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Epigenetic rewiring of skeletal muscle
enhancers after exercise training supports a role
in whole-body function and human health
Kristine Williams 1, Germán D. Carrasquilla 1, Lars Roed Ingerslev 1, Mette Yde Hochreuter 1, Svenja Hansson 1,
Nicolas J. Pillon 2, Ida Donkin 1, Soetkin Versteyhe 1, Juleen R. Zierath 1,2,3, Tuomas O. Kilpeläinen 1,
Romain Barrès 1,*
ABSTRACT

Objectives: Regular physical exercise improves health by reducing the risk of a plethora of chronic disorders. We hypothesized that endurance
exercise training remodels the activity of gene enhancers in skeletal muscle and that this remodeling contributes to the beneficial effects of
exercise on human health.
Methods and results: By studying changes in histone modifications, we mapped the genome-wide positions and activities of enhancers in
skeletal muscle biopsies collected from young sedentary men before and after 6 weeks of endurance exercise. We identified extensive
remodeling of enhancer activities after exercise training, with a large subset of the remodeled enhancers located in the proximity of genes
transcriptionally regulated after exercise. By overlapping the position of enhancers with genetic variants, we identified an enrichment of disease-
associated genetic variants within the exercise-remodeled enhancers.
Conclusion: Our data provide evidence of a functional link between epigenetic rewiring of enhancers to control their activity after exercise
training and the modulation of disease risk in humans.

� 2021 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION

Regular physical activity decreases the risk of multiple common dis-
orders such as cardiovascular disease [1,2], type 2 diabetes [3,4],
cancer [5], and neurological conditions [6e8], along with the overall
risk of mortality [9e11]. The beneficial effects of exercise training on
human health are partially driven by adaptations of the skeletal muscle
tissue. Exercise-induced adaptations include coordinated changes in
the expression of genes controlling substrate usage and metabolic
efficiency in skeletal muscle [12]. In addition to the adaptations that
occur within skeletal muscle cells, exercise exerts systemic effects on
whole-body homeostasis by triggering the release of soluble factors
from the muscle that signal to distal tissues, such as brain, liver, and
adipose tissue [13]. The mechanisms by which training-induced ad-
aptations of skeletal muscle orchestrate positive effects at the whole-
body level are poorly understood.
During the past two decades, genome-wide association studies (GWAS)
have identified thousands of genetic variants associated with human
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complex traits and diseases. The vast majority of these variants are
located in noncoding DNA regions [14] which overlap with gene-
regulatory regions, particularly enhancers [14e16]. Enhancers are
distal regulatory elements that are bound by multiple transcription fac-
tors and drive gene expression by forming physical interactions with
promoters. Enhancers can be identified at a genome-wide level based
on transcription factor binding clusters [17], mapping of accessible
chromatin through DNase-Seq/FAIRE-Seq [18,19], sequencing of bi-
directional enhancer RNA (eRNA) [20,21], or by mapping enhancer-
associated histone modifications, including monomethylation of lysine
4 on histone 3 (H3K4me1) and acetylation of lysine 27 on histone 3
(H3K27ac) [22e24]. Combined, these techniques have identified more
than 1.5 million enhancers across hundreds of human cell lines [25] and
demonstrated that enhancer activity is highly dynamic in a cell type-
specific and physiological context-dependent manner [26e28]. There-
fore, mapping of enhancers in different tissues or physiological condi-
tions can inform the mechanisms by which disease-associated genetic
variants regulate phenotypic changes and predispose to disease.
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Here, we hypothesized that endurance exercise training remodels the
activity of gene enhancers in skeletal muscle and that this process
contributes to the beneficial effect of exercise on human health. We
present the first mapping of human skeletal muscle enhancers after
endurance training and show that training-responsive enhancers are
enriched for genetic variants associated with human diseases and
complex traits.

2. METHODS

2.1. Human subjects
The study was performed on 8 Caucasian males (mean � SD age
23 � 4). The study was approved by the Ethics Committee from the
Capital Region of Denmark (reference H-1-2013-064) and informed
consent was obtained from all participants in accordance with the
Declaration of Helsinki II. Investigations resulting from the use of a
subset of the collected biopsies and other biological samples have
been reported elsewhere [29,30].

2.2. Exercise intervention and collection of biopsies
Before the exercise intervention, biopsies were collected (pretraining)
from all participants and a VO2max test was performed. The endurance
exercise program was performed five days a week; 60 min supervised
spinning classes for 6 weeks. The spinning classes were performed at
70% of the participants’ individual reserve capacity of their max pulse.
All participants completed all training sessions. After the last bout of
exercise, participants rested for 4 days before delivering the post-
training sample and performing a second VO2max test. Both the
pre- and post-training biopsies were collected with a Bergström needle
with suction under lidocaine local anesthesia in a fasted and resting
state from the vastus lateralis. The muscle biopsies were immediately
snap-frozen in liquid nitrogen and stored at �80 �C until further
analysis.

2.3. Total RNA purification
Skeletal muscle tissue (20e30 mg) was used for the purification of
total RNA from each biopsy. After lysis of the tissue in RLT buffer
(Qiagen) using a Tissuelyzer II (Qiagen, 30 Hz for 3 � 30 s), total RNA
was purified using AllPrep DNA/RNA/miRNA Universal Kit (Qiagen). The
quality of recovered RNA was assessed by the Agilent RNA 6000 Nano
Kit (Agilent Technologies), and RNA concentration was determined by
spectrophotometry using a NanoDrop 2000 (Thermo Scientific).

