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Objective: To investigate whether radiomics can help radiologists and thoracic
surgeons accurately predict invasive adenocarcinoma (IAC) manifesting as
part-solid nodules (PSNs) with solid components <6 mm and provide a basis
for rational clinical decision-making.

Materials and Methods: In total, 1,210 patients (mean age + standard deviation:
54.28 + 11.38 years, 374 men and 836 women) from our hospital and another
hospital with 1,248 PSNs pathologically diagnosed with adenocarcinoma in situ
(AIS), minimally invasive adenocarcinoma (MIA), or IAC were enrolled in this
study. Among them, 1,050 cases from our hospital were randomly divided into
a derivation set (n = 735) and an internal validation set (n = 315), 198 cases from
another hospital were used for external validation. Each labeled nodule was
segmented, and 105 radiomics features were extracted. Least absolute
shrinkage and selection operator (LASSO) was used to calculate Rad-score
and build the radiomics model. Multivariable logistic regression was conducted
to identify the clinicoradiological predictors and establish the clinical-
radiographic model. The combined model and predictive nhomogram were
developed based on identified clinicoradiological independent predictors and
Rad-score using multivariable logistic regression analysis. The predictive
performances of the three models were compared via receiver operating
characteristic (ROC) curve analysis. Decision curve analysis (DCA) was
performed on both the internal and external validation sets to evaluate the
clinical utility of the nomogram.

Results: The radiomics model showed superior predictive performance than
the clinical-radiographic model in both internal and external validation sets (Az
values, 0.884 vs. 0.810, p = 0.001; 0.924 vs. 0.855, p < 0.001, respectively). The
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combined model showed comparable predictive performance to the
radiomics model (Az values, 0.887 vs. 0.884, p = 0.398; 0.917 vs. 0.924, p =
0.271, respectively). The clinical application value of the nomogram developed
based on the Rad-score, maximum diameter, and lesion shape was confirmed,
and DCA demonstrated that application of the Rad-score would be beneficial
for radiologists predicting invasive lesions.

Conclusions: Radiomics has the potential as an independent diagnostic tool to

predict the invasiveness of PSNs with solid components <6 mm.
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Introduction

With the increasing use of low-dose computed tomography
(LDCT) in the screening of high-risk populations for lung
cancer, the detection rate of part-solid nodules (PSNs) has
been increasing, especially in Asian women and non-smokers
(1-4). Previous research has shown that persistent PSNs are
highly correlated with early-stage lung adenocarcinoma,
including invasive adenocarcinoma (IAC), minimally invasive
adenocarcinoma (MIA), and adenocarcinoma in situ (AIS)
(5-7).

Accurate differentiation between IAC and AIS/MIA
appearing as PSNs is critical and can determine the patient’s
treatment options. Unlike TAC, AIS/MIA can be resected by
limited wedge resection or segmentectomy rather than
lobectomy to maximize the preservation of functional
pulmonary parenchyma. Moreover, lymph node exploration is
not required for AIS/MIA (8, 9). For clinical management, as
long as the lesions suspected of AIS/MIA remain stable, the
strategy of conservative periodic follow-up with CT, with
surgical resection in case of lesion growth, has been widely
accepted by clinicians, ultimately avoiding unnecessary surgery
for patients (4, 10, 11).

One of the key factors to predict the invasiveness of PSNs is
the assessment of the size of the solid component within the
nodules, which is highly correlated with the pathologically
invasive foci of adenocarcinomas (12-14). For PSNs, a size
criterion of solid component diameter =6 mm is widely
accepted to discriminate TAC from AIS/MIA on CT, which is
also the newly revised threshold standard for T-factor staging of
adenocarcinoma. Most JACs commonly manifest as PSNs with
solid components 26 mm and can be easily and accurately
diagnosed by radiologists and thoracic surgeons (4, 15, 16). A
statement from the Fleischner Society suggested that surgical
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resection should be considered if solid components were >6
mm in PSNs, while yearly surveillance CT is recommended for
PSNs with solid components <6 mm (4, 17). However, due to the
insufficient CT resolution, the ground-glass components of PSNs
may contain invasive foci that cannot be recognized by the naked
eyes; a large number of IAC cases also present as PSNs with solid
component <6 mm or even non-solid nodules (NSNs), which
were difficult to distinguish from AIS/MIA, and closer follow-up is
needed for these lesions (18). Ahn et al. (19) indicated that the
sizes of the solid component measured on CT images commonly
underestimate the real size of invasive foci on pathology.
Therefore, it is a great challenge for radiologists to predict the
invasiveness of PSNs with a solid component <6 mm and NSNs
because of their pathological diversity.

Many studies regarding the invasiveness prediction of PSNs
have been reported with different methods, including
radiographic feature evaluation and quantitative analysis (20—
22). However, these studies have limitations: 1) there are no
limits set on the size of solid components in PSNs. If too many
PSNs with a solid component 26 mm (the pathological type is
mostly IAC) are included in a study, the predictive performance
may be exaggerated; 2) many evaluated radiographic features
show an overlap between IAC and AIS/MIA; 3) previous studies
used varied quantitative parameters and reported different
results, making it unclear whether these studies can help
radiologists improve the prediction performance.

Radiomics has been widely used to establish diagnosis and
prediction models for tumor grading and staging, treatment
outcome evaluation, and prognosis prediction by extracting and
selecting predefined subtle image features (23, 24). Sun et al. (25)
and Yuan et al. (26) have successfully used radiomics to predict
the invasiveness of NSNs and PSNs, respectively. However, few
studies have focused on the prediction of invasiveness of PSNs
with a solid component <6 mm, whose diagnosis remains
challenging for radiologists. Therefore, the purpose of our
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study was to investigate whether radiomics is able to help
radiologists accurately predict IAC manifesting as PSNs with
solid components <6 mm and provide a basis for rational clinical
decision-making.

