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Abstract: Copper and cadmium ions are among the top 120 hazardous chemicals listed by the
Agency for Toxic Substances and Disease Registry (ATSDR) that can bind to organic and inorganic
chemicals. Silica is one of the most abundant oxides that can limit the transport of these chemicals
into water resources. Limited work has focused on assessing the applicability of nanosilica for the
removal of multicomponent metal ions and studying their interaction on the surface of this adsorbent.
Therefore, this study focuses on utilizing a nanosilica for the adsorption of Cd2+ and Cu2+ from water.
Experimental work on the single- and multi-component adsorption of these ions was conducted
and supported with theoretical interpretations. The nanosilica was characterized by its surface area,
morphology, crystallinity, and functional groups. The BET surface area was 307.64 m2/g with a total
pore volume of 4.95 × 10−3 cm3/g. The SEM showed an irregular amorphous shape with slits and
cavities. Several Si–O–Si and hydroxyl groups were noticed on the surface of the silica. The single
isotherm experiment showed that Cd2+ has a higher uptake (72.13 mg/g) than Cu2+ (29.28 mg/g).
The multicomponent adsorption equilibrium shows an affinity for Cd2+ on the surface. This affinity
decreases with increasing Cu2+ equilibrium concentration due to the higher isosteric heat from the
interaction between Cd and the surface. The experimental data were modeled using isotherms for the
single adsorption, with the Freundlich and the non-modified competitive Langmuir models showing
the best fit. The molecular dynamics simulations support the experimental data where Cd2+ shows a
multilayer surface coverage. This study provides insight into utilizing nanosilica for removing heavy
metals from water.

Keywords: nanosilica; adsorption; heavy metals; copper; cadmium; multicomponent adsorption

1. Introduction

Water pollution by dyes and toxic heavy metals represents a principal global envi-
ronmental issue [1–4]. Heavy metals, such as Cu(II), Cd(II), Cr(VI), Cu(II), Hg(II), and
As(III, V), are some of the most harmful pollutants due to their high toxicity, solubility
in water and impact on aquatic ecosystems, and hazardous environmental effects [5–7].
Unlike organic pollutants, heavy metals are non-biodegradable and accumulate in living
organisms. There are many sources that discharge heavy metals into water systems, such
as metal plating, smelt, and electrolysis industries [8,9]. Releasing large amounts of heavy
metals into water systems has severe environmental impacts. Copper and cadmium, for
example, are considered among the top toxic substances that need urgent treatment [10].
According to the recommendations of the World Health Organization (WHO), drinking wa-
ter’s standards for Cd2+ and Cu2+ levels are 0.003 ppm and 1.3 mg/L, respectively [11]. The
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United States Environmental Protection Agency (USEPA) has set these values in drinking
water to 0.005 ppm and 2.0 mg/L, respectively [12,13].

Numerous treatment methods have been adopted to remove these heavy metals from
down streams using precipitation [14], ion exchange [15], photo-Fenton oxidation [16],
flocculation [17], electrochemical treatment [18], and adsorption [3,19,20]. Some of these
methods have limitations, including producing harmful byproducts [21], high energy
consumption, and high installation costs [22]. Adsorption, on the other hand, has gained
great interest from many researchers due to its low cost of operation, ease of handling, high
efficiency at low concentrations, and desorption ability [23,24].

Many adsorbents are available in the literature for removing heavy metals from
aqueous solutions. These include activated lignocellulosic materials, alumina, silica, alumi-
nosilicates, and nanodiamond materials [25–29].

When dealing with the fate of these heavy metals in water aquifers, silica (SiO2) is
the most abundant natural adsorbent for capturing these metals before reaching the water
blanket. It has gained significant interest because of its unique properties as an eco-friendly
adsorbent with very low toxicity and rigidity [30,31]. Due to its high surface area (ca.
180–400 m2/g) [32], a wide range of zero point of charge (depending on impurities pHZPC
3.8–7.1) [33], stability, strength, and recyclability, nanosized silica has been used in many
applications [34]. However, the literature has little information on using this adsorbent for
the multi-component removal of copper and cadmium.

This research aims to prepare a nanoscale silica using the sol–gel method and apply
this material for the simultaneous removal of Cu2+ and Cd2+ from water. Adsorption isotherm
experiments using a multi-component system coupled with isotherm models are presented.

