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In our recent publication (1), as well as an earlier publica-
tion from our lab (2), we demonstrate under specific experi-
mental conditions designed to increase flux through redox
buffering circuits in mitochondria, and thus NADPH demand,
that at least a portion of the accompanying increase in JO2 (i.e.,
proton conductance) is directly and reproducibly attributed to
nicotinamide nucleotide transhydrogenase (NNT; e.g., Fig. 3D
in (1)). In their letter to the editor, Figueira et al. question
whether flux through redox circuits linked to NNT can
mediate a meaningful increase in energy expenditure. Their
critique is based on two main points: 1) recent structural
studies on NNT indicating a 1:1 stoichiometry of hydride
transfer to NADPH generation, and 2) two prior studies that
failed to show any difference in respiration in mitochondria
with and without functional NNT (3, 4). Regarding the first
point, we agree that recent structural studies of NNT (5),
including a 2019 paper by Kampjut and Sazanov (6) (a citation
we regrettably omitted), provide compelling evidence of an H+

to hydride transfer reaction stoichiometry of 1:1, which is
considerably different than the apparent stoichiometry
observed in our functional studies. We fully acknowledged this
point in the discussion of our paper. However, NNT function
cannot be determined solely from structural data. There are a
number of plausible mechanisms that could explain a different
apparent stoichiometry in respiring mitochondria, including a
“permissible” transfer of protons by NNT under certain con-
ditions, akin to the proton conductance of ANT that is inde-
pendent of ATP/ADP exchange. On the technical side, it is
also possible that JNADPH production was in excess of that
required for H2O2 detoxification and/or that the rate of H2O2

emission as measured underestimated that produced. We
attempted to control for the latter using inhibitors to both
glutathione (BCNU) and thioredoxin reductase (auranofin),
but such inhibitors have their own caveats, including slightly
inhibiting respiration (as pointed out by Figueira et al. with
respect to Fig. 4D). Regarding the apparent inconsistencies
with the previous studies referenced, respiration was assessed
in the study by Ronchi et al. (3) without accounting for
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potential differences in membrane potential. Identifying po-
tential differences in proton conductance between experi-
mental conditions requires comparing respiration at the same
defined membrane potential. Parker et al. (4) did perform
proton conductance assays in mitochondria with and without
functional NNT, but not under conditions that would increase
NNT activity (i.e., elevate NADPH demand). While any in-
crease in proton conductance back into the mitochondrial
matrix does represent, by definition, an increase in energy
expenditure, we agree with Figueira et al. that more research is
needed to define the contribution of flux through NNT-linked
redox circuits to energy expenditure in vivo.
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