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Friedreich’s ataxia (FRDA, OMIM#229300) is the most common hereditary

ataxia, resulting from the reduction of frataxin protein levels due to the

expansion of GAA repeats in the first intron of the FXN gene. Why the triplet

repeat expansion causes a decrease in Frataxin protein levels is not entirely

known. Generation of effective FRDA disease models is crucial for answering

questions regarding the pathophysiology of this disease. There have been

considerable efforts to generate in vitro and in vivo models of FRDA. In this

perspective article, we highlight studies conducted using FRDA animal models,

patient-derived materials, and particularly induced pluripotent stem cell (iPSC)-

derivedmodels.We discuss the current challenges in using FRDA animalmodels

and patient-derived cells. Additionally, we provide a brief overview of how iPSC-

based models of FRDA were used to investigate the main pathways involved in

disease progression and to screen for potential therapeutic agents for FRDA.

The specific focus of this perspective article is to discuss the outlook and the

remaining challenges in the context of FRDA iPSC-based models.
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Introduction

The prevalence of FRDA is 1 in 50,000 people, and the median age of onset is

10–15 years (Indelicato et al., 2020). Wheelchair use is generally necessary for around

15 years, and the average lifespan of FRDA patients is reported to be 36 years (Delatycki

and Bidichandani, 2019). Approximately 96% of FRDA patients carry homozygous GAA

triplet repeat expansion in the first intron of the frataxin (FXN) gene. The remaining 4%

carry a heterozygous phenotype for GAA repeats with missense mutations in one allele

and an expanded allele in the other (Al-Mahdawi et al., 2018). Normally, there are

5–33 GAA repeats in the first intron of the FXN gene; however, FRDA patients may have

up to 1300 GAA repeats. Individuals with longer repeats show symptoms earlier and with

increased severity (Delatycki et al., 2000; Delatycki and Bidichandani, 2019).

Friedreich’s ataxia is an autosomal recessive disorder with neurological and non-

neurological manifestations. Neurological symptoms include progressive ataxia of gait

and limbs, increased muscle tone, decrease in or loss of position sense and tendon reflexes,

difficulty swallowing, and dysarthria (Filla et al., 1990; Parkinson et al., 2013).

Additionally, neuroinflammation and upregulation of glial activation in the
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cerebellum and brainstem are observed (Apolloni et al., 2022;

Khan et al., 2022). Non-neurological symptoms include

hypertrophic cardiomyopathy, glucose intolerance, and

diabetes mellitus (Campuzano et al., 1996; Gottesfeld, 2019).

Foot deformity and scoliosis are the early signs of this disease in

some cases. In others, cardiomyopathy is the first clinical

symptom (Pandolfo, 2009). Diabetes mellitus usually develops

in the later stage (De Michele et al., 1996).

GAA repeat expansions lead to a reduction in frataxin

protein levels to 5–35% (Gellera et al., 2007; Abruzzo et al.,

2013; Bürk, 2017; Vannocci et al., 2018). Why GAA repeat

expansion leads to a reduction in frataxin protein levels and

the role of frataxin in FRDA pathologies remain unclear.

Likewise, the molecular pathology of cardiomyopathy in

FRDA is not entirely elucidated, even though the most

common cause of death is cardiomyopathy (Crombie et al.,

2017). There are neither effective therapeutics for this disease

nor any drugs that can slow its progression (Strawser et al., 2014).

Therefore, modeling approaches are crucial. However, the

selection of suitable models is an important step. The selected

model should appropriately reflect FRDA pathophysiology.

Animal models have been nicely covered (Perdomini et al.,

2013), whereas recent reviews about the molecular pathways

involved in FRDA progression have been discussed in detail

(Gottesfeld, 2019). In this perspective article, we focused on the

challenges of FRDA in vivo (both non-complex and complex

organisms) and patient-derived models and discussed iPSC-

based models more comprehensively.

In vivomodels of FRDA include yeast, nematode worm, fruit

fly, and mice (Babcock et al., 1997; Radisky et al., 1999; Puccio

et al., 2001; Al-Mahdawi et al., 2004; Vázquez-Manrique et al.,

2006; Virmouni et al., 2014; Monnier et al., 2018), whereas FRDA

in vitro models include patient-derived cells such as

immortalized lymphoblastoid cells, primary fibroblasts (Li

et al., 2016; Agro and Diaz-Nido, 2020; Misiorek et al., 2020;

Johnson et al., 2021), FRDA-derived iPSCs (Angulo et al., 2021;

Kelekci et al., 2021), and iPSC-based models such as neurons,

cardiomyocytes, and beta cells (Crombie et al., 2016; Schreiber

et al., 2019) (Figure 1). All these FRDAmodels need to imitate the

symptoms of FRDA patients. For instance, they should be

exhibiting a progression of sensory ataxia and/or

cardiomyopathy due to reduced frataxin protein level, ideally

as a result of GAA expansions in the first intron of the FXN gene

(Perdomini et al., 2013).