2. Theoretical

The Langmuir isotherm is used to predict the monolayer coverage of single metal
ions on the surface of the produced nanosilica. The model assumes a finite and uniform
number of adsorbed sites, where the surface reaches a maximum adsorption capacity at
equilibrium. This model is presented in Equation (1) [35]:

qe =
QkCe

1 + kCe
(1)

where qe [mg/g] is the solid uptake at a given equilibrium concentration of a metal ion in
solution, Ce [mg/L]; Qmax is the maximum metal ion uptake by the surface [mg/g]; and k
is a constant related to the affinity of the binding sites and is directly proportional to the
energy of adsorption (L/mg).

To predict the surface energy heterogeneity of the active adsorption sites, the Fre-
undlich isotherm is employed using the following equation [36]:

qe = kL Ce∝ (2)

where kL and ∝ are the isotherm constants.
The Dubinin–Radushevich (DR) isotherm is applied to distinguish the type of adsorp-

tion of the metal ions based on the mean free energy of interaction and pore-filling, instead
of layer-by-layer coverage [37]. The amount of ion uptake, qe [mg/g], is related to the
adsorption potential, ε [kJ/mol], based on the following equations:

qe = Q e−kd ε2
(3)

ε = RTln
(

1 +
1

Ce

)
where Qmax is the maximum metal ion uptake by the surface [mg/g], and kd [mol2/kJ2]
is a constant related to the mean adsorption energy, E [kJ/mol], as calculated using the
following equation:
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kd =
−1
2E

3. Material and Methods
3.1. Materials and Reagents

Tetraethoxysilane (TEOS 98% Fluka), nitric acid (AR 65–68% JHD), sodium hydroxide
(99% GCC), and ethanol absolute (AR 99.9% Merck) were used.

3.2. Synthesis of the Nanosilica Material

Tetraethoxysilane (TEOS) is a precursor for synthesizing nanosilica using the sol–gel
method (Scheme 1). First, a mixture (A) of 10 mL of ethanol, 10 mL of distilled water, and
5 mL of concentrated HNO3 was added to a mixture (B) of 20 mL of ethanol and 20 mL of
tetraethoxysilane using dropwise addition with continuous stirring for 15 min. The mixture
was stirred for 15 min and left heated at around 80–90 ◦C for one minute; the milky formed
gel indicated the formation of nanoparticles. Finally, the nanoparticles were aged for 24 h,
dried at 50 ◦C, and then calcined for two hours at 400 ◦C to obtain the nanosilica (NS) [38].

Scheme 1. Steps in the synthesis of the nanosilica using the sol–gel method.

3.3. Characterization of Nanosilica Materials

The synthesized nanosilica was fully characterized using a Fourier transform infrared
(FTIR) spectroscopy, an X-ray diffraction (XRD), a differential scanning calorimetry (DSC),
a scanning electron microscopy (SEM), and an atomic absorption spectroscopy (AAS).

3.4. Adsorption Isotherms

The adsorption isotherm was determined by mixing 0.1 gm of the adsorbent with
50 mL of a metal solution that included varying initial metal concentrations ranging from
25–200 ppm. The pH of the multicomponent solution was adjusted to 6.0 using NaOH
(1 M) and kept at 25 ± 1 ◦C (room temperature) for 72 h to attain equilibrium. Then, the
concentrations of Cu+2 and Cd+2 were measured using an atomic absorption spectroscopy.

4. Results and Discussion
4.1. Structure Characterization of the Nanosilica

The XRD chromatogram for the produced nanosilica (Figure 1) shows a broad peak at
ca. 23 2θ with a peak width of 20 2θ and an intensity of 850 counts. This peak broadness
represents an amorphous silica due to non-arranged crystals in 3D space; hence, X-rays are
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scattered in several directions [39,40]. The Scherrer equation was used to determine the
crystal size, d (nm), as follows:

d =
K λ

B cos(θ)
(4)

Figure 1. XRD pattern for the produced nanosilica from a sol–gel method.

The shape factor of the measured crystals, K, is approximated to 0.94 for the Full Width
at Half the Maximum peak of spherical crystals with cubic symmetry. The wavelength,
λ, has a value of 0.15418 (Cu K-alpha). The value of B is 9.6 2θ, considered at the FWHM.
Consequently, the grain size of the silica is calculated to be 3.6 nm, which agrees with
published work [41,42]. The broad diffracted peak of the produced material is attributed to
the amorphous structure of the sample.