2.4. RNA-sequencing
For RNA-sequencing, 0.5 mg of total RNA was depleted of rRNA and
subsequently used to generate libraries using the TruSeq standard
total RNA with Ribo-Zero Gold kit (Illumina). The PCR cycle number for
each library amplification was optimized by running 10% of the library
DNA in a real-time PCR reaction using Brilliant III Ultra-fast SYBR Green
QPCR Master Mix (AH Diagnostic) and a C1000 Thermal cycler (Bio-
Rad). Libraries were sequenced on a NextSeq500 system (Illumina)
using the NextSeq 500/550 High Output v2 kit (75 cycles). Using the
Kallisto aligner [31] v. 0.46, reads were aligned to the hg38 ENSEMBL
release 79 transcripts [32], with a transcript support level between 1
and 3. Read summation onto genes and differential expression anal-
ysis was performed by Sleuth [33] v. 0.30. Differential expression p-
values and Bonferroni corrected q-values were calculated using a
likelihood ratio test, comparing a model containing only participant
information (~participant) to a model with participant and training
status information (~participant þ training). Fold changes were
calculated using a Wald test, as described in the Sleuth manual. Two
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samples (P6_2 and P8_2) were observed to express high levels of
genes associated with the dermis, which was not observed in the other
samples. These samples were excluded from differential expression
analysis. Real-time quantitative PCR (RT-qPCR) validations were per-
formed by using Brilliant III Ultra-fast SYBR Green QPCR Master Mix (AH
Diagnostic) and a C1000 Thermal cycler (Bio-Rad). All reactions were
analysed in quadruplicates. The following primer sequences were
used: COL4A2 (F:50-TTCCTCATGCACACGGC-30, R: 50-TTCGAT-
GAATGGTGTGGCG-30), COL5A1 (F:50-AAGCGTGGGAAACTGCTCTC-30,
R: 50-AGCCGCAGGAAGGTCATCTG-30), EMILIN1 (F:50-GCCCCAAG-
TGGCATTTTCAG-30, R: 50-CAAGTAGCGTCCAGCCAGTG-30), FSCN1
(F:50-GCGCCTACAACATCAAAGACTC-30, R: 50-GAAGTCCACAGGAGTG
TCGC-30), NID1 (F:50-TGTCACTTGGGAATCCGTGG-30, R: 50-CTGGAA
CGTGTTTCTCTTGCC-30), RASSF2 (F:50-ATGCAGGATGACAACGAACG-
30, R: 50-CTTCAGAGTGGTTCCCTGAGC-30), SLC9C1 (F:50-GCTATAA-
GAGACCTTGGGCTTTC-30, R:50-ACAGAGGTCATCAGACTTTCTCC-30).
Expression was normalized to TBP (F:50-CCCGAAACGCCGAATATAA
TCC-30, R: 50- AATCAGTGCCGTGGTTCGTG-30).
GO enrichment analysis of genes that were upregulated after exercise
training was performed by the online tool GOrilla [34], using all iden-
tified genes as the background dataset.
Genes encoding secreted gene products were downloaded from Uni-
Prot’s subcellular localization annotation database [35] (March 5,
2019), from the ExoCarta database [36] (March 5, 2019).