Materials and methods

The ethical committee of our hospital approved this
retrospective study and waived the informed consent for the
patients (approval number: 2021-SR-053).

Data source and patient selection

We searched the institution’s database and collected the
clinical and imaging data of 3,326 patients who underwent
surgery in our hospital and were pathologically diagnosed with
AIS, MIA, or IAC from January 2015 to December 2020. The
dataset of our hospital included 1,012 patients (mean age *
standard deviation, 54.16 + 11.21 years, 316 men and 696
women) with 1,050 PSNs satisfying the following inclusion
criteria: 1) the lesions manifested as PSNs on CT imaging, with
the maximum diameter of the solid components <6 mm
(excluding bronchi and vessels); 2) the maximum diameter
of the PSNs was 5-30 mm; 3) non-enhanced CT scans were
performed within 2 weeks prior to surgery; 4) lesions were
completely removed, and the pathological diagnosis was
unambiguous. In accordance with previous studies, the
CT threshold of the solid components in PSNs was set to >-188
HU (27). Three-dimensional (3D) Slicer software (version 4.12;
National Institutes of Health; https://www.slicer.org) can
automatically identify solid components in PSNs. According to
the automatic segment results of the solid components in PSNs in

3326 patients in our institution with pulmonary nodules
pathologically diagnosed as AIS/MIA/IAC

I

10.3389/fonc.2022.900049

3D Slicer software, authors #1 and #3 (with 10 and 7 years’
experience in chest CT imaging, respectively) separately measured
the maximum diameter of the solid components from the axial,
coronal, and sagittal images in Picture Archiving and
Communication System (PACS) (Supplementary Figure SI).
PSNs with solid components greater than 6 mm measured from
any direction will be excluded from the study. Author #9, a
radiologist with 16 years’ experience, reviewed the measurement
results of authors #1 and #3 to reach a consensus.

Finally, the dataset from our hospital was randomly divided
into a derivation set (735 cases: 67 AIS, 316 MIA, and 352 IAC)
and an internal validation set (315 cases: 29 AIS, 135 MIA, and
151 TAC) at a ratio of 7:3.

Authors #1, #3, and #9 used the same methods andreviewed
patients who underwent surgery in another hospital and were
pathologically diagnosed with AIS, MIA, or IAC from January
2020 to December 2020. Finally, 198 cases (25 AIS, 79 MIA, and
94 TAC) were enrolled in our study as the external validation set.
The workflow was illustrated in Figure 1.

None of the 597 TAC cases included in our study had lymph
node metastases. Only 16 TAC cases were classified as pT2 stage
because of the presence of pleural invasion and the rest were all
classified as pT1 stage according to the eighth edition of the
tumor, node, and metastasis (TNM) classification of lung cancer.

Diagnostic criteria

The resection specimens were fixed with formalin,
embedded in paraffin, sectioned, and stained with hematoxylin
and eosin. Author #6, a pathologist with 26 years’ work
experience, reviewed the pathological classification of all
specimens based on the 2011 classification criteria for lung
adenocarcinoma proposed by International Association for the

Exclusion criteria:
(1): Patients with NSNs, PSNs with solid
=6 mm or solid nodules

!

1012 patients with surgically resected 1050
PSNs with solid components <6 mm included

AIS/MIA vs IAC

I Clinical and radiographic features IRadiomics model|

Combined model |

Internal validation set

(2): Patients had no non-enhanced images

(3): Patients with nodules <Smm or >3cm in diameter

(4): Patients with unsatisfactory imaging quality due
to respiratory motion during the examination

External validation set
(198 cases from another hospital share
the same exclusion criteria with
derivation set and internal validation set)

| Clinical-radiographic model |—>|

FIGURE 1
The workflow of our study.
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Study of Lung Cancer/American Thoracic Society/European
Respiratory Society (IASLC/ATS/ERS).

CT examination methods

All patients underwent CT examination using one of the
four CT scanners: SOMATOM Definition AS+, SOMATOM
Sensation 16, and GE Discovery CT750 HD of our hospital and
GE LightSpeed VCT of another hospital. The detailed scan and
reconstruction parameters and the number of patients
performed by each scanner were shown in Supplementary
Table S1.

Establishing the
clinical-radiographic model

The patient’s clinical information was collected from
electronic medical records, including: 1) age, 2) sex, 3)
smoking history, 4) carcinoembryonic antigen (CEA) level, 5)
history of chronic obstructive pulmonary disease (COPD), 6)
history of other cancers, and 7) family history of lung cancer.
Authors #1 and #3, who did not know the patients’ pathological
diagnosis, interpreted the CT images individually under lung
window settings (width, 1,200 Hu; level, -600 Hu). The
radiographic features of all lesions evaluated in this study
include the following: 1) lesion location; 2) maximal axial
diameter; 3) maximum axial diameter of the solid component;
4) consolidation-to-tumor ratio (CTR); 5) border (undefined or
defined); 6) shape (round/oval or irregular); 7) vacuole sign
(lesions with cystic cavities with the diameter <5 mm); 8) air
bronchogram sign (dilated bronchioles observed in lesions); 9)
microvascular sign (lesions with convergent, dilated, or tortuous
supplying vessels); and 10) pleural indentation sign (pleura
adjacent to lesions showed thickening or contraction). The
CTR (%) was calculated as 100x(maximum axial diameter of
the solid component/maximum axial diameter of the lesion)
referring to previous studies (28, 29). Kappa values and
intraclass correlation coefficients (ICCs) were calculated to
assess the consistency of the two authors’ evaluations. To
reach a consensus, author #9 rechecked the image
interpretation results.

