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Objective: To investigate whether radiomics can help radiologists and thoracic

surgeons accurately predict invasive adenocarcinoma (IAC) manifesting as

part-solid nodules (PSNs) with solid components <6 mm and provide a basis

for rational clinical decision-making.

Materials andMethods: In total, 1,210 patients (mean age ± standard deviation:

54.28 ± 11.38 years, 374 men and 836 women) from our hospital and another

hospital with 1,248 PSNs pathologically diagnosed with adenocarcinoma in situ

(AIS), minimally invasive adenocarcinoma (MIA), or IAC were enrolled in this

study. Among them, 1,050 cases from our hospital were randomly divided into

a derivation set (n = 735) and an internal validation set (n = 315), 198 cases from

another hospital were used for external validation. Each labeled nodule was

segmented, and 105 radiomics features were extracted. Least absolute

shrinkage and selection operator (LASSO) was used to calculate Rad-score

and build the radiomics model. Multivariable logistic regression was conducted

to identify the clinicoradiological predictors and establish the clinical-

radiographic model. The combined model and predictive nomogram were

developed based on identified clinicoradiological independent predictors and

Rad-score using multivariable logistic regression analysis. The predictive

performances of the three models were compared via receiver operating

characteristic (ROC) curve analysis. Decision curve analysis (DCA) was

performed on both the internal and external validation sets to evaluate the

clinical utility of the nomogram.

Results: The radiomics model showed superior predictive performance than

the clinical-radiographic model in both internal and external validation sets (Az

values, 0.884 vs. 0.810, p = 0.001; 0.924 vs. 0.855, p < 0.001, respectively). The
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combined model showed comparable predictive performance to the

radiomics model (Az values, 0.887 vs. 0.884, p = 0.398; 0.917 vs. 0.924, p =

0.271, respectively). The clinical application value of the nomogram developed

based on the Rad-score, maximum diameter, and lesion shape was confirmed,

and DCA demonstrated that application of the Rad-score would be beneficial

for radiologists predicting invasive lesions.

Conclusions: Radiomics has the potential as an independent diagnostic tool to

predict the invasiveness of PSNs with solid components <6 mm.
KEYWORDS

radiomics, nomogram, adenocarcinoma of lung, neoplasm invasiveness, tomography,
X-ray computed
Introduction
With the increasing use of low-dose computed tomography

(LDCT) in the screening of high-risk populations for lung

cancer, the detection rate of part-solid nodules (PSNs) has

been increasing, especially in Asian women and non-smokers

(1–4). Previous research has shown that persistent PSNs are

highly correlated with early-stage lung adenocarcinoma,

including invasive adenocarcinoma (IAC), minimally invasive

adenocarcinoma (MIA), and adenocarcinoma in situ (AIS)

(5–7).

Accurate differentiation between IAC and AIS/MIA

appearing as PSNs is critical and can determine the patient’s

treatment options. Unlike IAC, AIS/MIA can be resected by

limited wedge resection or segmentectomy rather than

lobectomy to maximize the preservation of functional

pulmonary parenchyma. Moreover, lymph node exploration is

not required for AIS/MIA (8, 9). For clinical management, as

long as the lesions suspected of AIS/MIA remain stable, the

strategy of conservative periodic follow-up with CT, with

surgical resection in case of lesion growth, has been widely

accepted by clinicians, ultimately avoiding unnecessary surgery

for patients (4, 10, 11).

One of the key factors to predict the invasiveness of PSNs is

the assessment of the size of the solid component within the

nodules, which is highly correlated with the pathologically

invasive foci of adenocarcinomas (12–14). For PSNs, a size

criterion of solid component diameter ≥6 mm is widely

accepted to discriminate IAC from AIS/MIA on CT, which is

also the newly revised threshold standard for T-factor staging of

adenocarcinoma. Most IACs commonly manifest as PSNs with

solid components ≥6 mm and can be easily and accurately

diagnosed by radiologists and thoracic surgeons (4, 15, 16). A

statement from the Fleischner Society suggested that surgical
02
resection should be considered if solid components were ≥6

mm in PSNs, while yearly surveillance CT is recommended for

PSNs with solid components <6 mm (4, 17). However, due to the

insufficient CT resolution, the ground-glass components of PSNs

may contain invasive foci that cannot be recognized by the naked

eyes; a large number of IAC cases also present as PSNs with solid

component <6 mm or even non-solid nodules (NSNs), which

were difficult to distinguish fromAIS/MIA, and closer follow-up is

needed for these lesions (18). Ahn et al. (19) indicated that the

sizes of the solid component measured on CT images commonly

underestimate the real size of invasive foci on pathology.