2.5. Chromatin IP-sequencing (ChIP-seq)
For the preparation of chromatin from human skeletal muscle biopsies
before or after training (n ¼ 8), frozen biopsies (20e40 mg) were
thawed on ice and chopped into small pieces (between 1 and 3 mm3).
The tissue was fixated in 0.5% formaldehyde in PBS for 7.5 min at
room temperature followed by quenching with glycine (final concen-
tration of 0.125 M). The fixated tissue was washed with PBS before
resuspension in 1 ml of IP buffer (67 mM TriseHCl (pH 8), 100 mM
NaCl, 5 mM EDTA (pH 8.0), 0.2% NaN3, 0.33% SDS, 1.67% Triton X-
100, 0.5 mM phenylmethylsulfonyl fluoride) and dounce homogeni-
zation was performed until the tissue was completely dissociated.
Chromatin was sonicated (Diagenode, Biorupter) to an average length
of 200e500 bp (between 20 and 30 cycles; high intensity).
Before starting the ChIP experiment, chromatin was cleared by
centrifugation for 30 min at 20,000 g. For each ChIP, chromatin cor-
responding to 2 mg DNA was combined with a 2.5 mg antibody and
incubated with rotation at 4 �C for 16 h. Immunoprecipitation was
performed by incubation with Protein G Sepharose beads (GE health-
care) for 4 h followed by three washes with low-salt buffer (20 mM
TriseHCl (pH 8.0), 2 mM EDTA, 1% Triton X-100, 0.1% SDS, 150 mM
NaCl) and two washes with high-salt buffer (20 mM TriseHCl (pH 8.0),
2 mM EDTA, 1% Triton X-100, 0.1% SDS, 500 mM NaCl). Chromatin
was de-crosslinked in 120 ml 1%SDS and 0.1 M NaHCO3 for 6 h at
65 �C, and DNA was subsequently purified using Qiagen MinElute PCR
purification kit. For library preparation and sequencing, 2e7 ng of
immunoprecipitated DNA was used to generate adaptor-ligated DNA
libraries using the NEBNext Ultra DNA library kit for Illumina (New
England Biolabs) and indexed multiplex primers for Illumina
sequencing (New England Biolabs). The PCR cycle number for each
library amplification was optimized by running 10% of the library DNA
in a real-time PCR reaction using Brilliant III Ultra-fast SYBR Green
QPCR Master Mix (AH Diagnostic) and a C1000 Thermal cycler (Bio-
Rad). DNA libraries were sequenced on a HiSeq2000 by 50-bp single-
end sequencing at the National High-Throughput Sequencing Centre
(University of Copenhagen, Denmark). Reads were aligned to a full
index of the main chromosomes of the hg38 reference genome, using
mbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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the Subread aligner v1.5.0 [37], with the genomic DNA and unique only
flags set. Picard tools (http://broadinstitute.github.io/picard) were used
to remove duplicate reads. To assess the quality of the IP step, narrow
peaks were called on each sample using the MACS2 peak caller [38]
v2.1.0.20150731. Samples were flagged as low-quality if the frag-
ment lengths could not be estimated, or if less than 200.000 peaks
could be called with a p-value cut-off of 0.05. These peaks were only
used for quality control and were not used in any downstream analysis.
No samples were discarded. For each histone mark, the consensus
peak sets used for testing differential binding were generated following
the ENCODE 2012 IDR pipeline: All samples were pooled (pooled
samples) and reads were randomly shuffled and split into two files
(pseudo-replicates). Peaks were called on pooled samples and
pseudo-replicates using the same parameters as for the individual
samples. Finally, the consensus peak list was generated using the
irreproducible discovery rate (IDR) software [39] v2.0.2, with a cut-off
of 0.05. The peak lists from the pseudo-replicates were used as input
and the peak lists from the pooled samples were used as oracle lists.
The IDR is similar to the FDR, but has been shown to result in more
reproducible peak sets than FDR cut-off defined lists [40]. Counts for
the individual samples were summarized onto peaks using feature
counts [41] v1.20.6. Differential binding was found using the quasi-
likelihood functions of edgeR [42] as previously described [43], us-
ing all counts along the entire peak. The model used had the
form ~ participantþ training, where participant encoded participant ID
and the training was 0 for the untrained state and 1 for the trained
state. When selecting peaks with both H3K27ac and H3K4me1, peaks
were considered overlapping if they overlapped by a single nucleotide.
MDS plots for both RNA and ChIP-seq experiments were generated by
removing participant effects using the remove batch effect function,
and subsequently, calculating MDS coordinates using plot MDS
function; both of which are part of the edgeR package [42].
GO enrichment analysis of genes near enhancers that were activated
after exercise training was performed by the online tool GREAT [44]
using all identified enhancer regions as the background dataset. Before
the analysis, peaks were lifted to the hg19 reference genome using the
UCSC liftOver tool [45].
Motif enrichment was performed using MEME-ChIP [46] in “discrim-
inative mode”. Enhancers were resized to a width of 500 bp centred on
the middle of the peak. Peaks with an FDR less than 0.1 were used as
a foreground, while enhancers with an FDR greater than 0.1 were used
as control sequences.
Enhancers were connected to genes using EpiMap [47]. The per group
muscle gene-enhancer links were downloaded from the EpiMap re-
pository and lifted to hg38 using the UCSC LiftOver tool [45]. A single
nucleotide overlap with the EpiMap enhancers was considered suffi-
cient to connect an enhancer to the linked gene.

2.6. GWAS overlap

2.6.1. Data retrieval from the GWAS catalog
The data retrieval and analysis process is depicted in Supplemental
Figure S6. All SNPs associated with complex diseases or other traits
were downloaded from the GWAS catalog v1.0.2 [48] (November 19,
2018) and SNPs not reaching the genome-wide significant p-
value < 5 � 10�8 were excluded. We only included unique SNPs with
information on genome position; haplotypes were excluded. LD
clumping: To avoid bias caused by the presence of linkage disequi-
librium (LD) between SNPs e which could lead to single genetic
signals being accounted more than once e we applied LD clumping
with an R2 threshold of 0.5 to all SNPs; such that only the SNP with the
MOLECULAR METABOLISM 53 (2021) 101290 � 2021 The Author(s). Published by Elsevier GmbH. This is
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strongest p-value in each LD block was included in the final clumped
list. The resulting clumped list was used in the disease/trait-specific
and disease/trait-combined analyses, respectively.

2.6.2. Categorization of GWAS catalog traits
We grouped the diseases and traits into 19 categories which all had a
minimum of 150 disease/trait SNPs per category. The trait categories
were grouped as follows: 1) anthropometric measurements, 2) auto-
immune diseases, 3) bone mineral density, 4) cancer, 5) cardiovas-
cular diseases, 6) cognitive-related, 7) coagulation, 8) inflammatory
bowel disease, 9) inflammatory response, 10) lipid levels, 11) lung-
related, 12) diabetes and glucose homeostasis, 13) neuropsychiatric,
14) obesity-related, 15) ophthalmological, 16) oxygen carriers, 17)
renal function and diseases, 18) female reproductive traits, and 19)
others. Supplemental Figure S7 gives details on how the categories
were grouped using the “disease/trait” indicator from the GWAS
catalog.