Nodule segmentation and radiomics
feature extraction

CT images (DICOM format) were retrieved from the
institution archive and loaded into a personal computer for
further analysis. The volume of interest (VOI) was automatically
segmented using a homemade software MultiLabel (version 1.1,
Shanghai Key Laboratory of Magnetic Resonance, East China
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Normal University, China). Manual adjustment for the precise
edge of the VOI was performed by author #1 if the border of the
lesion was undefined or to ensure the large vessels and
bronchioles were excluded from the VOI (Supplementary
Figure S2). Author #9 reviewed the VOIs to ensure accurate
segmentation. Then, the whole set of CT images with VOI
segmentation information was converted to NII format for
further radiomics analysis.

We normalized all images with the following formula: f(x)=
1000 (x—LL.)/ Oy, where i, and o, denote the mean and standard
deviation of the image intensity, respectively, before 3D
radiomics features were extracted from the original image with
PyRadiomics (Ver. 3.0) (30). We extracted 105 commonly used
features in radiomics analysis, including 18 gray-level histogram
features (e.g., mean, kurtosis, skewness), 14 shape features (e.g.,
compactness, sphericity), and 73 high-order texture features
[gray-level co-occurrence matrix (GLCM), gray-level run-
length matrix (GLRLM), gray-level size-zone matrix (GLSZM),
and neighborhood gray-tone difference matrix (NGTDM)].
Most features defined by Pyradiomics follow feature
definitions as described by the Imaging Biomarker
Standardization Initiative (IBSI) (31).

In order to check the inter- and intra-observer reproducibility
of the 105 radiomics features that we extracted, 60 cases (20 AIS,
20 MIA, and 20 IAC) were randomly chosen for analysis. Author
#1 and author #3 repeated the nodule segmentation procedure for
the selected 60 cases separately approximately 3 months later. The
intra- and inter-observer agreement of the 105 extracted features
were assessed by interclass correlation coefficients and ICCs. An
ICC greater than 0.75 indicated good reproducibility of the

feature extraction.

Feature selection and rad-score building

Firstly, all features were normalized with z-score (subtracted
mean value and divided by standard deviation), then minimum-
Redundancy Maximum Relevance (nRMR) was used to remove
redundant features. The remaining 30 features were used to
build the radiomics model with least absolute shrinkage and
selection operator (LASSO), a classifier suitable for high-
dimensional data regression. Parameter and thus the
appropriate number of the most weighted predictive features
was determined using a 10-fold cross-validation over the
derivation set. To minimize the number of features in the final
model, we chose the model with the least number of features and
a binomial deviance within 1 standard deviation from the
minimum binomial deviance.

After the model had been built, Rad-score, namely, the
predictive probability of the radiomics model for each patient,
was calculated via a linear combination of the selected most
weighted features with their respective coefficients.
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Statistical analyses

Univariable and multivariable logistic regression analyses
were carried out on the clinical and radiographic features of the
derivation set to determine the independent predictors for IAC
and establish the clinical-radiographic model. The independent
predictors and Rad-score were analyzed using multivariable
logistic regression; thus, a combined model and an individual
prediction nomogram were constructed. Receiver operating
characteristic (ROC) curve analysis was used to evaluate the
performance of the clinical-radiographic model, radiomics
model, and combined model in the derivation, internal
validation, and external validation sets. The optimal cutoff
value was determined by Youden index in the ROC analysis.
DeLong’s test was also used to compare the performance of the
models. Model evaluation metrics such as positive predictive
value (PPV), negative predictive value (NPV), Fl-score, and
Matthews correlation coefficient (MCC) were calculated to
identify the best prediction model. Waterfall plot was used to
show the prediction probability of all patients, and calibration
curves were plotted to analyze the diagnostic performance of the
nomogram in each dataset. Hosmer-Lemeshow test and
decision curve analysis (DCA) were used to evaluate the
goodness of fit and clinical value of the nomogram.

Statistical analysis was performed using IBM SPSS software
(version 26.0; https://www.ibm.com) and R software (version
4.1.0; https://www.r-project.org). Specifically, we used rms
package for calibration analysis, ResourceSelection package for
Hosmer-Lemeshow test, rmda for DCA, mRMRe for feature
selection, and glmnet for LASSO. p-values <0.05 were considered
statistically significant.

Results

Predictive performance of the clinical-
radiographic model

Supplementary Table S2 showed the inter-observer agreement
for the radiographic sign evaluation and measurement of PSNs.
The Kappa values for lesion measurement and radiographic
features evaluation were medium to high.

It can be seen from Table 1 that there were no statistically
significant differences between the derivation set and internal/
external validation set in the comparison of clinical and
radiographic features.

Table 2 and Figure 2 present the comparison on the clinical
and radiographic features between AIS/MIA and IAC in the
derivation, internal validation, and external validation sets.
Univariable and multivariable logistic regression analyses in
the derivation set revealed the maximum diameter [odds ratio
(OR) 3.62, 95% confidence interval (CI) 2.26-5.80, p < 0.001],
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lesion shape (OR 1.89, 95% CI 1.26-2.81, p = 0.002), vacuole sign
(OR 1.89, 95% CI 1.07-3.32, p = 0.028), microvascular sign (OR
1.91, 95% CI 1.31-2.79, p = 0.001), and maximum diameter of
the solid component (OR 26.83, 95% CI 6.81-105.76, p < 0.001)
were independent predictors for IAC.

The Az value of the clinical-radiographic model was 0.779
(95% CI 0.747-0.809) in the derivation set, 0.810 (95% CI 0.762—
0.852) in the internal validation set, and 0.855 (95% CI 0.799-
0.901) in the external validation set (Figure 3).