Therefore, it is a great challenge for radiologists to predict the

invasiveness of PSNs with a solid component <6 mm and NSNs

because of their pathological diversity.

Many studies regarding the invasiveness prediction of PSNs

have been reported with different methods, including

radiographic feature evaluation and quantitative analysis (20–

22). However, these studies have limitations: 1) there are no

limits set on the size of solid components in PSNs. If too many

PSNs with a solid component ≥6 mm (the pathological type is

mostly IAC) are included in a study, the predictive performance

may be exaggerated; 2) many evaluated radiographic features

show an overlap between IAC and AIS/MIA; 3) previous studies

used varied quantitative parameters and reported different

results, making it unclear whether these studies can help

radiologists improve the prediction performance.

Radiomics has been widely used to establish diagnosis and

prediction models for tumor grading and staging, treatment

outcome evaluation, and prognosis prediction by extracting and

selecting predefined subtle image features (23, 24). Sun et al. (25)

and Yuan et al. (26) have successfully used radiomics to predict

the invasiveness of NSNs and PSNs, respectively. However, few

studies have focused on the prediction of invasiveness of PSNs

with a solid component <6 mm, whose diagnosis remains

challenging for radiologists. Therefore, the purpose of our
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study was to investigate whether radiomics is able to help

radiologists accurately predict IAC manifesting as PSNs with

solid components <6 mm and provide a basis for rational clinical

decision-making.
Materials and methods

The ethical committee of our hospital approved this

retrospective study and waived the informed consent for the

patients (approval number: 2021-SR-053).
Data source and patient selection

We searched the institution’s database and collected the

clinical and imaging data of 3,326 patients who underwent

surgery in our hospital and were pathologically diagnosed with

AIS, MIA, or IAC from January 2015 to December 2020. The

dataset of our hospital included 1,012 patients (mean age ±

standard deviation, 54.16 ± 11.21 years, 316 men and 696

women) with 1,050 PSNs satisfying the following inclusion

criteria: 1) the lesions manifested as PSNs on CT imaging, with

the maximum diameter of the solid components <6 mm

(excluding bronchi and vessels); 2) the maximum diameter

of the PSNs was 5–30 mm; 3) non-enhanced CT scans were

performed within 2 weeks prior to surgery; 4) lesions were

completely removed, and the pathological diagnosis was

unambiguous. In accordance with previous studies, the

CT threshold of the solid components in PSNs was set to >-188

HU (27). Three-dimensional (3D) Slicer software (version 4.12;

National Institutes of Health; https://www.slicer.org) can

automatically identify solid components in PSNs. According to

the automatic segment results of the solid components in PSNs in
Frontiers in Oncology 03
3D Slicer software, authors #1 and #3 (with 10 and 7 years’

experience in chest CT imaging, respectively) separately measured

the maximum diameter of the solid components from the axial,

coronal, and sagittal images in Picture Archiving and

Communication System (PACS) (Supplementary Figure S1).

PSNs with solid components greater than 6 mm measured from

any direction will be excluded from the study. Author #9, a

radiologist with 16 years’ experience, reviewed the measurement

results of authors #1 and #3 to reach a consensus.

Finally, the dataset from our hospital was randomly divided

into a derivation set (735 cases: 67 AIS, 316 MIA, and 352 IAC)

and an internal validation set (315 cases: 29 AIS, 135 MIA, and

151 IAC) at a ratio of 7:3.

Authors #1, #3, and #9 used the same methods andreviewed

patients who underwent surgery in another hospital and were

pathologically diagnosed with AIS, MIA, or IAC from January

2020 to December 2020. Finally, 198 cases (25 AIS, 79 MIA, and

94 IAC) were enrolled in our study as the external validation set.

The workflow was illustrated in Figure 1.