2.6.3. Generation of control SNPs
Using the SNPsnap [49] tool, we generated a random set of control
SNPs for comparison with the GWAS SNPs to estimate enrichment in
enhancer regions. We used the SNPsnap recommended default
matching settings: minor allele frequency of �5%, gene density of
�50%, distance to the nearest gene of �50%, and LD buddies
�50%, using R2 ¼ 0.5. We requested two matched SNPs per each
independent disease/trait SNP from the GWAS catalog-clumped SNPs.
We then constructed a GWAS SNP vs. control SNP matching with a
ratio of 1:2. For every disease/trait category, we excluded any control
SNPs that were duplicates.

2.6.4. Overlapping training-responsive enhancer regions and SNP
positions
GWAS SNPs and control SNPs were overlapped with the positions of
the 7018 enhancers that were differentially activated after long-term
training using BEDTools [50] v2.25.0.

2.6.5. Selecting tag SNPs across disease/trait categories
To avoid missing overlaps for SNPs in complete LD with the lead GWAS
SNPs, we performed a matched tag SNP selection with an R2 threshold
of 1 for each GWAS category and control SNPs separately. The
contribution to the overlap of SNPs within the same LD block was
considered as only one overlap; no matter how many SNPs in the LD
block overlapped with the enhancer region. This step and LD pruning
were performed with Plink v1.9 [51].

2.6.6. Statistical analysis
We used logistic regression to test whether the GWAS SNP status was
associated with higher odds of being in an enhancer region as
compared to control SNPs in the 19 disease/trait categories separately
and in combination. The overlap of the disease/trait SNPs and control
SNPs in the enhancer regions was defined as 1 for the presence and
0 for the absence of overlap. The results are reported as ORs with error
bars indicating 95% confidence intervals with the corresponding p-
values. Statistical analyses were performed using STATA 15.

3. RESULTS

3.1. Gene expression analysis identifies genes regulated after
exercise training
We collected skeletal muscle biopsies from the vastus lateralis muscle
of 8 sedentary Caucasian males before (pre training) and after (post
an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 3
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training) a 6-week endurance training program consisting of super-
vised ergocycle exercise for 60 min, five days a week, at 70% of each
participant’s maximal aerobic capacity (Figure 1A) [29]. After
completing the training program, we found that the average aerobic
capacity, as measured by maximal oxygen uptake (VO2 max), was
increased by 20% (Supplemental Figure S1). While body mass index
(BMI) was not altered, the waist-to-hip ratio was decreased, implying
that exercise training induced abdominal fat loss (Supplemental
Figure S1).
We first investigated the effect of exercise training on the transcriptome
of skeletal muscle by RNA sequencing (RNA-seq). A multidimensional
scaling (MDS) plot of the RNA-seq data revealed a clear separation
between pre- and post-training samples (Figure 1B). Among all 13,108
genes with a detected expression in the skeletal muscle biopsies
(Figure 1C), we identified 641 genes upregulated in the trained state
compared to the untrained state, whereas 176 genes were down-
regulated (false discovery rate (FDR)< 0.1) (Supplemental Data S1 and
Figure 1C). From the upregulated genes, we selected 7 genes and
performed RT-qPCR to validate the expression changes. Owing to the
lack of biological materials, we excluded two participants from this
analysis. Based on the remaining six individuals, we could still validate
an upregulation of COL5A1, EMILIN1, SLC9C1, FSCN1, and NID1,
whereas COL4A2 and RASSF2 tended to be upregulated (Supplemental
Figure S2). Gene ontology (GO) analysis of the upregulated genes
returned 421 enriched terms (Supplemental Data S2), including terms
related to extracellular matrix organization, the immune system,
angiogenesis, and actin filament sliding, along with terms related to
exocytosis and the secretion of factors (Figure 1D). In accordance, when
comparing exercise-regulated genes to all 13,108 skeletal muscle-
expressed genes, we found an overrepresentation of genes encoding
proteins annotated as secreted by UniProt’s subcellular localization
annotation [35] (Figure 1E), or as secreted by exosomes by the ExoCarta
database [36] (Figure 1F). These genes encode extracellular matrix
proteins, complement factors, chemokines, and cytokines, among
others. When we compared the regulated genes encoding secreted
factors with studies investigating the secretome of muscle cells [52e
55], we found that the majority of the proteins (65%) have been re-
ported by at least one other group to be secreted from muscle (Sup-
plemental Data S3), suggesting that many of the regulated genes are
likely to encode proteins that serve as exercise-regulated myokines. To
further validate our findings, we compared our transcriptomic data to a
recent meta-analysis of gene transcription changes in human skeletal
muscle after acute or long-term exercise training [56]. A subset of the
MetaMEx database including only studies performed in healthy young
males was used, and the meta-analysis included data sets from 6
studies of acute aerobic exercise (GSE59088, GSE71972, GSE87748,
GSE107934, GSE120862, GSE33603), 8 studies of acute resistance
exercise (GSE7286, GSE19062, GSE24235, GSE23697, GSE28422,
GSE59088, GSE106865, GSE107934), 6 studies of aerobic-based ex-
ercise training (GSE111551, GSE120862, GSE139258, GSE24215,
GSE35661, GSE9103), and 5 studies of resistance-based exercise
training (GSE106865, GSE24235, GSE28422, GSE28998, GSE45426).
A principal component analysis of gene expression responses in these
studies shows a clustering of the data according to exercise interven-
tion, where our dataset clustered with the aerobic and resistance
training studies and not the acute exercise studies (Figure 1G).
Accordingly, we found a positive correlation between logFC values of
our differentially expressed genes and values from the meta-analysis
with the aerobic and resistance training studies (Figure 1H), and not
the acute exercise studies (Figure 1I). Collectively, these data show that
exercise training improves metabolic and cardiorespiratory fitness and
4 MOLECULAR METABOLISM 53 (2021) 101290 � 2021 The Author(s). Published by Elsevier G
induces profound transcriptional changes in skeletal muscle, notably
involving genes encoding secreted factors.

