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Abstract
Background: Currently, the measurement of immune cells in previous studies is

usually subjective, and no immune-based prognostic model has been established for

chordoma. In this study, we sought to simultaneously measure tumor-infiltrating lym-

phocyte (TIL) subtypes in chordoma samples using an objective method and develop

an immune risk score (IRS) model for survival prediction.

Methods: Multiplexed quantitative immunofluorescence staining was used to deter-

mine the TIL levels in the tumoral and stromal subareas of 114 spinal chordoma spec-

imens (54 in the training and 60 in the validation cohort) for programmed death-1

(PD-1), CD3, CD8, CD20 (where CD is cluster of differentiation), and FOXP3. Flow

cytometry was performed to validate the immunofluorescence assay for lymphocyte

measurement on an additional five fresh chordoma specimens. Subsequently, the IRS

model was built using the least absolute shrinkage and selection operator (LASSO)

Cox regression method.

Results: Flow cytometry and quantitative immunofluorescence showed similar lym-

phocytic percentages and TIL subpopulation proportions in the fresh tumor speci-

mens. With the training data, the LASSO model identified four immune features

for IRS construction: tumoralFOXP3, tumoralPD-1, stromalFOXP3, and stromalCD8. In

both cohorts, a high IRS was significantly associated with tumoral programmed cell

death-1 ligand 1 expression, Enneking inappropriate tumor resection, and surrounding

Abbreviations: TIL, tumor-infiltrating lymphocyte; IRS, immune risk score; H&E, hematoxylin and eosin; FFPE, formalin-fixed paraffin-embedded; LRFS,

local relapse-free survival; OS, overall survival; AOI, areas of interest; DAPI, 4’,6-diamidino-2-phenylindole; LASSO, least absolute shrinkage and selection

operator; ROC, receiver operating characteristic; EA, Enneking appropriate; EI, Enneking inappropriate; APC, allophycocyanin; PD-1, programmed death-1;

PD-L1, programmed cell death-1 ligand 1; CD, cluster of differentiation.
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muscle invasion by tumor. Multivariate Cox regression and stratified analysis in the

two cohorts revealed that the IRS was an independent predictor and could effectively

separate patients with similar Enneking staging into different risk subgroups, with

significantly different survival rates. Further receiver operating characteristic anal-

ysis found that the IRS classifier had a better prognostic value than the traditional

clinicopathological factors and compensated for the deficiency of Enneking staging

for outcome prediction. More importantly, a nomogram based on the IRS and clin-

ical predictors showed adequate performance in estimating disease recurrence and

survival of patients.

Conclusions: These data support the use of the IRS signature as a reliable prognostic

tool in spinal chordoma and may facilitate individualized therapy decision making for

patients.

K E Y W O R D S

immune risk score, multiplex immunofluorescence, nomogram, spinal chordoma, tumor-infiltrating lym-
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1 BACKGROUND

Chordoma is a rare mesenchymal malignancy that shows

slow growth and is considered to originate from notochord

remnants.1 Chordoma has an incidence rate of approximately

0.18-0.84 per million persons each year and most commonly

involves the axial skeleton.2 Clinically, chordoma is resistant

to traditional chemotherapy or radiotherapy,1,3 and thus, com-

plete surgical excision is the most effective treatment for this

disease.4 However, radical en bloc resection of these tumors

can be technically demanding due to their infiltrative nature

and proximity to vital neurovascular structures.5 Therefore,

patients are vulnerable to recurrence after surgery, and 40-

50% of them can even develop metastasis.6 Given the dis-

mal prognosis of patients with chordoma, exploring improved

treatment strategies is urgently needed at present.

The tumor microenvironment represents an integral part of

cancer7 and is composed of cancer cells, stromal cells, extra-

cellular matrix, and various nonmalignant host cells, espe-

cially immune cells.7,8 Recently, studies have suggested a

key role for microenvironmental immune cells in prognos-

tic risk stratification9,10 and selection of cancer patients who

can undergo immunotherapy.10-12 For example, researchers

have found that tumor-infiltrating lymphocytes (TILs) in the

tumor microenvironment are reliable predictors of the clinical

outcome of human cancers.9 In addition, it has been demon-

strated that immune cell infiltrates, which represent the pre-

existing immunity of tumors, are closely associated with the

drug response to immune checkpoint blockade therapy.10,12-14

However, the measurement of TILs in most studies using

hematoxylin and eosin (H&E)-based pathologist estimation

or single-color immunohistochemical technology is semi-

quantitative and subjective. Although automated quantifica-

tion has been currently proposed to evaluate TILs,15,16 this

method has a limited ability for multiple cellular subtyping

in a compartment-specific manner.17 Flow cytometry, which

fails to capture architectural information despite its ability to

simultaneously analyze multiple parameters, is similarly lim-

ited. Considering these issues, researchers have now begun

to employ multiplexed quantitative immunofluorescence for

compartment-specific and in situ measurement of immune

cells in the tumor microenvironment. Furthermore, this quan-

titative method has been shown to possess better objectiv-

ity and reproducibility than conventional semiquantitative

analysis,17,18 which can also provide more sensitive and supe-

rior prognostic information.17 However, no studies thus far

have attempted to objectively quantify TILs using this method

in chordoma.