Feature selection and rad-score building

The inter-observer ICCs, calculated on the basis of author #1’s
first-extracted 105 features and those of author #3 ranged from
0.80 to 0.99 (Supplementary Table S3). The intra-observer ICCs,
calculated based on author #1’s twice feature extraction ranged
from 0.84 to 0.99 (Supplementary Table S4). Therefore, the 105
features we extracted proved robust and achieved satisfactory
inter- and intra-observer reproducibility.

A Rad-score was calculated for each patient based on seven
features with non-zero coefficients selected from the 105 robust
radiomics features using a LASSO logistic regression model (A =
0.039727) (Figures 4A, B).

Rad-score = 0.831176 * gldm_DependenceEntropy

+ 0.301168 * firstorder_RootMeanSquared

- 0.004266 * shape_SurfaceVolumeRatio

+ 0.336894 * shape_Maximum2DDiameterSlice

+ 0.155065 * firstorder_90Percentile

+ 0.107055 * glem_JointEntropy

+ 0.039099 * shape_Maximum2DDiameterColumn - 0.101629

The bar chart of the coefficients of features used in the model
is shown in Figure 4C.

The Az value of the radiomics model was 0.865 (95% CI
0.839-0.889) in the derivation set, 0.884 (95% CI 0.843-0.917) in
the internal validation set, and 0.924 (95% CI 0.878-0.957) in the
external validation set (Figure 3).

Prediction nomogram construction
and validation

Multivariable logistic regression analysis identified the Rad-
score (OR 2,232.55, 95% CI 650.95-7656.89, p < 0.001),
maximum diameter (OR 0.40, 95% CI 0.21-0.75, p = 0.004),
and lesion shape (OR 1.94, 95% CI 1.23-3.06, p = 0.004) as
independent predictors for IAC. All of these parameters were
used to develop a prediction nomogram. Representative
examples of the nomogram to predict the invasiveness are
given in Figures 5.

The Az value of the combined model was 0.872 (95% CI
0.846-0.895) in the derivation set, 0.887 (95% CI 0.847-0.920) in
the internal validation set, and 0.917 (95% CI 0.869-0.951) in the
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TABLE 1 Comparison of clinical and radiographic characteristics between derivation and internal/external validation sets.

Characteristics

Clinical Characteristics
Age (years)
Sex (Men/Women)
Smoking history (Yes/No)
CEA (ng/ml)
History of COPD (Yes/No)
History of other cancers (Yes/No)
Family history of lung cancer (Yes/No)
Radiographic Characteristics
Lesion location
Right upper lobe
Right middle lobe
Right lower lobe
Left upper lobe
Left lower lobe
Maximum diameter (cm)
Maximum diameter of the solid component (cm)
CTR (%)
Lesion shape
Round/Oval
Irregular
Lesion border

Defined

Undefined
Vacuole sign (Yes/No)
Air bronchogram (Yes/No)
Microvascular sign (Yes/No)

Pleural indentation (Yes/No)

Derivation set
(n =735)

5427 + 10.90
227 (30.9)/508 (69.1)
89 (12.1)/646 (87.9)

1.96 + 1.28
50 (6.8)/685 (93.2)
53 (7.2)/682 (92.8)
34 (4.6)/701 (95.4)

271 (36.9)
50 (6.8)

119 (16.2)
182 (24.7)
113 (15.4)
1.25 +0.43
031 +0.13

25.89 £ 11.23

537 (73.1)
198 (26.9)

587 (79.9)

148 (20.1)
79 (10.7)/656 (89.3)
81 (11.0)/654 (89.0)
226 (30.7)/509 (69.3)
228 (31.0)/507 (69.0)

10.3389/fonc.2022.900049

Internal validation set  External validation set p value p’ value

(n = 315) (n = 198)

53.91 + 11.91 54,90 + 12.29 0.364° 0.512°
101 (32.1)/214 (67.9) 58 (29.3)/140 (70.7) 0.760° 0.666"
36 (11.4)/279 (88.6) 20 (10.1)/178 (89.9) 0.835" 0.435"

2.08 + 1.60 2.02 + 127 0.189* 0.568°
18 (5.7)/297 (94.3) 9 (4.5)/189 (95.5) 0.603" 0.247°
21 (6.7)/294 (93.3) 16 (8.1)/182 (91.9) 0.854° 0.678"
15 (4.8)/300 (95.2) 14 (7.1)/184 (92.9) 0.676" 0.167°
0.833" 0.224°

117 (37.1) 61 (30.8)

22 (7.0) 17 (8.6)

49 (15.6) 30 (15.2)

86 (27.3) 63 (31.8)

41 (13.0) 27 (13.6)
1.26 + 0.43 1.20 + 0.41 0.236° 0.215°
0.30 +0.13 030 +0.14 0.493° 0.738"
26.09 + 13.95 27.12 + 13.01 0.359° 0.474°
0.717° 0.175"

226 (71.7) 135 (68.2)

89 (28.3) 63 (31.8)
0.920° 0.350"

250 (79.4) 164 (82.8)

65 (20.6) 34 (17.2)
32 (10.2)/283 (89.8) 17 (8.6)/181 (91.4) 0.861° 0.374°
28 (8.9)/287 (91.1) 14 (7.1)/184 (92.9) 0.354" 0.103"
98 (31.1)/217 (68.9) 63 (31.8)/135 (68.2) 0.850° 0.773°
110 (34.9)/205 (65.1) 73 (36.9)/125 (63.1) 0.243" 0.118"

CEA, carcinoembryonic antigen; COPD, chronic obstructive pulmonary disease; CTR, consolidation-to-tumor ratio.