3.2. Remodeling of enhancer activities after exercise training
To generate genome-wide maps of active enhancers in skeletal
muscle, we performed chromatin immunoprecipitation (ChIP)-
sequencing of DNA surrounding the modified histones H3K4me1 and
H3K27ac. We identified 138,168 regions with significant enrichment of
H3K4me1 and 83,496 regions enriched for H3K27ac in skeletal
muscle (FDR<0.1). Most (75%) of the H3K27ac peaks were also
covered by H3K4me1, whereas 45% of the H3K4me1 peaks showed
enrichment of H3K27ac (Figure 2A). Consistent with our findings on
gene expression, we found that MDS plots of ChIP-sequencing data
showed a clear separation of samples based on the training status,
both for ChIP-seq of H3K27ac (Figure 2B) and H3K4me1 (Figure 2C),
indicating that exercise has a profound effect on the distribution of
these histone marks. The levels of the H3K27ac mark are a prominent
marker of enhancer activity. Thus, to identify enhancers differentially
activated after exercise training, we searched for enhancers within the
62,677 regions covered by both H3K4me1 and H3K27ac, that showed
significant changes in H3K27ac levels between the untrained and
trained state. This analysis returned 7,018 enhancers with altered
activity after exercise training, of which 5,520 had decreased and
1,498 had increased levels of H3K27ac (FDR<0.1) (Supplemental Data
S4 and Figure 2D).
Next, we used the Genomic Regions Enrichment of Annotations Tool
(GREAT) [44] to map the identified enhancers to neighboring genes,
and thus to identify enriched gene ontologies. This analysis returned
69 enriched terms of which many were related to processes also found
in the GO analysis of differentially expressed genes, such as extra-
cellular matrix organization, immune-related processes, muscle
contraction-related processes, and regulated secretion of factors
(Supplemental Data S5 and Figure 2E). The top three enhancers that
were regulated by exercise training were located on chromosome 13
(chr13:59341171e59343427) (Figure 2F), chromosome 10
(chr10:72886545e72888679) (Figure 2G), and chromosome 16
(chr16:81900987e81902805) (Figure 2H), as illustrated by the dif-
ference in the average H3K27ac signal between the pre- and post-
training samples (left panel), and by the difference in H3K27ac
counts pre- and post-training for each participant individually (right
panel). We further performed motif enrichment analysis of the
exercise-regulated enhancer regions using MEME-ChIP [46] and
identified seven enriched motifs (Supplemental Figure S3A). When
scanning these motifs for known transcription factor binding, we found
evidence for the binding of FOXJ3, PRDM6, ANDR, ZN770, PAX5, and
ZN121 transcription factors to some of the identified motifs, whereas
other motifs had no known TF binding sites (Supplemental Figure S3B).
Collectively, these results show that the activity of skeletal muscle
enhancers undergoes substantial remodeling after exercise training,
which might be driven by specific DNA motif sequences.