TIL distribution has been shown to be heterogeneous even

among the same tumor tissues.19-21 Moreover, accumulating

evidence indicates that TILs evaluated in different intratu-

moral regions have distinct roles in the prediction of response

to treatment and prognosis.22-24 Collectively, these data sug-

gest that a separate analysis of TILs in different subareas

of the tumors is necessary to obtain a complete and com-

prehensive understanding of the immune microenvironment

in cancer progression. Currently, the immune microenviron-

ment features of chordoma have not been fully elucidated.

Prior data have demonstrated lymphocytic infiltration and

tumor programmed cell death-1 ligand 1 (PD-L1) expression

in chordoma tissues.25-28 Moreover, lymphocytic infiltrates

and tumoral PD-L1 expression are correlated with patient
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outcomes and tumor progression (such as relapse and metas-

tasis) in chordoma.26,28 Despite these findings, data on the

intratumoral heterogeneity of immune features in the chor-

doma microenvironment are still lacking. In the present study,

we aimed to assess TILs (including programmed death-1 (PD-

1)+, CD3+, CD8+, CD20+, and Foxp3+ lymphocytes, where

CD is cluster of differentiation) from the tumoral and stro-

mal subregions of chordoma tissues using multiplexed quan-

titative immunofluorescence and attempted to establish an

immune risk score (IRS) model for outcome prediction. We

chose to analyze these five immune parameters (described

above) because they represented the main immune cell types

(T cells, cytotoxic T cells, B cells, and regulatory T lympho-

cytes) and played a key role in tumor immunity. PD-1-positive

lymphocytes were analyzed based on the importance of the

PD-1/PD-L1 pathways in mediating tumor immune evasion.29

We analyzed the mutual relationships between TIL data and

compared the prognostic performance of the IRS signature

with the traditional Enneking staging system as well as other

clinicopathologic variables. Finally, we developed a nomo-

gram based on the IRS and clinical prognostic factors for pre-

dicting tumor recurrence and death of patients.

2 METHODS AND MATERIALS

2.1 Patients and tissue samples

In this study, 54 patients with spinal chordoma who received

curative resection at our department between June 2002 and

April 2015 were recruited as the training cohort for the devel-

opment of the IRS model. These cohort data have been pre-

viously recorded in our studies27,28 (Table S1). The sample

size in this cohort was calculated as per a previously described

method, suggesting at least 10-15 subjects per predictor vari-

able to produce reasonably stable estimates.30 In this study,

our final model included four features, and the minimum train-

ing data size was 40. For the validation cohort, 23 patients

from our institute (between November 2015 and Decem-

ber 2018) and 37 patients from Xiangya Hospital (between

February 2006 and October 2018) were included (Table S1).

Patients were selected to have tumor characteristics simi-

lar to those in the training cohort to ensure comparability

(Table S1). For sample size estimation in this group, a power

calculation was performed,31 and we found that a minimum

of 42 patients were required to show differences with a power

of 80%, 𝛽 error of 0.2, and 𝛼 error of 0.05. Our valida-

tion cohort had 60 patients in total, which was adequate for

analysis. The clinical data were retrieved from the patients’

medical records and detailed as we previously described.27,28

Patients who had received any types of previous treatments

(such as chemotherapy or radiotherapy) and those who had

any comorbidities (such as immunocompromised status) on

admission were excluded from this study.28 Notably, patients

with recurrent tumors were also included in both cohorts

because (a) previous studies have shown that there are no sig-

nificant differences for the TIL profiles between the primary

and recurrent chordoma tissues27,28; (b) chordoma tends to

show relapse after surgery, and recurrent patients represent a

major population of chordoma patients. Therefore, including

recurrent patients in our cohorts may be more representative

of the chordoma population in the real world; and (c) our sam-

ple size is relatively small in both cohorts. Excluding recurrent

patients from our study may further compromise the statistical

power and increase the possibility of type II statistical error.

Fresh tumor tissue was collected from five spinal chordoma

patients who were treated by surgical resection at our institute

in 2019. For subsequent assays, each specimen was separated

into two approximately equal halves upon collection. One half

was paraffin embedded after formalin fixing for 2 days. The

other half was placed in RPMI media on ice for single-cell

suspension preparation.

Formalin-fixed paraffin-embedded (FFPE) tissue blocks

from 114 patients (for recurrent patients, samples from the

first recurrence were used) were retrieved from the Depart-

ment of Pathology and processed into 4-𝜇m thick tissue sec-

tions. Tumor diagnosis was based on the histological findings

in the H&E-stained tissue sections as per the criteria previ-

ously described.1 The study was approved by the Institutional

Review Board at our hospital, and all patients gave informed

consents.