Challenges of Friedreich’s ataxia in
vivo, and patient-derived models

The genetic basis of FRDA makes it challenging to study in

vivo. In mice, knockout of the FXN gene is embryonically lethal

(at E 6.5) (Cossee, 2000). Therefore, conditional knockout FRDA

TABLE 1 FRDA iPSC-based models and main findings observed.

FRDA iPSC-based
models

Main phenotypes observed References

FRDA iPSC-derived neurons Delayed development of full electrophysiological functionality, reducedmitochondrial potential Hick et al. (2013), Codazzi et al. (2016)

Enhanced cleavage of initiator caspase-9 and effector caspase-3 activation Igoillo-Esteve et al. (2015)

Quantitative proteomic analysis of HDAC inhibitor treatment Shan et al. (2014)

Promising effects of Syn-TEFs Erwin et al. (2017)

Transcriptional profiling of isogenic and FRDA iPSC-derived neurons and investigation of the
effect of HDAC inhibitors

Lai et al. (2019)

Generation of a novel FRDA iPSC-derived neuronal reporter system and screening of
compounds using this system

Schreiber et al. (2022)

FRDA iPSC-derived
cardiomyocytes

Characteristics of respiration-compromised mitochondria, mitochondrial iron accumulation Hick et al. (2013)

Disorganized mitochondrial network, mitochondrial DNA depletion, hypertrophic cardiac
stress responses, use of FRDA iPSC-derived cardiomyocytes as a drug screening platform

Lee et al. (2014), Lee et al. (2016)

Calcium signaling impairment Crombie et al. (2017)

Promising effects of Syn-TEFs Erwin et al. (2017)

Observation of lipid droplets J. Li et al. (2019)

Excision of repeats via zinc finger nucleases and upregulation of FXN J. Li et al. (2019)

Strong positive correlation between the contractility/developed force and FXN expression is
observed in FRDA iPSC-derived cardiomyocytes

A. O. T. Wong et al. (2019)

Hepcidin (HAMP)–ferroportin (FPN) axis impaired in FRDA iPSC-derived cardiomyocytes Bolotta et al. (2019)

FRDA iPSC-derived
endothelial cells

Investigation of senescence and the relation between FXN expression and pulmonary
hypertension

Culley et al. (2021)

FRDA iPSC-derived beta cells Low FXN levels in FRDA iPSC-derived beta cells, upregulation of it via glucagon-1-peptide
treatment

Igoillo-Esteve et al. (2015), Igoillo-Esteve
et al. (2020)
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mouse models were generated. Expression of Cre recombinase

was induced under MCK (muscle creatine kinase, a gene

expressed in the heart cells) and NSE (neuron-specific enolase,

a gene expressed in the neurons) promoters (Puccio et al., 2001;

Puccio, 2009). Along with developing cardiomyopathy, MCK

mice exhibited ISC enzyme deficiencies and iron accumulation at

the early stages (Puccio, 2009; Simon et al., 2004). NSE mice

developed progressive ataxia with a loss of proprioception

(Simon et al., 2004; Perdomini et al., 2013). Additionally, a

reversible frataxin knockdown mouse model was developed,

and it had cardiac conduction defects, degeneration of dorsal

root ganglia, and early mortality (Chandran et al., 2017).

Although conditional models reproduce most of the

characteristic features of FRDA, they cannot accurately model

the effects of genetic background. Moreover, conditional models

lead to a complete loss of frataxin, but in FRDA patients, partial

frataxin deficiency is observed (Puccio, 2009; Perdomini et al.,

2013).

GAA insertion models were also developed. Y4R and YG8R

were generated by inserting expanded (GAA)90 and (GAA)190

alleles, respectively. Both express only human frataxin (Al-

Mahdawi et al., 2004; Al-Mahdawi et al., 2006; Perdomini

et al., 2013). The frataxin protein level was 57% in YG8R,

which exhibited mild progressive motor coordination deficits

(Al-Mahdawi et al., 2006; Clark et al., 2007; Martelli et al., 2012).

Later, YG8sRmice were generated from YG8R. YG8sRmice have

a single copy of the FXN transgene and a single (GAA)120 repeat

expansion mutation. They exhibited behavioral deficits along

with decreased expression of FXN, and reduced aconitase activity

in brain regions (Anjomani Virmouni et al., 2015).