3.3. Training-responsive enhancers regulate the expression of
connected genes
To gain insight into the association between epigenetic remodeling of
enhancers and gene expression changes in skeletal muscle in
response to exercise training, we integrated recent data on skeletal
muscle enhancer-gene links from EpiMap [47], which is based on
transcriptomic and epigenomic analyses of 61 skeletal muscle
samples. This allowed us to connect 36,038 of the identified muscle
enhancers to one or more gene(s), with an average of 10.5 enhancers
connected to each gene, and 3.3 genes per enhancer (Supplemental
mbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1: Identification of genes regulated by exercise training in human skeletal muscle. (A) Skeletal muscle biopsies were taken from the vastus lateralis of Caucasian
males before (pre) or after (post) six weeks of endurance training consisting of supervised ergo cycle exercise for 60 min, five days a week, at 70% of each participant’s maximal
aerobic capacity. (B) MDS plot of RNA-seq data from human skeletal muscle biopsies taken before or after training. (C) Volcano plot representation of genes regulated by exercise
training (n ¼ 8 participants, FDR<0.1). (D) Selected gene ontology terms identified among genes upregulated after exercise training. (E-F) Fraction of all identified genes or genes
regulated by exercise training that encode factors being annotated as secreted by Uniprot (E) or found secreted by exosomes, as annotated by the ExoCarta database (F). Genes
encoding secreted factors are enriched within regulated genes for both Uniprot and ExoCarta (chi-square test, p < 1E-5). (G), All datasets of healthy individuals from the MetaMex
meta-analysis and our dataset were compared with each other using a principal component analysis (HeI). Correlations between RNA-seq logFC of our identified differentially
expressed genes and data from the MetaMex meta-analysis of aerobic (blue) or resistance (green) exercise training (H) or of acute aerobic (yellow) or resistance (orange) acute
exercise (I).
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Figure 2: H3K4me1 and H3K27ac ChIP-seq identify enhancers that are regulated after exercise training. (A) Overlay of H3K4me1 and H3K27ac ChIP-seq peaks from
human skeletal muscle biopsies. (BeC) Multidimensional scaling (MDS) plot of H3K27ac (B) and H3K4me1 (C) ChIP-seq data from muscle biopsies taken before or after training.
(D) Volcano plot representation of differentially acetylated H3K27 regions among the 62,677 enhancers containing both H3K4me1 and H3K27ac (n ¼ 8 participants, FDR<0.1). (E)
Selected gene ontology terms identified by the bioinformatic tool GREAT of enhancers that become activated after exercise training. (FeH) The top three enhancers that change
H3K27ac after exercise training. The figure shows UCSC genome browser (hg38) H3K27ac tracks (left panel) and quantification of H3K27ac counts per million (CPM) (right panel)
from skeletal muscle biopsies taken pre- or post-exercise training (n ¼ 8 participants).
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Figure S4A and B). We found that the average distance between the
connected enhancers and genes was 239 kb (Supplemental
Figure S4C). To investigate the correlation between the changes in
enhancer activity and gene expression in response to exercise, we
connected the identified enhancers to the gene with the highest
interaction score and observed a positive correlation between the fold
change of enhancer acetylation and gene transcription (Figure 3A).
Furthermore, we divided promoters from our RNA-seq analysis into
four groups: Promoters linked to an enhancer that did not change
H3K27ac levels in response to exercise training (“None”), those linked
to at least one enhancer that either gained (“Up”) or lost (“Down”)
H3K27ac, and those linked to several enhancers, where some gained
H3K27ac and some lost H3K27ac (“Both”) (Figure 3B). Empirical
cumulative distribution function plots of gene expression changes
(RNA-seq fold change (lnFC) values) in the four different groups
revealed that promoters connected to enhancers with gained activity
(“Up”) had higher lnFC values than the “None” group, whereas those
connected to enhancers with decreased activity (“Down”) had lower
lnFC values, thus supporting a regulatory role of the enhancers on
transcription (Figure 3C,D). For promoters of the “Both” group, the
gene expression changes were only slightly upregulated (Figure 3E).
Similarly, we found that enhancers linked to either up- or down-
regulated genes were also likely to gain or lose activity, respec-
tively, compared to those linked to nondifferentially expressed genes
(Supplemental Figure S5AeB).
Based on the integration of EpiMap enhancer-gene interaction, we
identified 599 enhancer-gene interactions, covering 491 enhancers
and 268 genes, where both the enhancer and the connected gene
were either upregulated or downregulated after exercise training
(Supplemental data S6). The top regulated enhancers e where we
also detected transcriptional changes from a connected gene after
exercise training e were elements connected to the shared promoter
of COL4A1 and COL4A2 (COL4A1/2 � 73 kb, Figure 3F), and to the
promoters of LTBP2 (LTBP2-7 kb, Figure 3G), FBN1 (FBN1þ109 kb,
Figure 3H), TMEM163 (TMEM163 þ 40 kb, Figure 3I), PGM5
(PGM5þ181 kb, Figure 3J), and RASSF2 (RASSF2þ10 kb, Figure 3K).
Collectively, these analyses establish a strong association between
changes in enhancer activity and gene transcription, which supports
the functional role of enhancers in the cellular adaptations of exercise
training.

3.4. Training-responsive enhancers are enriched for genetic
variants identified by GWAS
To gain insight into the role of enhancers regulated by exercise training
in whole-body function and human health, we investigated whether
GWAS SNPs colocalize with skeletal muscle enhancers that change
activity after exercise training. We used a catalog of 12,955 independent
GWAS SNPs associated with various diseases and traits and 23,454
matched control SNPs (not associated with any traits), to assess whether
GWAS SNPs were enriched in the training-responsive enhancer regions
(Supplemental Figure S6). We found that the GWAS SNPs had 1.4-fold
higher odds of overlapping with a training-responsive enhancer region
than the control SNPs (p¼7.0 � 10�6). More specifically, 332 (2.6%)
out of 12,955 GWAS SNPs overlapped a training-responsive enhancer
region, whereas 421 (1.8%) out of 23,454 control SNPs showed an
overlap (Figure 4A). When we divided the GWAS SNPs into 19 disease
categories (Supplemental Figure S7) and assessed the overlap within
these subgroups, we found that enhancer regions were enriched for
GWAS SNPs associated with the trait categories coagulation system and
platelet function, cognitive-related, cardiovascular disease, renal func-
tion and diseases, and inflammatory response (Figure 4A). To determine
MOLECULAR METABOLISM 53 (2021) 101290 � 2021 The Author(s). Published by Elsevier GmbH. This is
www.molecularmetabolism.com
if the identified disease categories were specific for exercise-regulated
enhancers or just associated with skeletal muscle enhancers in general,
we performed a similar analysis using enhancers that were not regu-
lated by exercise. These enhancers were selected by ranking all iden-
tified enhancers according to FDR and selecting the 7018 enhancers
(the same number as for exercise-regulated enhancers) with the highest
FDR (Supplemental Figure S8A). This comparison returned fewer
significantly enriched disease categories than the analyses of exercise-
regulated enhancers: inflammatory response, cancer, and bone mineral
density (Supplemental Figure S8B). Overall, the results suggest that
enhancers regulated by exercise are specifically linked to the modulation
of the coagulation system (Figure 4B), to cognitive performance
(Figure 4C), cardiovascular disease (Figure 4D), and renal function
(Figure 4E); whereas the inflammatory response could be regulated by
skeletal muscle enhancers in general (Figure 4F).
Based on the colocalization with GWAS SNPs, we could identify 40
exercise-regulated enhancers that overlap one or more GWAS SNPs
and that were connected to a gene that was similarly regulated by
exercise training (Supplemental Data S7). We found an over-
representation of genes predicted to encode for secreted factors, with
24% and 57% reported as secreted factors by Uniprot or ExoCarta,
respectively (Supplemental Data S7). Collectively, our findings suggest
that enhancers remodeled after exercise training may participate in
disease prevention, especially of cardiovascular, renal, and cognitive
disorders, by regulating transcription of enhancer connected genes.