2.2 Follow-up

Patients in the training cohort were followed up by radio-

graphical and clinical examinations until September 2015,

while follow-up information of the validation cohort was

updated in April 2019. Tumor recurrence was diagnosed

by clinical and imaging findings or histology analysis of

specimens from the second surgery.32 The primary outcome

parameters of interest included local relapse-free survival

(LRFS), measured as the duration from the date of tumor

resection to the first local recurrence, and overall survival

(OS), which is defined as the time interval from surgery to

death from any cause. Observations were censored when the

patient was tumor free (LRFS analysis) or alive (OS analysis).

2.3 Evaluation of PD-L1 and Ki-67
expression as well as the Immunoscore in
chordoma tissues

In the training cohort, the Immunoscore pattern (I0-I4), as

well as the expression level of PD-L1 and Ki-67 in the chor-

doma specimens, was obtained from our published data.27
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In the validation cohort, immunohistochemistry was per-

formed to obtain the published data (Figure S1), in which

the same staining procedure, antibodies, and evaluation cri-

teria were used as those for the training cohort to allow

for comparability.27,28 Given the small sample size, the

Immunoscore data were further split into high (I3-4) and

low (I0-1-2) groups for analysis according to a previously

described method.33

2.4 Multiplex immunofluorescence

Multiplex immunofluorescence staining was performed as

previously reported,34-37 using the Opal 7-color Manual IHC

Kit (PerkinElmer, MA). Briefly, each individual tumor tis-

sue was simultaneously stained with isotype-specific pri-

mary antibodies to detect the tumor mask (cytokeratin

19, PT0087, 1:5000; Immunoway) and microenvironmen-

tal TILs, including T lymphocytes (CD3, SP7, 1:10; MXB

Biotechnologies Co., Fuzhou, China), regulatory T cells

(Foxp3, D2W8E, 1:500; Cell Signaling Technology, Danvers,

MA), cytotoxic T cells (CD8, D8A8Y, 1:500; Cell Signal-

ing Technology), B lymphocytes (CD20, PT0029, 1:5000;

Immunoway), and PD-1-positive lymphocytes (PD-1, ABT-

PD1, 1:10000; Immunoway). Nuclei were stained with 4′,6-

diamidino-2-phenylindole (DAPI; PerkinElmer). Cytokeratin

19 was applied to define the tumor mask as previously

suggested.35,38

Specifically, the FFPE whole tissue sections were deparaf-

finized and subjected to antigen retrieval in a pressure cooker

containing Tris-ethylenediaminetetraacetic acid buffer with

pH 9.0 for 10 minutes. After antigen blocking in 3% H2O2

for 15 minutes and in 10% goat serum for 30 minutes at room

temperature, the tissue sections were treated with the pri-

mary antibodies at 4◦C overnight. Then, horseradish peroxi-

dase (HRP)-conjugated secondary antibodies were incubated

at room temperature for 1 hour followed by tyramide-based

HRP activation at 37◦C for 20 minutes. Residual HRP acti-

vation was quenched by a solution containing 1 mM benzoic

hydrazide with 0.15% H2O2 as previously suggested.39 Goat

anti-mouse HRP and Opal 540, Opal 570, or Opal 620 con-

jugate were used to reveal cytokeratin 19, PD-1, and CD20,

respectively. Similarly, a goat anti-rabbit HRP and Opal 520,

Opal 650, or Opal 690 conjugate was used to detect CD8,

Foxp3, and CD3, respectively. Finally, the slides were sealed

with coverslips using ProLongGold Antifade reagent with

DAPI and allowed to dry overnight.

2.5 Automated image analysis

Images were analyzed by inForm software (version 2.1.1,

PerkinElmer) as previously documented in the literature.34,35

Briefly, the whole tumor sections were scanned by a Vec-

tra system (version 2.0.8, PerkinElmer) with a 4× objective

under the same bit depth, laser power, and exposure time to

ensure comparability. Then, 10 representative areas of inter-

est (AOIs) were picked from each image of the tumor sample.

DAPI identified cell nuclei. The region with cytokeratin 19

positivity was defined as the tumor mask. The stroma sub-

region excluded the tumor mask from the DAPI area. Quan-

tification of tumoral TILs or stromal TILs was calculated

by dividing the density of the positive TILs in the compart-

ment by the area of the corresponding mask, and the data

are expressed as positive cells per million pixels.40 TIL was

recorded as positive when its optical density was above the

signal detection threshold (specifically 0.125993 for CD8,

3 for PD-1, 0.725993 for CD20, 0.289979 for Foxp3, and

0.205993 for CD3), which was defined by the negative con-

trols and visual inspection.41 Subsequently, the average of all

AOIs for each sample was used for final analysis. Images hav-

ing less than 3% tumor tissues or with staining artifacts were

excluded from the analysis.