Differential scanning calorimetry for the produced silica sample was conducted in
the temperature range from 0 to 300 ◦C (Figure 2). At a temperature of around 33.5 ◦C,
the silica particles show removal of nonbounded free water that has a weak interaction
with the surface [43], resulting in the endothermic effect of water dropping from about 0 to
−1.25 mW. Then, there is a gradual increase in heat flow with increasing temperature. In
addition, a continuous weight loss appears with increasing temperature up to 104–110 ◦C
with a change in slope at 73 ◦C. At a temperature of ca. 243 ◦C, there is a change in the
slope that might be attributed to structural hydroxyl elimination, according to Scheme 2:

Scheme 2. Dehydroxylation of the silica at high temperature.
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Figure 2. DSC of the nanosilica particles.

The silica nanoparticles’ functional groups before interaction with the cadmium and
copper ions were investigated, and the FTIR is shown in Figure 3. An absorption peak at
3160 cm−1 and at 1636 cm−1 is attributed to the -OH group and H–O–H vibrations [44]. The
peak belonging to the Si–O–Si stretching vibration is at 1041 cm−1, and the peak around
778 cm−1 corresponds to the Si–O–Si symmetric stretching [45].

Figure 3. FTIR spectra of the silica NPs.

The BET adsorption isotherm of N2 at 77 K by the produced silica sample is illustrated
in Figure 4. It is shown that, with an increase in the relative pressure of nitrogen from
0.05 to 0.3, the quantity of nitrogen uptake increases linearly from 65 to 98 cm3/g at STP
with a slope of 133.3. A plot of the linearized BET isotherm yields a monolayer coverage
of 70.67 cm3/g and a constant value of 140. This produces a single-point surface area of
300.4 m3/g and a multi-point value of 307.6 m2/g, as shown in Table 1. The sample surface
area obtained from the Langmuir isotherm offers a value of 461 m3/g. A micropore volume
of 0.0049 cm3/g and an area of 12.89 m2/g are achieved at a relative pressure (P/Po) of less
than 0.1. Hence, the micropore depth is 0.384 nm. The total pore radius is obtained using



Molecules 2022, 27, 7536 6 of 16

the Kelvin Equation (Equation (8)) and shows a value of 49 nm to indicate a mesoporous
structure of the sample.

rm =
−2 σ vm

RT ln
(

p
po

) (5)

where σ is the surface tension of nitrogen (8.85 erg/cm2); vm is the monolayer cov-
erage obtained at the relative pressure value, p/po of 0.3; R is the ideal gas constant
(8.314 × 107 erg/K.mol); and T is the temperature (77 K). The adsorbed layer thickness and
porosity data were estimated using the Harkins–Jura thickness equation:

t =

 0.1399

0.034 − log
(

p
po

)
1/2

(6)

where t is the thickness of the BET multilayer of adsorbed N2 molecules at a relative
pressure p/po. Figure 4 also illustrates the variation in the N2 adsorbed with the adsorption
layer thickness. The linear range of the t-plot lies within the adsorbed layer thickness with
values of 0.37–0.48 nm.

Figure 4. BET adsorption isotherm and H–J t-plot (inside) of N2 at 77 K for the produced silica
sample.

Table 1. Pore structure parameters were obtained using the BET, Langmuir, and t-plot methods.

Langmuir
Equation BET Method t-Plot with H–J Thickness Equation

Stotal (m2/g) Stotal (m2/g) Smicro (m2/g) Sext (m2/g) Smicro (m2/g)
Vmicro

(103 cm3/g)
461.06 307.64 - 294.75 12.89 4.95

The SEM image of the produced nanosilica is presented in Figure 5. It shows irregular
amorphous shapes ranging from 30 to 300 nm; the surface morphology is non-uniform
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with a pore diameter of sub-meso size. The snowy-shaped agglomerated particles show
micropores in the range of sub-nanometer. Some slits and cavities appear between some
tiny silica crystals in between the agglomerated particles.

Figure 5. SEM image of the produced nanosilica.

