proliferation,
and metabolism [42]. TNFRSF1A (TNF receptor superfamily member 1A, also known
as TNFR1) was an important regulator of cell proliferation and death and regulates the
NFκB pathway through the ubiquitin/proteasome system [43]. CANX (calnexin) was
viewed as an important member of the antigen processing pathway and acts as a chaperone
protein involved in the folding and assembly of MHC-I molecules on the endoplasmic
reticulum [44,45]. SMARCA2, also known as Brahma homologue (BRM), was essential for
cell proliferation, linage specification and development, cell adhesion, cytokine responses,
and DNA repair [46].

lncRNAs may control physiological and pathological changes, exhibit excellent spa-
tiotemporal specificity during tissue development, and influence gene expression at the
epigenetic level, transcriptional and post-transcriptional level [47–50]. We constructed
different co-expression network modules of mRNA-lncRNAs associated with different
time points by WGCNA and found that genes within the black module were significantly
enriched in biological pathways related to the immune response, suggesting that the
black module may play an important role in immune regulation in spleen development.
According to the ceRNA hypothesis, lncRNAs act as adsorption sponges for miRNAs to in-
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directly regulate mRNA expression levels [51,52]. Recently, several studies have implicated
ceRNA in tissue development and immune regulation [53–55]. According to our results,
we successfully constructed the lncRNA-miRNA-mRNA ceRNA network, which shows
that it may have an important role in regulating spleen development. According to our
results, we successfully constructed a lncRNA-miRNA-mRNA ceRNA network containing
three mRNAs (AKT3, CBL, PTK2B), 17 lncRNAs (TCONS_00003097, TCONS_00014243,
TCONS_00026241, TCONS_00047751, TCONS_00002102, TCONS_00002228, TCONS_
00004889, TCONS_00012474, TCONS_00013236, etc.) and 67 miRNAs (ssc-miR-10391,
ssc-miR-140-3p, ssc-miR-185, ssc-miR-345-5p, ssc-miR-361-3p, ssc-miR-4339, ssc-miR-500-
5p, ssc-miR-574-5p, ssc-miR-670, ssc-miR-671-5p, ssc-miR-9820-5p, ssc-miR-9822-3p, etc.).
Among these miRNAs, a number of studies have already demonstrated their potential
involvement in tissue development and immunological function. For example, a study
showed that mir-423-5p may be an important regulatory molecule for testis development
and fertilization [56]. miR-185 was found to promote proliferation of intestinal epithelial
cells [57]. miR-10391 had been reported to regulate the process of swine influenza virus
infestation of host cells through ceRNA mechanism [58].

5. Conclusions

In conclusion, this study provided the first transcriptome profiles of mRNA and
lncRNA in Meishan pig spleen tissue at different time points. It was speculated that
10 mRNAs (AKT3, RHOA, PTPN1, ITGB1, CBL, PTK2B, SIRT1, TNFRSF1A, CANX, and
SMARCA2) are associated with immune regulation during spleen development. Our results
also contributed a ceRNA network of lncRNA-miRNA-mRNA and suggest that lncRNAs
may have multiple roles in the regulation of spleen development. Several limitations
still remained in this study, and we need to validate our candidate molecules through
experiments further.
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