However, the short life span of in vivo models leads to

incomplete development of pathological hallmarks. Also,

although there is physiological accordance between humans

and rodents, there are genomic differences that result in

profound implications in disease modeling (Dawson et al.,

2018). Therefore, further studies on FRDA animal models to

overcome these challenges and thereby represent the disease

phenotype better and faster are needed.

In 1999, human FRDA primary fibroblasts were used to

understand whether this cell type is a reasonable model to study

FIGURE 1
Commonly used FRDA models and the intracellular molecular phenotypes observed.
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GAA expansions and to test potential therapeutic drugs. The

fibroblasts had reduced levels of frataxin mRNA and were more

sensitive to ROS-inducers (A.Wong, 1999). This study led FRDA

fibroblasts and lymphoblastoid cells to be used in understanding

FRDA phenotypes and investigating the effect of potential

therapeutic agents. Although primary fibroblasts and

lymphoblastoid cells are easily accessible, they are not the

main cell types affected in the course of FRDA and they may

not represent the phenotypes of FRDA adequately (Perdomini

et al., 2013). Georges et al. (2019) showed that resveratrol, an

antioxidant drug, and nicotinamide, vitamin B3, did not induce a

significant increase in frataxin protein levels in FRDA iPSC-

based neurons, although both drugs were shown to increase

frataxin mRNA levels in fibroblasts and lymphoblastoid cells of

FRDA patients. Additionally, one has to keep in mind that there

are limited sources to work with fibroblasts because they do not

grow indefinitely. Therefore, in this perspective article, we did

not focus on studies where these patient-derived cells were used.

To summarize, model organisms and patient-derived cells

can be used to model FRDA, but due to the technical and

biological limitations, there is a need for more human FRDA-

like models such as FRDA iPSC-based cells or organoids.

Generation of patient-specific
induced pluripotent stem cells

The discovery that exogenous expression of OCT4, SOX2,

KLF4, and c-MYC can reprogram mammalian somatic cells back

to an embryonic-like state (Takahashi and Yamanaka, 2006)

enabled scientists to generate disease-specific pluripotent stem

cell lines (Soldner and Jaenisch, 2018). As iPSCs can be

autologous, they can replace embryonic stem cells in the field

of clinical applications of cellular replacement therapies and

screening for potential pharmaceuticals (Onder and Daley,

2012). The first iPSC-based disease model was familial

amyotrophic lateral sclerosis (ALS) (Dimos et al., 2008). Since

then, iPSC-based disease models have been developed to study a

diverse set of neurological diseases, such as spinal muscular

atrophy (SMA) (Ebert et al., 2009), Rett syndrome (Marchetto

et al., 2010), and Friedreich’s ataxia (Ku et al., 2010).

Impact of Friedreich’s ataxia-derived
induced pluripotent stem cells and
induced pluripotent stem cell-based
models on Friedreich’s ataxia research

In 2010, iPSCs were generated from fibroblasts of FRDA

patients for the first time. FXN downregulation observed in

fibroblasts was found to be retained in the iPSCs (Ku et al.,

2010). Since then, several additional FRDA patient-derived iPSCs

were generated to study the pathophysiology of this disease (Liu

et al., 2011; Bolotta et al., 2019; Schreiber et al., 2019; Dionisi

et al., 2020; Mazzara et al., 2020; Angulo et al., 2021; Kelekci et al.,

2021).

Modeling GAA repeat instability with
induced pluripotent stem cells

When the first FRDA-derived iPSCs were generated,

genomic instability during reprogramming and culturing of

iPSCs was observed (Ku et al., 2010; Sharma, 2002). The

reason for GAA repeat instability in iPSCs was due to

elevated expression levels of mismatch repair enzymes (MSH2,

MSH3, and MSH6) (Jintang Du et al., 2012). Defects in

replication fork progression and stalling in the 3′–5′ direction
were also observed during the replication of FXN (Gerhardt et al.,

2016). Interestingly, treatment of FRDA fibroblasts with certain

epigenetic drugs such as sodium butyrate (NaB), an HDAC class

I inhibitor, and Parnate, a LSD1 inhibitor, led to decreased repeat

instability during reprogramming. These compounds increased

FXN gene expressions (Polak et al., 2016).

Recently, DNA methylation patterns on GAA repeats were

studied. FRDA-specific differentially methylated regions (DMRs)

were found to be closer to GAA repeats in FRDA iPSC-based

models. Interestingly, the prevalence of FXN genes that lack FRDA-

specific hypomethylation (unmethylated epialleles) was found to be

a predictor of FXN expression and age of onset of FRDA (Rodden

et al., 2021). However, the reason for the absence of unmethylated

epialleles in GAA repeats near the FXN gene and the effect of

methylation on GAA expansion remains to be elucidated.