2.6 Construction of the IRS classifier

Given that a single immune parameter is not optimal for prog-

nosis, and there was significant collinearity among the TIL

data (Figure S2A,B), least absolute shrinkage and selection

operator (LASSO) Cox regression was exploited to select the

most important prognostic immune features for the IRS clas-

sifier construction using the training data.42 This method was

adopted because of its widespread use in variable selection for

high-dimensional data22,43 and its ability to overcome overfit-

ting in analyses with collinear data. Specifically, the LASSO

analysis uses an L1 penalty to shrink some regression coeffi-

cients toward zero. The larger the penalty value 𝜆 (also called

the tuning parameter), the fewer the number of prognostic fac-

tors selected. We used 10-time cross-validations to determine

the optimal value of 𝜆 via minimum criteria in which the value

of 𝜆 was related to the lowest partial likelihood deviance.

Subsequently, the IRS was developed for each patient by

integrating the quantitative density for each feature chosen

by the LASSO analysis with the corresponding regression

coefficient from the penalized LASSO Cox regression model.

We investigated the predictive accuracy of the IRS and com-

pared the prognostic performance of this classifier with each

immune feature, the Immunoscore, the Enneking staging sys-

tem, and other classic clinical variables.

2.7 Flow cytometry

Flow cytometry was conducted as previously described.18

Briefly, single-cell suspensions were dissociated from fresh
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chordoma tissues and passed through a 70-mm nylon cell

strainer (Corning). The cell suspension was centrifuged, and

the pellet was resuspended to 107 cells/mL in phosphate-

buffered saline containing 5% fetal bovine serum and 0.1%

sodium azide. Then, the cells were split into five equal batches

of 106 cells and incubated on ice for 20 minutes with the

Fc Receptor Binding Inhibitor (eBioscience). One batch was

treated with a mix of anti-CD3 allophycocyanin (APC)-CY7-

conjugated (0.1 mg/mL; BD Biosciences), Percp-conjugated

anti-CD8 (0.05 mg/mL; BD Biosciences), anti-CD20 fluores-

cein isothiocyanate conjugated (0.012 mg/mL; eBioscience),

anti-PD-1 APC-conjugated (0.1 mg/mL; BD Biosciences),

and anti-Foxp3 phycoerythrin-conjugated antibodies (0.1

mg/mL; eBioscience), followed by fix and permeabilization

buffer (eBioscience) for 30 minutes in the dark on ice. The

other four batches were used as compensation controls, one

unstained and three stained in parallel with the antibody

mix. After washing, flow cytometric analysis of CD3-,

CD8-, Foxp3-, CD20-, and PD-1-positive subpopulations

was performed on a FACSCanto II Flow Cytometer (BD

Biosciences), and the data were collected by FACSDiva

software. Finally, flow cytometry plots were produced and

analyzed using FlowJo software (Tree Star, Ashland, OR).

2.8 Statistical analysis

Quantitative (expressed as the mean ± standard deviation)

and categorical data were analyzed by one-way analysis of

variance or Student’s t-test and Wilcoxon’s rank sum test or

chi-square test, respectively. X-tile software (version 3.6.1)

was used to obtain the cutoff points for variables in the

survival analysis with OS as the outcome parameter,22,44

where the P value from the log-rank test was corrected

accordingly.44 The Kaplan-Meier curve was used to display

the LRFS and OS curves, and differences in survival prob-

abilities between subgroups were compared by the log-rank

test. The Cox proportional hazard model was performed for

multivariate survival analysis. Bootstrap analysis was used to

test the robustness of the IRS as a prognostic predictor.45,46

With combined data from the training and validation cohorts,

the nomogram was constructed based on the IRS and pre-

viously reported significant clinical factors,2,47,48 as well as

the results from our multivariate analysis. The nomogram’s

predictive accuracy was determined by a concordance

index (C-index) and receiver operating characteristic (ROC)

curve, which was also applied to assess the sensitivity and

specificity of the variables for LRFS and OS prediction.

A calibration curve was plotted for the actual observed

survival versus predicted probabilities from the nomogram.

Decision curve analysis was performed to explore the clinical

usefulness of the nomogram model. Statistical analyses were

performed using R version 3.5.1 (R Foundation for Statistical

Computing, Vienna, Austria). All tests were two-sided, and

a P value ≤ .05 was considered significant.