Values are presented as no. (%) or mean + standard deviation.
*Mann-Whitney U test. "Pearson’s chi-square test and Fisher’s exact test.

p value: Derivation set vs. Internal validation set; p’ value: Derivation set vs. External validation set.

external validation set (Figure 3). It can be seen from the detailed
metrics listed in Table 3 that the radiomics models showed
superior predictive performance than the clinical-radiographic
models in all sets; however, the combined models showed
comparable predictive performance to the radiomics models.

The calibration curve of the radiomics nomogram smoothed
with bootstrapping also indicated good agreement between
predicted probability and actual occurrence in the derivation,
internal validation, and external validation sets (Figure 6A). The
Hosmer-Lemeshow test indicated no significant difference
between the combined model’s predictions and the observed
values in the derivation, internal validation, and external
validation sets (p = 0.779, p = 0.580, p = 0.209, respectively),
implying the model’s good generalization.

Figure 6B showed the decision curves of the developed
models on both the internal and external validation sets. It
would be more beneficial to use a model with Rad-score for
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identifying the invasive lesions than that without the Rad-score
if the threshold probability of a patient was in the range of
10%~85%.

Waterfall plots of the combined model on both the internal
and external validation sets were shown in Figure 6C. The cutoff
value was set by maximizing the Youden index in the derivation
set. From the waterfall plots, it can be seen clearly that the
combined model can differentiate IAC from AIS/MIA well.

Discussion

Our research objective was to predict the invasiveness of
lung adenocarcinoma manifesting as PSNs with solid
components <6 mm. We confirmed that radiomics was
superior to the clinical-radiographic model and showed
comparable predictive performance to the combined model in
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TABLE 2 Comparison on the clinical and radiographic characteristics between AlS-MIA and IAC in the derivation, internal validation, and external validation sets.

Characteristics

Clinical Characteristics
Age (years)
Sex (Men/Women)
Smoking history (Yes/No)
CEA (ng/ml)
History of COPD (Yes/No)
History of other cancers (Yes/No)
Family history of lung cancer (Yes/No)
Radiographic Characteristics
Lesion location
Right upper lobe
Right middle lobe
Right lower lobe
Left upper lobe
Left lower lobe
Maximum diameter (cm)
Maximum diameter of the solid component (cm)
CTR (%)
Lesion shape
Round/Oval
Irregular
Lesion border
Defined
Undefined
Vacuole sign (Yes/No)
Air bronchogram (Yes/No)
Microvascular sign (Yes/No)

Pleural indentation (Yes/No)

Derivation set (n =735)

AIS-MIA group

(n = 383)

5247 + 11.18

101 (26.4)/282 (73.6)

34 (8.9)/349 (91.1)
1.81 + 1.14

21 (5.5)/362 (94.5)

20 (5.2)/363 (94.8)

20 (5.2)/363 (94.8)

148 (38.6)
25 (6.5)
58 (15.1)
99 (25.9)
53 (13.9)

1.09 +0.38

026 +0.11

2572 + 11.53

326 (85.1)
57 (14.9)

313 (81.7)

70 (18.3)
24 (6.3)/359 (93.7)
23 (6.0)/360 (94.0)
68 (17.8)/315 (82.2)
95 (24.8)/288 (75.2)

IAC group
(n = 352)

56.23 + 10.24

126 (35.8)/226 (64.2)

55 (15.6)/297 (84.4)
2.12 + 1.40

29 (8.2)/323 (91.8)

33 (9.4)/319 (90.6)

14 (4.0)/338 (96.0)

123 (34.9)
25 (7.1)
61 (17.3)
83 (23.6)
60 (17.1)

142 + 042

035 +0.14

26.07 + 10.90

211 (59.9)
141 (40.1)

274 (77.8)

78 (22.2)
55 (15.6)/297 (84.4)
58 (16.5)/294 (83.5)

158 (44.9)/194 (55.1)
133 (37.8)/219 (62.2)

p value

0.000°
0.006"
0.005"
0.003"
0.138°
0.030°
0.422°

0.571°

0.000°
0.000°
0.424°
0.000°

0.190°

0.000°
0.000°
0.000°
0.000°

Internal validation set (n = 315)

AIS-MIA group

(n=164)

5231 + 12,62
51 (31.1)/113 (68.9)
11 (6.7)/153 (93.3)
197 +1.75
6 (3.7)/158 (96.3)
7 (4.3)/157 (95.7)
7 (4.3)/157 (95.7)

64 (39.0)
7 (4.3)

28 (17.1)
47 (28.7)

18 (10.9)
1.08 + 0.34
025 +0.10

25.67 + 1322

141 (86.0)
23 (14.0)

139 (84.8)
25 (15.2)

16 (9.8)/148 (90.2)
7 (4.3)/157 (95.7)
30 (18.3)/134 (81.7)
42 (25.6)/122 (74.4)

IAC group
(n = 151)

55.64 + 10.88
50 (33.1)/101 (66.9)
25 (16.6)/126 (83.4)
220 + 1.41
12 (7.9)/139 (92.1)
14 (9.3)/137 (90.7)
8 (5.3)/143 (94.7)

53 (35.1)
15 (9.9)
21 (13.9)
39 (25.8)
23 (15.3)
1.45 + 0.44
0.34 + 0.13
26.54 + 14.74

85 (56.3)
66 (43.7)

111 (73.5)

40 (26.5)
16 (10.6)/135 (89.4)
21 (13.9)/130 (86.1)
68 (45.0)/83 (55.0)
68 (45.0)/83 (55.0)

p value

0.016"
0.702°
0.006"
0.017*
0.101°
0.075°
0.668"