4.2. Adsorption Isotherms of Cu2+ and Cd2+ by the Nanosilica

The adsorption equilibrium for both copper and cadmium ions is illustrated in Figure 6.
Both ions’ uptake shows a gradual increase with a multilayer of adsorption, which can be
attributed to the surface heterogeneity of the produced nanosilica [46]. Alan et al. showed
that the surface charge of nanosilica is directly affected by the cavities within the silica
structure, where it increases with increasing particle roughness and curvature hills of
the surface structure [47]. Cárdenas and Müller used molecular dynamics simulation to
study the Lennard–Jones fluid’s behavior within the nanopores of different shapes. They
proved that different pore shapes, sizes, and cavities have various adsorption capacities,
where capillary condensation occurs in the acute corners of the surface [48]. Alosaimi et al.
showed that Cd2+ is coordinated with the carboxylate group on the surface of the silica
composite to form multilayer adsorption [49]. Similar results for multilayer adsorption of
Cu2+ by silica nanoparticles from leaf biomass have also been reported [50]. The Langmuir,
Freundlich, and Dubinin–Radushevich isotherm models were used to fit the experimental
data, and the values of these models’ parameters are listed in Table 2. The Freundlich
model best fits these experimental data, with regression coefficients of 0.974 and 0.990 for
both Cu2+ and Cd2+ isotherms (Figure 7a,b). At the same time, the saturation capacities for
both solutes obtained by the Langmuir model are 29.28 and 72.13 mg/g, respectively. When
comparing to other published work, Rauf Foroutan et al. used a nanosilica from white
sandstone for the removal of cadmium ions; the results showed that the maximum uptake
of Cd(II) adsorbed only 55.13 mg/g [30]. Mahmoud et al. used SiO2 nano-powder to study
Cd(II) biosorption from aqueous solutions; the maximum cadmium capacity determined
was 600 µmol/g (67.2 mg/g) [51].
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Figure 6. Adsorption isotherms of copper and cadmium ions using the nanosilica (mass of adsorbent
is 0.1 g, volume of solution is 50 mL, temperature is 25 ◦C, and equilibrium time is 72 h).

Table 2. Parameters of the adsorption isotherm models.

Model
Parameters and Values

Cu2+ Cd2+

Freundlich
kL = 1.3962
∝ = 0.5284
R2 = 0.974

k = 0.7894
∝ = 0.7023
R2 = 0.990

Langmuir
Q = 29.2835

b = 1.1596 × 10−2

R2 = 0.933

Q = 72.1328
b = 3.9102 × 10−3

R2 = 0.985

Dubinin–Radushkevich
Q = 16.2049

kd = 7.0000 × 10−5

R2 = 0.587

Q = 26.48772
kd = 3.6736 × 10−4

R2 = 0.892

Figure 7. The Freundlich, Langmuir, and DR models’ fit for the adsorption equilibrium of (a) Cu2+

and (b) Cd2+ using the nanosilica (mass of adsorbent is 0.1 g, volume of solution is 50 mL, temperature
is 25 ◦C, equilibrium time is 72 h, and confidence limit is 15%).
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4.3. Binary Component Isotherm

Binary isotherm experiments were carried out using 80 samples; each had the same
adsorbent concentration of 100 mg/50 mL solution with a temperature of 22 ± 1 ◦C. All
multicomponent adsorption isotherms were measured at equilibrium concentrations (0
for the pure component to 120 mg ion/L for Cu2+ and Cd2+). Figure 8a,b illustrate the
effect of the equilibrium concentration of both copper and cadmium ions on their uptake
on the nanosilica, respectively. In both figures, the increase in each metal’s concentration
results in a decrease in the reduction efficiency of the adsorbent. It is also noticed that Cd2+

has higher uptake than that of Cu2+ as a result of its higher affinity toward the adsorbent
surface. Cadmium ions compete for the active surface of the adsorbent more than copper
ions, which results in a decrease in Cu2+ uptake with increasing Cd2+ in the solution. A
maximum adsorption capacity of 18 mg/g of pure copper is obtained at an equilibrium
concentration of 120 mg/L.

Figure 8. Effect of the equilibrium concentration of (a) Cd2+ and (b) Cu2+ on the multicomponent
adsorption of copper (mass of adsorbent is 0.1 g, volume of solution is 50 mL, temperature is 25 ◦C,
and equilibrium time is 72 h).