3 RESULTS

3.1 Patient clinicopathological characteristics

A total of 114 patients (54 in the training cohort and 60 in

the validation cohort) were included. The patient characteris-

tics are detailed in Table S1. In brief, the training cohort had

19 females and 35 males. Among them, 11 patients had recur-

rent chordomas, and 43 patients had primary diseases. Ennek-

ing appropriate (EA) and Enneking inappropriate (EI) tumor

resections were performed in 36 and 18 patients, respec-

tively. In the validation cohort, there were 42 males and

18 females. Forty-seven had primary tumors, and 13 had

tumors at relapse. Of them, 36 patients underwent EA resec-

tion, and 24 received EI resection. Histologically, all chor-

doma cases were of the classic type.

3.2 Objective quantitative analysis of the
TILs in the chordoma tissues

Quantitative densities and representative images of TIL sub-

types in the chordoma tissues are shown in Figures 1 and 2,

respectively. The TIL data showed good concordance between

the training and validation cohorts. Moreover, there were sig-

nificant differences in the TIL distribution in both the tumoral

and stromal subareas (training cohort: both P < .001; valida-

tion cohort: both P < .001). In the tumor subregion, the PD-

1+ TILs showed the highest extent of infiltration, whereas the

CD8+ TILs had the lowest level. In the stromal compartment,

however, the CD20+ TILs displayed the highest infiltration

density, whereas the CD8+ TILs still showed the lowest num-

ber. Notably, intratumoral heterogeneity was also seen for the

infiltration pattern of the same TIL subset (Table S2). Specif-

ically, the CD8+ and PD-1+ TILs were higher in the tumoral

region than in the stromal region. In contrast, the densities of

the stromal CD3+, CD20+, and Foxp3+ TILs were higher than

their counterparts within the tumoral compartment.

3.3 Validation of quantitative
immunofluorescence assay parameters

Five chordoma specimens were used for analysis of PD-1,

CD3, CD8, CD20, and Foxp3 expression by both flow cytom-

etry and quantitative immunofluorescence. The percentage of

lymphocytic infiltrates was calculated for each of 10 represen-

tative AOIs in each entire tumor specimen (Figure 3A) using a

quantitative immunofluorescence assay, and the average was
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F I G U R E 1 Quantitative levels of tumor-infiltrating lymphocytes subtypes in tumoral and stromal subareas of chordoma specimens in the

training and validation cohort.

obtained for analysis. Flow cytometry of the same samples

demonstrated the presence of lymphocytes in tumor tissues

with varying densities (Figure 3B). Further results revealed

a good concordance of the lymphocyte percentage by both

methods (Figure 3C-H). Specifically, the lymphocyte percent-

age ranged from 13.9% to 56.3% by flow cytometry and 21.0%

to 68.7% by multiple immunofluorescence. Flow cytome-

try consistently showed a higher proportion of CD3- and

CD8-positive lymphocytes, while quantitative immunofluo-

rescence uniformly reported a greater proportion of lympho-

cytes, B cells, as well as PD-1+ and Foxp3+ T cells. In all

cases, the CD3-positive lymphocytes were relatively abun-

dant, and the CD8- or Foxp3-positive T cells were a small

proportion of the CD3+ cells.

3.4 Construction and description of the IRS
prognostic model

With the optimal 𝜆 value of 1.778 × 10–3 in the LASSO anal-

ysis (Figure S2C), four immune features (sCD8+, sFoxp3+,

tFoxp3+, and tPD-1+ TILs) were selected for the IRS con-

struction (Figure S2D). The coefficients for the above four

immune parameters in LASSO Cox regression were 7.27 ×
10–4, 9.126 × 10–4, −4.463 × 10–3, and 3.471 × 10–3, respec-

tively. Therefore, the IRS was calculated for each patient as

follows: IRS = density of sCD8+ TILs × 7.27 × 10–4 +
density of sFoxp3+ TILs × 9.126 × 10–4 + density of

tFoxp3+ TILs × (−4.463 × 10–3) + density of tPD-1+ TILs ×
3.471 × 10–3. The mean values for the IRS in the training

and validation cohorts were 1.26 ± 1.96 and 1.27 ± 1.01,

respectively.

3.5 Association between IRS and patient
outcome

The distribution of the recurrence and survival status as well

as the IRS of the patients is illustrated in Figure 4A,B. ROC

analysis showed that the IRS as a continuous variable per-

formed well in predicting LRFS and OS in both cohorts

(Figure 4C,D). Using X-tile software, we found that the prog-

nostic cutoff point for IRS in relation to OS was 1.57 (Figure

S3). The patients were then separated into low (≤1.57) and

high IRS (>1.57) groups according to this threshold value.

Univariate Kaplan-Meier analysis disclosed that high IRS

patients harbored worse LRFS than those with a low IRS

(Figure 5). Similarly, in the analysis of OS, patients with a low

IRS had a significantly better survival than the patients with a

high IRS (Figure 5). In addition, the four immune parameters

showed significant associations with both patients’ LRFS and

OS after cutoff determination using X-tile software (Figures

S3-S5). Multivariate Cox regression analysis with adjustment

for clinical predictors found that the IRS independently pre-

dicted both LRFS and OS of patients (Figure S6A-D). Fur-

ther bootstrap analysis confirmed the reliability of IRS as a

prognostic factor in both univariate and multivariate analyses

(Figure S6E-H).