0.217°

0.000*
0.000°
0.793*
0.000°

0.014°

0.805"
0.003"
0.000°
0.000°

External validation set (n = 198)

AIS-MIA group

(n=104)

5221 + 12.89
27 (26.0)/77 (74.0)
8 (7.7)/96 (92.3)
1.83 + 1.04
4 (3.8)/100 (96.2)
7 (6.7)/97 (93.3)
6 (5.8)/98 (94.2)

27 (26.0)
10 (9.6)
21 (20.2)
31 (29.8)
15 (14.4)
0.99 + 0.26
024 + 0.10
25.77 + 1279

83 (79.8)
21 (20.2)

82 (78.8)
22 (21.2)
5 (4.8)/99 (95.2)
6 (5.8)/98 (94.2)
25 (24.0)/79 (76.0)
30 (28.8)/74 (71.2)

IAC group
(n =94)

58.99 + 10.19
31 (33.0)/63 (67.0)
12 (12.8)/82 (87.2)
223 + 145
5 (5.3)/89 (94.7)
9 (9.6)/85 (90.4)
8 (8.5)/86 (91.5)

34 (36.2)
7 (7.4)
9 (9.6)

32 (34.0)
12 (12.8)
142 + 043
037 +0.14
28.62 + 13.15

52 (55.3)
42 (44.7)

82 (87.2)
12 (12.8)

12 (12.8)/82 (87.2)
8 (8.5)/86 (91.5)
38 (40.4)/56 (59.6)
43 (45.7)/51 (54.3)

AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IAC, invasive adenocarcinoma; CEA, carcinoembryonic antigen; COPD, chronic obstructive pulmonary disease; CTR, consolidation-to-tumor ratio.
Values are presented as no. (%) or mean + standard deviation.
*Mann-Whitney U test. "Pearson’s chi-square test and Fisher’s exact test.

p value

0.000°
0.279"
0.237°
0.025"
0.877°
0.463"
0.452°

0.200°

0.000*
0.000°
0.112°
0.000°

0.118°

0.046"
0.452°
0.013"
0.014°

‘|e @ bueyz
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FIGURE 2

For the PSNs included in our study, thin-section CT radiographic features were evaluated. The lesion shape is evaluated as (A) round/oval or (B)
irregular. The lesion border is evaluated as (A, B) defined and (C) undefined. (D) Vacuole sign: MIA in the right upper lobe exhibits a bubble-like
lucency within the nodule (white arrow). (E) Air bronchogram sign: MIA in the right lower lobe shows air-filled bronchi present inside the lesion
(white arrowhead). (F) Pleural indentation: MIA in the left lower lobe shows pleural indentation adjacent to the oblique fissure (black arrow). (G,
H) Microvascular sign: IAC in the right upper lobe shows a small adjacent pulmonary vessel entering the lesion (black dotted arrow). Reverse
tracing shows that the blood vessel is a branch of the pulmonary artery. Coronal reconstruction better shows the dilation of the supplying vessel

(black arrowhead)

Sensitivty

FIGURE 3

Derivation set
Clinical-radiographic model: 0.779 (0.747-0.809)
—— Radiomics model: 0.865 (0.839-0.889)

Combined model: 0.872 (0.846-0.895)

L L 1 1

w0 60 E3 100
100-Speciticity

Sonsitvty

Internal validation set

Clinical-radiographic model: 0.810 (0.762-0.852)
—— Radiomics model: 0.884 (0.843-0.917)
Combined model: 0.887 (0.847-0.920)

Sensiivty

External validation set

Clinical-radiographic model: 0.855 (0.799-0.901)
Radiomics model: 0.924 (0.878-0.957)
Combined model: 0.917 (0.869-0.951)

The Az value of the three models in the derivation set, internal validation set, and external validation set. Radiomics showed superior predictive
performance than clinical-radiographic models in all sets; however, the combined models showed comparable predictive performance to the

radiomics models.

differentiating IAC from AIS/MIA. It seems that radiomics can
provide a simple and robust prediction method for accurate
preoperative judgment of lesion invasiveness.

Our statistical analysis of the patients’ clinical data shows
that the incidence of IAC increased with age, male gender,
smoking history, and high CEA level, which is consistent with
the results of previous studies (32). Although some studies have
found that patients with COPD, history of other cancers, and
family history of lung cancer were more susceptible to lung
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cancer (33, 34), our data show that these features have no
statistical significance in predicting the invasiveness of PSNs.
Maximum diameter, lesion shape, vacuole sign, and
microvascular sign were considered independent predictors for
IAC in our study. The size of PSNis is significantly related to the
risk of malignancy and is the leading factor in the management
of PSNs. In our study, the average maximum diameter of IAC
was significantly larger than that of AIS/MIA (1.42 cm vs.
1.09 cm, p < 0.001), and the predicted cutoff value for TAC
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FIGURE 4

Features selection using the LASSO regression model and the selection of the tuning parameter A. (A) Change of binomial deviance with log(A).
The maximum log(A) corresponding to the binomial deviance within 1 standard error from the minimum binomial deviance was chosen for the
final model. (B) Change of the number of features with non-zero coefficients with log(A), as determined in a 10-fold validation. (C) Coefficients

of the seven features retained in the model.