Considering all these, further studies are necessary to

understand the mechanisms behind the repeat expansions and

repeat instability observed in FRDA iPSCs. Specifically, the effect

of mismatch repair enzymes, the role of methylation in the

repeats, and the reason for replication fork stalling should be

further investigated in the future.

Modeling of Friedreich’s ataxia
phenotypes using induced pluripotent
stem cell-based models

Decrease in frataxin expression causes iron accumulation,

impaired iron–sulfur cluster biogenesis, increased oxidative

stress, mitochondrial dysfunctioning (Calap-Quintana et al.,

2018; Gonzalez-Cabo & Palau, 2013; Santos et al., 2010), and

ferroptosis (Cotticelli et al., 2019; La Rosa et al., 2020; Turchi

et al., 2020; Terzi et al., 2021). These phenotypes were also

recapitulated in iPSC-based in vitro models of FRDA

(Schreiber et al., 2019). Here, we highlight recent studies

utilizing FRDA iPSC-based models (Table 1).

FRDA iPSC-based neurons exhibited reduced mitochondrial

transcripts and altered expression levels in transcripts involved in
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ECM organization and focal adhesion (Lai et al., 2019). Primary

proprioceptive neurons differentiated from FRDA iPSCs had

reduced expression of proprioceptor-specific markers and

exhibited shorter survival in vitro (Dionisi et al., 2020).

FRDA iPSC-derived cardiomyocytes (FRDA iPSC-Cms)

showed decreased levels of frataxin and mitochondrial

potential and impaired functioning of mitochondria (Hick

et al., 2013). Lee et al. (2014) exposed FRDA iPSC-Cms to

iron-overloading conditions, and this resulted in hypertrophic

cardiac stress responses, iron accumulation, and an increase in

ROS formation. FRDA iPSC-Cms had calcium handling

deficiencies (Crombie et al., 2017). They also exhibited lipid

droplet accumulation (J. Li et al., 2019).

FRDA iPSCs were differentiated into endothelial cells, as

well. FRDA iPSC-based endothelial cells (iPSC-ECs) exhibited

decreased proliferative activity along with an increase in the

expression of cellular senescence markers. Forced FXN

expression in FRDA iPSC-ECs did not rescue this phenotype,

showing that this senescence phenotype is irreversible (Culley

et al., 2021).

FRDA iPSC-based β cells were generated in 2019, and those

cells had lower FXN gene expression. However, FRDA iPSC-

based β cells had functional mitochondria and functional

secretion of glucose-induced insulin (Igoillo-Esteve et al., 2020).

Therapeutic solutions for Friedreich’s
ataxia with the help of induced pluripotent
stem cell-based technologies

Heterochromatin formation around the FXN gene is the

major reason for the downregulation of the FXN gene in

FRDA (Chutake et al., 2014; Kumari et al., 2011). Histone

deacetylation, DNA methylation, and heterochromatin mark

(H3K9me3 and H3K27me3) were detected around the FXN

gene (Al-Mahdawi et al., 2008). Therefore, epigenetic

regulators such as HDAC inhibitors have been studied using

FRDA iPSC-based in vitro models (Zhang et al., 2019). HDAC

inhibitor treatment of FRDA iPSC-based neurons resulted in a

significant increase in FXN levels along with a decrease in

oxidative stress response (Codazzi et al., 2016). More recently,

large-scale chemical screens on FRDA iPSC-based neuronal

progenitor cells containing a FXN reporter system revealed

HDAC inhibitors as the only compounds that could

upregulate FXN levels (Schreiber et al., 2022).

Recent advances in genome editing enabled the correction of

expanded alleles in FRDA. Three-fold higher expression of

frataxin in both mRNA and protein levels was observed in

FRDA iPSC-based neurons after zinc finger nuclease (ZFN)-

mediated excision of expanded GAA repeat regions (Li et al.,

2015). In addition, an increase in aconitase activity and ATP

levels was observed (Li et al., 2015). Similarly, GAA expanded

repeats were excised using ZFNs in FRDA iPSC-based

cardiomyocytes, which resulted in the upregulation of frataxin

expression, a decrease in lipid droplet accumulation, and a

decrease in the expression of cardiac hypertrophy-related

genes (J. Li et al., 2019). Recently, dorsal root ganglia

organoid-derived sensory neurons were generated from FRDA

iPSCs. When the entire FXN intron 1 was excised using CRISPR-

Cas9, cellular and molecular deficits observed in these organoids

were rescued. This effect was not observed when only the

expanded regions were removed in those organoids (Mazzara

et al., 2020). All of these studies show that nuclease-mediated

removal systems can be used to rescue FRDA phenotypes in the

future.