Similarly, cadmium ion uptake obtains a value of 23 mg/g at these given concentra-
tions. Increasing the concentration of cadmium ions in the solution decreases copper uptake
to 12 mg/g when 120 mg/L of cadmium is presented in the solution. This decrease in
uptake follows a linear relation when adding cadmium ions into the solution. On the other
hand, the maximum adsorption capacity of pure cadmium ions obtained at an equilibrium
concentration of 120 mg/L is 23 mg/g. This value drops to 11 mg/g when the copper
concentration in the solution is 120 mg/L.

This antagonism effect is related to the competitive adsorption on the fixed surface
area of the adsorbent. When both ions compete at a concentration of 120 mg/L, a reduction
in the adsorption capacity of 33% and 52% is obtained for Cu2+ and Cd2+, respectively. It
is also noted that copper ions compete on the surface of adsorbent at a higher order of
magnitude than cadmium. This is related to the physicochemical properties of each ion,
where the relative binding strength and the Pauling electronegativity of Cu2+ are higher
than those of Cd2+ [52]. The difference in electronegativity between the oxygen atoms
on the surface of the silica and cadmium is higher than that of copper. Therefore, the
adsorption of cadmium ions on the surface is favored over copper. The addition of copper
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ions to the cadmium solution decreases the electronegativity difference, thereby decreasing
surface uptake.

These results were compared to other published results regarding competitive adsorp-
tion on different types of modified silica (Table 3): the total uptake of these ions by the
developed adsorbent is higher than that obtained when magnetite was coated on the silica
surface and is comparable to that obtained for nitrogen-doped nanosilica.

Table 3. Comparison of adsorption of Cu2+ and Cd2+ by various silica adsorbents.

Catalyst Initial Conc.
(ppm)

Total Surface
Area m2/g

Cu2+ Uptake
(mg/g)

Cd2+ Uptake
(mg/g)

Competitive
Total Uptake

(mg/g)
Reference

Fe3O4-mesoporousSiO2
core-shell 5 483.78 84.4 80.5 - [53]

Amino-functionalized
Fe3O4@SiO2

50 216.2 29.9 22.5 - [54]

Nanosilica from offshore
white sandstone 25 298.71 - 55.18 - [30]

Fe3O4@SiO2-EDTA 25 70.99 - - 34.65 [55]
Silicon dioxide-nano-powder

(N-Si) 56 - - 67.45 48 [51]

This work 200 307.64 29.28 72.13 18 for Cu2+

23 for Cd2+

4.4. Regeneration of the Adsorbent

Nanosilica samples were regenerated using 50 mL of 1 M hydrochloric acid solution.
Then the samples were washed with distilled water several times until the solution pH
reached a neutral value (pH 6.5–7). Table 4 illustrates the adsorption capacity of the
adsorbent with the number of regeneration cycles. Isotherm experiments showed a minor
reduction in the metal ions’ capacities, with an average decrease in adsorbent activity of 8%
being obtained at the end of the fifth cycle.

Table 4. Variation in the adsorption capacities of Cd+2 and Cu+2 with increasing numbers of regener-
ation cycles.

Element

First Cycle
Uptake (%)

Second Cycle
Uptake (%)

Third Cycle
Uptake (%)

Fourth Cycle
Uptake (%)

Fifth Cycle
Uptake (%)

Cd+2 Cu+2 Cd+2 Cu+2 Cd+2 Cu+2 Cd+2 Cu+2 Cd+2 Cu+2

Single component Cd+2 100 - 96 - 94 - 94 - 92 -
Single component Cu+2 - 56 - 50 - 48 - 47 - 44

4.5. The Molecular Dynamics of Cu and Cd on SiO2 Crystalline Structure

Molecular dynamics simulations were carried out using Accelrys Material Studio (V7).
A semi-hydrated silica crystal with dimensions of (1 nm × 1 nm × 1.5 nm) was developed
as an adsorbent to be used for the theoretical adsorption calculation of Cu2+ and Cd2+

from an aqueous solution. A cleaved plane (0 1 0) with a fractional thickness of one shows
24 silicone and 48 oxygen atoms. The total charge of the structure was adjusted based on
its isoelectric charge obtained at pH 6 to include 2000 effective charges in a 1 µm2 silica
sphere [56].

Ions of copper and cadmium were built using 3D atomistic drawing, and the charges
for both metals were adjusted to be (+2) each and loaded equally on the surface of the silica.
Figure 9 shows the unit cell for the hydrated silica, and the copper and cadmium ions as
cleaned to maintain minimum free energy of interaction between the atoms. The Forcite
module, with the COMPASS Forcefield and the Ewald electrostatic summation method,
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was used to optimize the surface geometry of the silica with an accuracy of 0.0001 kcal/mol.
Both Cu2+ and Cd2+ were also optimized similarly.