4. DISCUSSION

Here, we tested the hypothesis that endurance training alters the
activity of enhancers in skeletal muscle tissue, which in turn regulates
the expression of genes that contribute to the positive effect of exercise
on human health. We performed genome-wide enhancer mapping in
the human muscle of Caucasian males after exercise training and
identified thousands of exercise-remodeled enhancers. By overlapping
the enhancer localizations with GWAS data, we further demonstrated
that GWAS SNPs are enriched within exercise-regulated enhancers.
Our results provide insight into the possible contribution of exercise-
induced epigenetic remodeling at enhancer regions on the phenotype.
While changes in gene transcription and protein signaling have been
studied extensively during skeletal muscle differentiation and adap-
tation to a variety of exercise stimuli, only few studies have investi-
gated changes in the enhancer landscape. Enhancer remodeling has
been detected during differentiation of mouse C2C12 skeletal muscle
myoblasts [57], during muscle cell aging [58], or by the stimulation of
human muscle cells with free fatty acids or inflammatory cytokines
[59]. Only one study mapped enhancers in skeletal muscle after ex-
ercise, which was after four weeks of voluntary wheel running in mice
[60]. In concordance with our data, the latter study reported extensive
change in the H3K27ac landscape after exercise training, with more
enhancers decreasing than gaining acetylation [60]. Strikingly, the top
ontologies for genes in proximity to activated enhancers were related
to extracellular matrix organization and collagen formation, which
further resembles our findings. While most enhancers had decreasing
activity after exercise training, the majority of the differentially
expressed genes were upregulated. This discordance could be
explained by several mechanisms. Firstly, there is not necessarily a
linear relationship between genes and enhancers since some genes
are controlled more by enhancers than others. Secondly, enhancers
can also regulate the expression of noncoding transcripts such as
miRNAs and long non coding RNAs, which were not detected in the
RNA-seq analysis. Thirdly, the genes and enhancers that were
an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 7
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Figure 3: Association between exercise-training responsive enhancers and expression of connected genes. (A) Correlation between changes in gene transcription (RNA
logFC) and enhancer activity (H3K27ac logFC). Enhancer-gene interactions were based on the strongest interactions identified by EpiMap. (B) Genes whose expression were
detected in the RNA-seq analysis were divided into four groups; genes linked to enhancers showing no change in H3K27ac in response to exercise training (“None”), those linked
to enhancers that either gained H3K27ac (“Up”) or lost H3K27ac (“Down”) in response to exercise training, and those linked to several enhancers, where some gained H3K27ac
and others lost H3K27ac (“Both”). (C-E) Empirical cumulative distribution function (ECDF) plots of gene expression changes (RNA-seq lnFC values) in the “Up” versus the “None”
group (C), the “Down” versus the “None” group (D), and the “Both” group versus the “None” group (E). The x-axis represents the RNA-seq lnFC and the y-axis is the fraction of
genes with this lnFC or less. (FeK) The top six enhancer regions with changes in H3K27ac after training (left panel), where expression of a connected gene was also changing
(identified from the RNA-seq analysis) (right panel).
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Figure 4: Enrichment analysis of GWAS SNPs in enhancer regions across different trait categories. (A) Overlap of the control SNPs or GWAS SNPs with training-responsive
enhancer regions for all GWAS SNPs together or GWAS SNPs of different disease categories separately. The results are reported as odds ratios (OR) (circles) along with 95%
confidence intervals (error bars). ORs were calculated by logistic regression using the overlap between the control SNPs and enhancer regions as the reference value. The dashed
line points to OR value of 1. #p < 10�5, ***p < 0.001, **p < 0.01, *p < 0.05. (BeF) The percent of control or GWAS SNPs associated with coagulation system and platelet
function (B), cognitive related (C), cardiovascular disease (D), renal function and diseases (E), and inflammatory response (F) overlapping with exercise regulated enhancers or
nonregulated enhancers.
upregulated were generally regulated by a larger fold change than the
genes and enhancers that were downregulated. This could indicate
that the upregulation of enhancers and genes is the primary effect of
exercise training, and the downregulation comes as a secondary ef-
fect. Here, the enhancer mapping has less variance than the gene
expression analysis. Therefore, we might detect more enhancers that
are downregulated, but where the corresponding genes are only
slightly downregulated, and hence, not detected in our analysis.
MOLECULAR METABOLISM 53 (2021) 101290 � 2021 The Author(s). Published by Elsevier GmbH. This is
www.molecularmetabolism.com
Despite this discordance, we still demonstrate an overall correlation
between changes in the activity of exercise-remodeled enhancers and
expression of connected genes, suggesting that epigenetic remodeling
at enhancer regions is likely to drive transcriptional adaptations after
endurance training.