3.6 Association between the IRS classifier
and clinicopathologic variables

In both cohorts, the IRS was found to have a positive

association with tumor invasion into the surrounding muscle

tissues, PD-L1 expression on tumor cells, and type of surgical



230 ZOU ET AL.

F I G U R E 2 Representative immunofluorescence images showing tumor-infiltrating lymphocytes level within tumor and stromal subregions of

chordoma tissues. Scale bar = 50 𝜇m. For multiplex immunofluorescence staining, 4-𝜇m thick tumor sections were dewaxed and rehydrated. After

antigen retrieval and blocking, tissue sections were treated with primary cytokeratin 19 antibody (1:5000). HRP-conjugated secondary antibodies

were then incubated at room temperature for 1 hour followed by tyramide-based HRP activation at 37◦C for 20 min. This was repeated five more

times using the following antibodies: CD3 (1:10), Foxp3 (1:500), CD8 (1:500), CD20 (1:5000), and PD-1 (1:10000). Nuclei were stained with DAPI.

resection (Figure S7 and Tables S3 and S4). Similarly, in

the training cohort, a significant or borderline significant

association was also detected between the IRS and overall

TIL level and between the IRS and patient age (Figure S7

and Table S3). However, tumors with a high IRS were more

likely to have advanced Enneking staging than those with a

low IRS in the validation cohort, although this correlation

was not significant (Figure S7 and Table S4).

Subgroup analysis was also performed for the IRS and

four clinicopathologic variables (age, type of surgery, tumor

muscle invasion, and Enneking staging), which were all pre-

viously reported to influence the LRFS and OS of patients

with spinal chordoma. Our results revealed that the IRS still

displayed good prognostic performance in predicting LRFS

and/or OS of the patients stratified by the four clinical factors

(Figures S8-S11).

3.7 Comparison of the IRS classifier with
four immune features, the Immunoscore,
Enneking staging system, and other
clinicopathologic parameters in predicting
survival

In both cohorts, ROC analysis found that the IRS classifier

could accurately reflect prognosis and also had stronger pre-

dictive power than the four immune features included for

IRS construction (Figure S12A-D). Additionally, our analysis

showed that the IRS had a greater prognostic accuracy than

the Immunoscore, Enneking staging system and other clinical

factors in predicting LRFS and OS (Figure S12E-H). Impor-

tantly, the combined IRS and Enneking staging model showed

an improved ability compared to using each model alone for

outcome prediction (Figure S12E-H).



ZOU ET AL. 231

F I G U R E 3 Validation of quantitative immunofluorescence assay for measuring TILs levels by comparison to flow cytometry on fresh

chordoma samples. A, Representative field of view showing TILs subpopulation proportions from quantitative immunofluorescence on chordoma

tissue. B, Representative example of flow cytometry on chordoma tissue, in which numbers in this picture represent the percentage of TILs analyzed.

The total lymphocytes (left) were gated into PD-1 subpopulation, distinct CD3 and CD20 populations (middle), and overlapping CD3 and CD8, as

well as CD3 and Foxp3 populations (right). C-H, Percentage of lymphocytes and subpopulations was similar when analyzed by flow cytometry and

quantitative immunofluorescence. For multiplex immunofluorescence staining, 4-𝜇m-thick tumor sections were dewaxed and rehydrated. After

antigen retrieval and blocking, tissue sections were treated with primary cytokeratin 19 antibody (1:5000). HRP-conjugated secondary antibodies

were then incubated at room temperature for 1 hour followed by tyramide-based HRP activation at 37◦C for 20 min. This was repeated five more

times using the following antibodies: CD3 (1:10), Foxp3 (1:500), CD8 (1:500), CD20 (1:5000), and PD-1 (1:10000). Nuclei were stained with DAPI.

For flow cytometry, single-cell suspensions with a concentration of 107 cells/mL in phosphate-buffered saline [PBS] (containing 5% fetal bovine

serum [FBS] and 0.1% sodium azide) were split into five equal proportions of 106 cells. One proportion was treated with a mix of anti-CD3

APC-CY7-conjugated (0.1 mg/mL), anti-CD8 Percp-conjugated (0.05 mg/mL), anti-CD20 fluorescein isothiocyanate conjugated antibodies (0.012

mg/mL), anti-PD-1 APC-conjugated antibodies (0.1 mg/mL), anti-Foxp3 PE-conjugated antibodies(0.1mg/mL), and fix and permeabilization buffer

for 30 min in the dark on ice. The other four proportions were used as compensation controls. Flow cytometry consistently determined a greater

proportion of CD3- and CD8-positive lymphocytes, while quantitative immunofluorescence consistently resulted in a greater proportion of

lymphocytes, B cells, as well as PD-1+ and Foxp3+ T cells.