was 1.18 cm. Li et al. (35) and Zhou et al. (36) confirmed that the
maximum diameter is an independent predictor of the
invasiveness of PSNs, and the predicted cutoft values for TAC
in their studies were 1.65 and 1.96 cm, respectively, which were
significantly higher than ours. This difference could be due to the
fact that other studies included PSNs with solid components >6
mm, which may be more aggressive and have larger diameters.
As the invasiveness of PSNs increased, their morphology became
irregular and the probability of vacuole formation increased due
to the proliferation of fibroblasts, tumor cell infiltration in the
lung interstitium, and heterogeneity of growth speed inside the
tumor (37). Vascular remodeling and sustained angiogenesis
play an important role in the early development and progression
of tumors (38). When tumor cells infiltrate the pulmonary
interstitium, they will create traction on the surrounding blood
vessels, causing them to stiffen, twist, and aggregate. Many
previous studies have confirmed that irregular shape, vacuole
sign, and microvascular sign are more frequently seen in IAC
manifesting as PSNs, but no studies considered any of these
features as independent predictors (32, 35, 36). The main reason
may be that their predictive model was based on the
comprehensive analysis of both radiographic features and
quantitative parameters instead of only analyzing radiographic
features as we did in our study. Zhao et al. (39) found that the
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mean CT value showed superior predictive performance
compared with irregular shape and microvascular sign and
was considered to be an independent predictor for IAC. In
addition, the different findings could also be due to the exclusion
of PSNs with solid components 26 mm from our study and the
difference in sample size. At present, there are a few studies on
PSNs with solid components <6 mm; hence, more studies are
needed to determine which radiographic features can be used as
the best predictors for invasiveness, and our research results
need further verification.

Previous studies have confirmed that measuring the
maximum size of solid components or comparing the CTR is
more accurate than measuring the maximum diameter of lesions
in predicting the invasiveness of PSNs (12, 40). Our study also
confirmed that the maximum size of solid components was an
independent predictor for IAC. The CTR calculated in our study
showed no significant statistical difference between IAC and
AIS/MIA. It may be because our study excluded PSNs with solid
components =6 mm while maintaining the same size enrollment
criteria of the lesions (5-30 mm) with previous studies.
Although we can clearly identify solid components smaller
than 6 mm in PSNs with the aid of automatic segmentation
software, errors still exist to a certain extent in the measurement
of solid components. No studies focused on the solid component
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(A) A 45-year-old woman with IAC in the right middle lobe shows a regular shape and with a diameter of 1.26 cm. The nomogram shows that
this case had a total of 90 points after summing all points (69 + 21 + 0), which corresponds to a 79.6% probability of IAC. (B) A 26-year-old
woman with MIA in the right upper lobe shows an irregular shape and with a diameter of 1.32 cm. The nomogram shows that this case had a
total of 69 points after summing all points (41 + 20 + 8), which corresponds to a 44.3% probability of IAC. (C) A 36-year-old woman with AlS in
the right upper lobe shows a regular shape and with a diameter of 1.34 cm. The nomogram shows that this case had a total of 59 points after
summing all points (39 + 20 + 0), which corresponds to a 25.9% probability of IAC.

analysis in PSNs with solid components <6 mm before; our
research results also need further verification.

In addition to the analysis of radiographic features, there
have been many studies using quantitative parameters to predict
the invasiveness of PSNs. Lower kurtosis and bigger mass were
confirmed as significant differentiators of IAC from AIS/MIA by
Chae et al. (41). Ko et al. (27) demonstrated that the total volume
and percentage solid volume measurements of PSNs helped
differentiate between IAC and AIS/MIA with an accuracy of
73.2%. Therefore, although previous studies are numerous, their
results vary due to differences in sample size, quantitative
parameters, and analysis methods. For this reason, it is still
unclear which parameters contribute the most to the prediction
of invasiveness of PSNs. The classification of PSNs can still be
challenging for radiologists. However, there were few pieces of
research that focused on PSNs with solid component <6 mm. Qi
etal. (42) illustrated that the mass of PSNs with solid component
<6 mm, with the best cutoft value of 283.2 mg, was the only
independent predictor for IAC, and the Az value was 0.859;
sensitivity was 68.7% and specificity was 92.9%, which were
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lower than those achieved by the radiomics model in the external
validation set of our study (Az value 0.924, sensitivity 83.5%,
specificity 84.2%).

During the growth and evolution of PSN, as the invasive
components containing structural deformities of the stromal
elastic fiber framework increase within a homogeneous lepidic
or acinar background, the diameter and density of the lesion will
increase, the shape will become irregular, and the pixel values will
become inhomogeneous. In the seven selected most identifiable
radiomics features in our study, gldm_DependenceEntropy and
glem_JointEntropy reflect the uniformity of texture and gray scale,
higher Entropy value represents the inhomogeneous of pixels in
the tumor and greater probability of IAC. Son et al. (43) reviewed
191 resected ground-glass opacity nodules with little or no solid
component and identified entropy as an independent predictor
for TAC, which is consistent with our results to some extent.
Firstorder_RootMeanSquared and firstorder_90Percentile reflect
the brightness and shape_Maximum2DdiameterSlice and
shape_Maximum2DdiameterColumn reflect the maximum 2D
diameter, which were all positively correlated with the
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0.398
0.415

63.2

0.569
0.607

81.5 78.9 78.2 78.5 0.770
0.794

75.3

>0.456

0.865 (0.839-0.889)

Radiomics model

64.5

82.0 80.1 80.7 80.4

78.7

>0.494

0.872 (0.846-0.895)

Combined model

Internal validation set

0.279

53.0

0.439

76.8 72.7 71.6 72.1 0.697

66.9

0.810 (0.762-0.852) >0.416

0.884 (0.843-0.917)

Clinical-radiographic model

0.444
0.466

66.8

83.5 81.4 80.6 81.0 0.797 0.618
0.815

78.1

>0.531

Radiomics model

68.4

0.650

80.1 84.8 82.9 822 82.5

>0.560

0.887 (0.847-0.920)