Compared to control SNPs with no known disease associations, we
found that the locations of SNPs identified in GWAS are enriched in
exercise-remodeled enhancers. These findings concur with previous
an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 9
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reports showing that the majority of disease-associated SNPs are
located in noncoding DNA, notably within enhancer regions [14,61],
and reveal the role of cis-regulatory regions in modulating phenotypes.
Gene enhancers are highly tissue-specific and amenable to environ-
mental influences [26e28]. By demonstrating the plasticity of skeletal
muscle enhancers after exercise training and colocalization with GWAS
SNPs, our study provides further evidence that enhancers are func-
tional, and highlights the need for tissue- and context-specific in-
vestigations to reveal the function of GWAS SNPs located in non coding
regions.
When subdividing GWAS SNPs into disease categories, we found that
SNPs associated with coagulation system and platelet function,
cognitive performance, cardiovascular disease, and renal function and
diseases were enriched in exercise-regulated enhancers and not in
non-regulated enhancers. These disease categories are not directly
connected to skeletal muscle function, suggesting that remodeling of
enhancers in skeletal muscle after endurance training may affect the
function of distant organs. Remote action on distant organs could be
mediated by the influence of skeletal muscle on the whole-body
metabolism, notably, glucose metabolism [62]. However, the fact
that many of the identified regulated genes are annotated as secreted
suggests a regulation of the endocrine e rather than metabolic e
function of skeletal muscle tissue in response to exercise training.
Skeletal muscle contraction is associated with the release of myokines
into the bloodstream [63]. Thus, these protein products of the identified
genes may, directly or indirectly, act as endocrine messengers be-
tween skeletal muscle and distant tissues after exercise training.
However, the GWAS SNPs we found to overlap with exercise-
responsive enhancers could potentially control gene regulation in
multiple tissues through shared allelic effects or pleiotropy.
The disease categories that we found linked to the reprogrammed
enhancers have all previously been associated with exercise. For
instance, exercise training is robustly correlated with decreased risk
of cardiovascular disease, and more physically active individuals have
lower blood pressure and healthier blood lipid profile [64,65]. In
addition, physical activity improves cognitive performance [66e68]
and associates with higher academic achievement [69,70]. Also, the
renal function seems to improve with increased estimated glomerular
filtration rate (eGFR) rates and lower blood pressure observed after
regular exercise training [71]. In relation to the coagulation system,
exercise is associated with increased activation of both coagulation
pathways and fibrinolysis [72]. Many of the GWAS SNPs found to
overlap with exercise-responsive enhancers are associated with
platelet measures, such as mean platelet volume and platelet distri-
bution width [73]. Interestingly, platelet function correlates with a
wide range of disorders [74], including cardiovascular risk [75] and
neurological disorders [76e78], and platelets are now being recog-
nized for having broader functions than regulating hemostasis.
Platelets release proteins and signaling molecules in response to
environmental changes and act as transporters of molecules [79,80].
Many of the disease phenotypes that we find connected to exercise-
remodeled enhancers could be interconnected through the regulation
of platelet functions after exercise. Considering that exercise training
reduced the waist-to-hip ratio of the participants, we cannot distin-
guish whether the effects are directly linked to local adaptations in
skeletal muscle or secondary effects from the abdominal weight loss.
We did not identify enrichment of SNPs associated with traits related to
blood glucose homeostasis or adiposity. Therefore, we speculate that
the effects of exercise training on energy metabolism and blood
glucose regulation might be driven through altered intracellular
10 MOLECULAR METABOLISM 53 (2021) 101290 � 2021 The Author(s). Published by Elsevier G
signaling events including regulators like Ca2þ, AMPK, ROS, and NO,
rather than gene regulatory changes in skeletal muscle. In accordance
with this, previous GWAS studies have found that most SNPs associ-
ated with diabetes affect pancreatic beta-cell function [81], SNPs
associated with obesity and BMI primarily regulate genes with func-
tions in the central nervous system [82], and SNPs for waist-to-hip
ratio are primarily active in the adipose tissue [83].
In conclusion, our findings that exercise-remodeled enhancers in
skeletal muscle are significantly enriched for genetic polymorphisms
associated with human complex traits and diseases, suggest the
importance of this metabolic organ in the regulation of whole-body
phenotypes. By providing insight into the mechanisms that may
mediate the positive effects of exercise on cardiovascular function,
platelet biology, cognitive performance, and renal function, our study
constitutes a powerful resource for the identification of key factors
involved in the beneficial effects of endurance training on human
health.
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