3.8 Establishment of the LRFS and OS
prediction nomogram

To provide a clinically relevant quantitative tool for sur-

vival prediction, we developed the LRFS and OS nomogram

including the IRS and significant clinical factors associated

with patient survival (Figure 6). The IRS-based nomogram

exhibited high predictive accuracy with a C-index of 0.811

(95% CI: 0.756-0.867) and 0.793 (95% CI: 0.737-0.849) for 1-

year LRFS and 3-year LRFS, respectively. Similar outcomes

were also observed in terms of 3-year OS (C-index: 0.830,

95% CI: 0.784-0.877) and 5-year OS (C-index: 0.790, 95%

CI: 0.738-0.842). Subsequent time-dependent ROC analysis

further validated these results (Figure 7A,B). In addition,
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F I G U R E 4 Distribution of IRS, recurrence status, and survival status among the training (A) and validation (B) chordoma samples. The

heatmap (bottom) shows the profile of four immune features included for the IRS construction in chordoma patients. Columns represent patients who

were sorted descendingly by their IRS levels. Red dotted line represents the IRS cutoff dividing patients into high and low subgroups. B, Receiver

operating characteristics curves show the sensitivity and specificity for the IRS (as a continuous variable) in predicting LRFS and OS of patients

from the training (C) and validation (D) cohort.

Abbreviations: AUC, area under the curve; IRS, immune risk score; LRFS, local recurrence-free survival; OS, overall survival; sCD8, stromal CD8+

TILs; sFoxp3, stromal Foxp3+ TILs; tFoxp3, tumor Foxp3+ TILs; TILs, tumor-infiltrating lymphocytes; tPD-1, tumor PD-1+ TILs.

calibration plots showed that the nomogram-predicted sur-

vival probabilities fit well with the actual observations

(Figure 7C,D). Moreover, decision curve analysis demon-

strated a high clinical net benefit for the IRS-based nomogram

across a broad range of threshold probabilities (Figure 7E,F).

4 DISCUSSION

Preceding reports on TIL characterization and their asso-

ciations with prognosis have been documented in the

literature for chordoma.27,28,49 However, these studies usu-

ally use H&E-based pathologist estimation or single-color

immunohistochemical technology for TIL determination,

which is subjective with variable reproducibility. Further-

more, the traditional strategy lacks compartment speci-

ficity and is unable to simultaneously characterize multiple

cell subtypes. In this study, we used multiplex quantitative

immunofluorescence to enable objective and compartment-

specific measurement of the immune cells in the chordoma

microenvironment and developed an immune feature–based

risk score model for outcome prediction. We reported that
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F I G U R E 5 Kaplan-Meier curves of LRFS and OS of spinal chordoma patients from the training and validation cohort stratified by the IRS.

Abbreviations: IRS, immune risk score; LRFS, local recurrence-free survival; OS, overall survival.

F I G U R E 6 Establishment of the nomogram based on the IRS and clinicopathological parameters for LRFS and OS prediction using the

combined data from training and validation cohort (n = 114). The clinical factors were selected based on literature reports and the results from our

multivariable Cox analysis, depending on their significant association with LRFS or OS of patients, respectively.

Abbreviations: IRS, immune risk score; LRFS, local recurrence-free survival; OS, overall survival.

the IRS composed of tumoral PD-1+ and Foxp3+ TILs as

well as stromal CD8+ and Foxp3+ TILs was significantly cor-

related with the survival of spinal chordoma patients. More

importantly, a nomogram integrating the IRS and important

clinical parameters accurately reflected prognosis and also

showed better predictive performance than each nomogram

alone. These data highlight the central role of the local adap-

tive immune response in determining prognosis33 and pro-

vide further support for the use of immunotherapy to treat

chordoma.27,28,49,50

Previous studies have indicated that tumor PD-L1 expres-

sion and preexisting microenvironmental TIL levels are

effective biomarkers in forecasting the response to immune

checkpoint blockade.13,14,51 Our data showed that the IRS

was associated with tumoral PD-L1 expression in both

cohorts and related to overall TIL densities in the training

sets, which suggests the potential use of the IRS to predict

patient response to immunotherapy in spinal chordoma.

Further investigations addressing the IRS data before and

after immunotherapy of these patients are required to test

this idea. Interestingly, we also observed that the number of

intratumoral immune infiltrates was nonhomogeneous across

the dimensions of a single section, which was consistent with

previous reports.19,52 This immune heterogeneity deserves
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F I G U R E 7 Time-dependent receiver operating characteristic curves show sensitivity and specificity for the nomogram model in predicting

LRFS (A) and OS (B) of patients. The calibration curves depict the agreement between predicted and observed LRFS (C) and OS (D) probability.