Figure 9. Cleaned hydrated silica structure: (a) Si (yellow), O (red), H (white), and (b) Cu and Cd ions.

An adsorption locator for both Cu2+ and Cd2+ on the silica surface was performed
using the universal forcefield and the Ewald summation method, with 100,000 loading
steps and one heating cycle. The interaction energy was measured at 11,000 steps, with
an incremental 1000 steps each. The framework charge contains 48 electrons/cell with a
maximum of five ions for each Cu2+ and Cd2+. The loadings of both ions are shown in
Figure 10, where both ions demonstrate homogeneous uptake within the silica structure.
The interaction energy during the adsorption rate is related to the van-der-Waals energy
and the electrostatic and intermolecular energies, as shown in Figure 11. The van-der-Waals
and intermolecular energies demonstrate a minor change, while the electrostatic energy
decreases with the loading steps. The isosteric heat of adsorption for the interaction of both
ions with the surface shows an increase in uptake (Figure 12). At the same time, the energy
of interaction of the cadmium ions with the surface is higher than that of the copper ions,
which agrees with the obtained experimental results. The gradient of the isosteric heat of
adsorption decreases with loading, which is attributed to the loss of free surface energy
needed for further ion uptake. Moreover, both ions are loaded equally on the surface at
the same energy range (400–1200 kcal/mol), but cadmium ions are further adsorbed at a
higher energy range (1500–2400 kcal/mol). These findings support the higher cadmium
uptake by the surface where a multilayer of adsorption occurs.

Theoretical equilibrium uptake of both ions was conducted using the Sorption module.
The Metropolis and Monte Carlo method has 219 million random seeds and 10,000 equi-
librium steps. The universal forcefield energy was employed correctly with the Ewald
electrostatic summation method. The isotherm results were obtained as the average loading
of molecules per unit cell. Figures 13 and 14 illustrate the average loading for each ion in a
multi-component system, where cadmium ions show better uptake than copper ions. The
maximum loadings for these ions per unit cell are 69 and 31, where each ion’s Langmuir
equilibrium trend is noticed.
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Figure 10. Adsorption location of Cu2+ and Cd2+ within the silica crystal structure.

Figure 11. Variation in the silica structure’s energies during ions loadings.

Figure 12. Energy distribution and isosteric heat of adsorption for Cd2+ and Cu2+ by the nanosilica
surface.
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Figure 13. Theoretical equilibrium isotherms for Cu2+ and Cd2+.

Figure 14. Unit cell loading of cadmium and copper ions.

5. Conclusions

Naturally occurring and synthesized silica are among the effective adsorbents used for
heavy metal removal from water. A nanosilica was synthesized using the sol–gel technique
and characterized for its surface characteristics and adsorption competency. An irregular
amorphous shape with several cavities and slits, a total surface area of 307.64 m2/g, and a
total pore volume of 4.95 × 10−3 cm3/g was obtained.

The competitive uptake of heavy metals, such as Cd2+ and Cu2+, on the silica sur-
face determines the adsorption capacity of these ions. Single component systems for the
removal of Cd2+ and Cu2+ from water were investigated using experimental and theoreti-
cal techniques with the produced nanosilica. The results showed that cadmium ions are
adsorbed electrostatically by the nanosilica surface due to the high energy of interaction,
which forms a multilayer of uptake, resulting in a maximum single adsorption capacity of
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72.13 mg/g. Copper adsorption shows an uptake capacity of 29.28 mg/g. These values are
reduced by 52% and 33% when competitive adsorption occurs at a maximum equilibrium
concentration of 120 mg/L for each ion.

Molecular dynamic simulations of the interaction of Cd2+ and Cu2+ on the modeled
silica surface demonstrated that the isosteric heat of adsorption is a significant factor in
the competitive uptake of these ions. This interaction energy between the Cd2+ ions and
the silica is higher than that of the Cu2+ ions; therefore, a multilayer coverage could be
obtained for the Cd2+ ions. The nanosilica demonstrates the feasibility of removing Cd2+

and Cu2+ ions due to the difference in electrostatic charge.
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