Recently, repeat-targeted nucleic acids (L. Li et al., 2016; Shen

et al., 2019; Shen et al., 2020) and synthetic transcription elongation

factors (Syn-TEFs) (Erwin et al., 2017) were used to elevate FXN

expression in FRDA iPSC-based models. In addition, particle-

mediated delivery of frataxin-encoding plasmid DNA has been

used to increase FXN levels in FRDA iPSC-based sensory

neurons (Czuba-Wojnilowicz et al., 2020). Oligonucleotides

targeting 5′ and/or 3’ untranslated regions of the FXN transcript

increased FXN mRNA and protein levels in FRDA iPSC-based

neuronal progenitor cells (Belbellaa et al., 2020). Taken together,

these studies show that overexpression of FXN can have therapeutic

potential, but further optimization is required.

Discussion and future perspectives
on Friedreich’s ataxia models

FRDA is a rare neurodegenerative disorder, mediated by

triplet repeat expansion which results in the downregulation of

frataxin. In the recent years, there have been considerable efforts

to find a promising drug for FRDA. Therapeutic approaches to

augment frataxin production or modulate mitochondrial

malfunctioning, increase ROS production, and Nrf2 activation

have been used in phase II clinical trials (Rodden & Lynch, 2021).

Additionally, there are many studies addressing potentially

promising therapeutic approaches for FRDA pathophysiology.

For instance, smoothened agonist (SAG) treatment in FXN

knockdown human astrocytes resulted in increased neuron

viability, neurite length, and synapse formation when these

cells were injected into the mice brain (Vicente-Acosta et al.,

2022). Additionally, Cur@SF, which are nanospheres containing

curcumin in silk fibroins, reduced the levels of ROS in FRDA

patient-derived fibroblasts and reduced FRDA phenotypes in

YG8R mice models (Xu et al., 2022). Lastly, after eight single

FDA-approved drugs were tested on FRDA fibroblasts, dimethyl

fumarate and resveratrol treatments were shown to increase FXN

mRNA levels. The combination of these two drugs also increased

rotarod performance in FRDA mice models (Abeti et al., 2022).

However, all these promising drugs should be further tested in

FRDA iPSC-derived neurons and cardiomyocytes as these cells

are the main cell types affected in FRDA.
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In this perspective article, we have discussed recent models of

FRDA and their contributions to identify molecular mechanisms

in FRDA development and develop potential therapeutics

through drug screening and gene therapy studies. Animal

models are composed of nematode worms, fruit flies, and

mice. Many of these models were successful in recapitulating

the FRDA phenotypes in vivo. However, the general concern

about the animal models of FRDA is the difficulty in creating

such models that are able to exhibit all FRDA-related symptoms

and the cellular phenotypes due to reduced FXN levels resulting

from GAA repeat expansion. In vitro models include primary

cells, genetically modified cell lines (Perdomini et al., 2013),

iPSC-based cells (Schreiber et al., 2019), and, recently, organoids

(Mazzara et al., 2020). Consideration of models using primary

patient-derived fibroblasts and lymphoblastoid cells remains to

be controversial because these cells are disease-irrelevant.

Differentiated FRDA-derived iPSC-based models exhibit gene

expression profiles that are significantly different from the

isogenic iPSC-based models created and show similar

phenotypes observed in patients’ cells (Lai et al., 2019).

Therefore, FRDA iPSC-based models can be considered

promising models for future FRDA studies. However, FRDA-

derived iPSC in vitromodels have certain limitations as well. First

is the repeat instability observed during the reprogramming and

culturing duration of FRDA-derived iPSCs. This limitation may

potentially be overcome by using therapeutic agents that may

prevent this instability. Another challenge is the lack of paired

isogenic lines. In the case of FRDA-derived iPSCs, isogenic

derivatives can be created simply via the excision of repeats.

Lastly, it may not be possible to study tissue and organ level

phenotypes observed in FRDA patients via 2D differentiated

cells. iPSC-based organoids provide an alternative in this regard.

Nevertheless, thanks to FRDA iPSC-based models, the reasons

behind GAA repeat expansion and mechanisms of disease-

relevant phenotypes were studied thoroughly and efficient

therapies using CRISPR/Cas9 to increase FXN expression were

investigated over the past decades. However, there are still many

open questions that need to be addressed and challenges to

overcome.
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