Decision curve analysis of the nomogram for LRFS (E) and OS (F). Abbreviations: LRFS, local recurrence-free survival; OS, overall survival.

further elucidation and may also indicate the importance of

obtaining not only cell abundance but also spatial data in

the assessment of microenvironmental TILs.52 In addition,

we found that the TILs distributed in the tumoral or stromal

subregions were closely correlated in chordoma tissues, par-

ticularly for the same TIL subsets. This finding may suggest a

similar cellular origin or spatiotemporally dynamic migration

for intratumoral and stromal TILs during tumor progression.

Our future work will use migration and/or invasion tests to

evaluate the effect of TIL displacement between the intratu-

moral and stromal subregions on chordoma progression.

Accurate prognostic assessment is important for selecting

appropriate therapy and customizing postoperative moni-

toring in cancer patients. Although the Enneking staging

system is routinely used in clinical practice to notify risk

stratification for spinal chordoma, clinical outcomes vary

even among patients with the same staging, suggesting that

this system alone is not adequate for prognosis. In this study,

we developed a risk classifier comprising four immune fea-

tures and found it to be a powerful and independent prognostic

tool that also had a superior predictive performance than the

widely used Enneking system. These findings are consistent

with previous observations22,53,54 and support our earlier

findings that measurement of microenvironmental TILs is a

reliable and clinically applicable procedure to predict chor-

doma outcome.27,28,49 Although the Immunoscore has been

recently shown to yield a more powerful prediction than the

Enneking staging in chordoma,28 our study showed that the

IRS model had significant advantages over the Immunoscore

system in predicting patient outcome. This phenomenon

may be explained by the fact that our immune feature–based

classifier had a more comprehensive immunologic evaluation
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and was established using a LASSO Cox regression method,

which likely improved its predictive accuracy. In addition, our

analysis found that the combined IRS and Enneking system

had better prognostic value compared to their individual

use. These outcomes indicate that the immune features can

add additional value to the Enneking stage, thus reinforcing

its prognostic ability. In addition, as the immune classifier

reflects the bioimmunological characteristics of tumors and

provides different information from the Enneking system,

subsequent inclusion of this classifier into Enneking stag-

ing may represent a new strategy for the classification of

chordoma, called the Enneking-Immune system, similar to

previous publications.22,55-57 Notably, our study displayed a

significant survival difference between patients with similar

clinicopathologic features who were stratified by the IRS

classifier. These findings suggest that the identification of

tumor-infiltrated immune cells may enable clinicians to

obtain a more exhaustive and precise knowledge of chordoma

prognosis, thereby optimizing treatment strategies and

improving survival.

Currently, there is no effective tool for outcome predic-

tion in chordoma.28 In the present study, we established a

nomogram to predict survival based on the IRS and clinical

factors. We disclosed that the nomogram had good perfor-

mance in predicting prognosis and was more accurate than the

IRS signature and clinicopathologic parameters, including the

traditional Enneking classification. Moreover, the prognostic

accuracy of our nomogram was confirmed in the validation

cohort. These results may allow oncologists to accurately pre-

dict chordoma outcome and can also be useful in identifying

patients with high-risk disease who are candidates for aggres-

sive therapy.

4.1 Limitations

More prospective studies involving large number of patients

are needed to further confirm the role of the IRS model in

spinal chordoma prognosis. Currently, we have established a

spinal chordoma database using combined data sets and are

also attempting to prospectively add data for each newly diag-

nosed case in this database. After including enough newly

diagnosed patients, we can further test the reliability of the

IRS model in chordoma prognosis. In addition, with this

database, we can assess the ability of the IRS model in

drug response prediction, therapy monitoring and evalua-

tion of chordoma patients after prospectively obtaining IRS

data before and after treatment. Moreover, our study did not

characterize circulating immune cells in chordoma patients,

although these features may be relevant to prognosis and

the microenvironmental lymphocytic profile. In addition, we

should note that our study lacked experimental data to elu-

cidate the exact mechanisms of how immune cells affect the

clinical outcomes of patients. Finally, several other immune

features, such as CD45RA, CD57, CD66b, CD68, and IL17,

may also be evaluated for their expression profile in chor-

doma tissues, as well as for eligibility for inclusion in the

immune classifier and nomogram, as they have been shown

to be indicative of cancer prognosis.22 The current study did

not analyze these markers due to limited fluorescence chan-

nels available.

5 CONCLUSIONS

The present study demonstrated that the IRS model consisting

of four immune variables was associated with clinicopatho-

logic features and could effectively predict recurrence and

survival of patients with spinal chordoma. The IRS classifier

provided superior prognostic value to traditional clinical

predictors and was an essential complement for Enneking

staging. Moreover, the IRS-based nomogram showed ade-

quate performance in predicting survival. These findings

suggest that the IRS may prove to be a useful tool for

prognostic risk stratification in spinal chordoma and facilitate

personalized therapy decision making for patients.
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