Combined model

External validation set

0.367
0.535

60.9

80.8 77.0 75.7 76.3 0.740 0.523
0.835

71.3

0.855 (0.799-0.901) >0.419

Clinical-radiographic model

73.3

0.613

84.2 83.5 84.2 83.8

83.5

>0.444

0.924 (0.878-0.957)

Radiomics model

0.542

73.8

0.707

84.5 86.1 85.4 85.3 85.4 0.850

>0.472

0.917 (0.869-0.951)

Combined model

Az, area under the receiver operating curve; CI, confidence interval; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; ACC, accuracy; MCC, Matthews correlation coefficient; AIC, Akaike information criterion;

AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IAC, invasive adenocarcinoma.
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significant density and diameter difference between IAC and AIS/
MIA. As the invasiveness of PSNs increase, their shape will
become irregular and with higher surface/volume ratio, so it is
reasonable that shape_SurfaceVolumeRatio is retained in our
radiomics model.

In our study, radiomics outperformed the clinical-
radiographic model in predicting the invasiveness of PSNs
with solid components <6 mm. In the research of Sun et al.
(25), radiomics also showed superior predictive performance
compared with the clinical-radiographic model in predicting the
invasiveness of NSNs. However, compared with radiomics, our
combined model did not demonstrate any significant
improvement in predictive ability, which was different from
the study of Sun et al. This difference can be explained by the fact
that we can only extract finite subjective and semiquantitative
information from CT images by the naked eyes, while radiomics
can analyze conventional descriptive signs and transform image
data into spatial data that can be mined in depth and
quantitatively analyzed. Some radiographic features we
analyzed are probably included in the features extracted
by radiomics. Which surprised us was that both the radiomics
and the combined model achieved better results in the external
validation set than in the internal validation set in our study.
We studied the distribution of contributing features in these
datasets, and the distributions of the two most weighted features
(gldm_DependenceEntropy, shape_Maximum2DDiameter
Slice) were visualized with violin-box plot in Supplementary
Figure S3. It can be seen that the differences between the
distributions of these two features in the positive and negative
samples are larger in the external validation set. Therefore, it is
understandable that models using these features achieved better
results over those of the external validation set.

Deep learning has also been used to predict the invasiveness
of PSNs. Kim et al. (44) developed a deep learning model using
2.5D CT images and confirmed that it performed better than the
size-based logistic model in distinguishing between IAC and
AIS/MIA. However, a deep learning model based on 3D
convolutional neural networks in the study by Park et al. (45)
showed comparable classification performance with the
radiologists’ measurements of solid component size in PSNs.
The deep learning method learns features from data and avoids
the burden of identifying the effective features manually in
images without lesion segmentation. However, deep learning
has its own limitations: a large number of cases are needed to
train the established model and the interpretability is very
limited, users cannot get an effective explanation of the
classification results (46, 47). Nevertheless, after expanding the
number of cases, we will try to apply the deep learning method to
our studies.

Although yearly surveillance CT is recommended for PSNs
with solid components <6 mm by Fleischner Society guidelines,
the treatment of an individual should also be guided by the
probability that the nodule is an TAC and patient preferences.
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(A) Calibration curves of the combined model indicated good agreement between the predicted probability and actual occurrence in the
derivation, internal validation, and external validation sets. (B) Decision curve analysis on both the internal and external validation sets for the
models with and without Rad-score. It can be seen that if the threshold probability of a patient is in the range of 0.10~0.85, using a model with
the Rad-score to predict the invasive lesion would be more beneficial than using one without the Rad-score. (C) Waterfall plot of the combined
model showing the predicted probabilities of internal and external validation sets. It can be seen clearly that the combined model can

differentiate IAC from AIS/MIA well.

Patients without risk factors (COPD history, family history of
lung cancer, etc.) and lower predicted TAC possibility can be
followed up routinely and avoid unnecessary surgery. But closer
follow-up should be recommended for patients with risk factors
and higher predicted IAC possibility. In our study, 16 TAC cases
with solid components <6 mm were classified as pT2 stage
because of the presence of pleural invasion. So, the accurate IAC
prediction in PSNs with solid components <6 mm has important
clinical value in the individualized clinical management (routine
or closer follow-up, even resection for patients desire surgery)
and selection of surgical methods. Our research may provide an
individualized clinical management supplement to Fleischner
Society guidelines to improve the diagnostic accuracy of
radiologists and avoid unnecessary surgery for some patients
or provide a clinical basis for some necessary surgeries.

Frontiers in Oncology 12

Our study has several limitations. First, all VOIs of the lesion
were automatically segmented using software, but as to the lesions
with an unclear tumor-lung interface, the segment will be
inaccurate and affects the result of data analysis. Manual
segmentation is necessary at this time, but the process is tedious
and vulnerable to readers’ subjectivity. Second, the clinical-
radiographic model in our study was established by the authors
#1, #3, and #9 (with 10, 7, and 16 years’ experience in chest CT
imaging, respectively); it cannot represent the best diagnostic
performance of all radiologists. More radiologists should be
enrolled and the “reader performance study” can be performed
in our future study. Lastly, numerous radiomics investigations
have been published, but the robustness and generalizability of
radiomics models still remain questionable and need to be verified
by clinical practice. Although we have confirmed that the
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radiomics features we extracted achieved satisfactory inter- and
intra-observer reproducibility and an external validation set from
another hospital was also introduced in our study, multicenter
research is still necessary in the future study.

Conclusions

Radiomics has been proven to achieve outstanding
classification performance in classifying PSNs with solid
components <6 mm. It has the potential as an independent
diagnostic tool to improve the classification ability of
radiologists or thoracic surgeons and save their time and effort
without compromising diagnostic accuracy.
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