None of the 597 IAC cases included in our study had lymph

node metastases. Only 16 IAC cases were classified as pT2 stage

because of the presence of pleural invasion and the rest were all

classified as pT1 stage according to the eighth edition of the

tumor, node, and metastasis (TNM) classification of lung cancer.
Diagnostic criteria

The resection specimens were fixed with formalin,

embedded in paraffin, sectioned, and stained with hematoxylin

and eosin. Author #6, a pathologist with 26 years’ work

experience, reviewed the pathological classification of all

specimens based on the 2011 classification criteria for lung

adenocarcinoma proposed by International Association for the
FIGURE 1

The workflow of our study.
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Study of Lung Cancer/American Thoracic Society/European

Respiratory Society (IASLC/ATS/ERS).
CT examination methods

All patients underwent CT examination using one of the

four CT scanners: SOMATOM Definition AS+, SOMATOM

Sensation 16, and GE Discovery CT750 HD of our hospital and

GE LightSpeed VCT of another hospital. The detailed scan and

reconstruction parameters and the number of patients

performed by each scanner were shown in Supplementary

Table S1.
Establishing the
clinical-radiographic model

The patient’s clinical information was collected from

electronic medical records, including: 1) age, 2) sex, 3)

smoking history, 4) carcinoembryonic antigen (CEA) level, 5)

history of chronic obstructive pulmonary disease (COPD), 6)

history of other cancers, and 7) family history of lung cancer.

Authors #1 and #3, who did not know the patients’ pathological

diagnosis, interpreted the CT images individually under lung

window settings (width, 1,200 Hu; level, -600 Hu). The

radiographic features of all lesions evaluated in this study

include the following: 1) lesion location; 2) maximal axial

diameter; 3) maximum axial diameter of the solid component;

4) consolidation-to-tumor ratio (CTR); 5) border (undefined or

defined); 6) shape (round/oval or irregular); 7) vacuole sign

(lesions with cystic cavities with the diameter <5 mm); 8) air

bronchogram sign (dilated bronchioles observed in lesions); 9)

microvascular sign (lesions with convergent, dilated, or tortuous

supplying vessels); and 10) pleural indentation sign (pleura

adjacent to lesions showed thickening or contraction). The

CTR (%) was calculated as 100×(maximum axial diameter of

the solid component/maximum axial diameter of the lesion)

referring to previous studies (28, 29). Kappa values and

intraclass correlation coefficients (ICCs) were calculated to

assess the consistency of the two authors’ evaluations. To

reach a consensus, author #9 rechecked the image

interpretation results.
Nodule segmentation and radiomics
feature extraction

CT images (DICOM format) were retrieved from the

institution archive and loaded into a personal computer for

further analysis. The volume of interest (VOI) was automatically

segmented using a homemade software MultiLabel (version 1.1,

Shanghai Key Laboratory of Magnetic Resonance, East China
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Normal University, China). Manual adjustment for the precise

edge of the VOI was performed by author #1 if the border of the

lesion was undefined or to ensure the large vessels and

bronchioles were excluded from the VOI (Supplementary

Figure S2). Author #9 reviewed the VOIs to ensure accurate

segmentation. Then, the whole set of CT images with VOI

segmentation information was converted to NII format for

further radiomics analysis.

We normalized all images with the following formula: f(x)=

1000∗(x−mx)/sx, where mx and sx denote the mean and standard

deviation of the image intensity, respectively, before 3D

radiomics features were extracted from the original image with

PyRadiomics (Ver. 3.0) (30). We extracted 105 commonly used

features in radiomics analysis, including 18 gray-level histogram

features (e.g., mean, kurtosis, skewness), 14 shape features (e.g.,

compactness, sphericity), and 73 high-order texture features

[gray-level co-occurrence matrix (GLCM), gray-level run-

length matrix (GLRLM), gray-level size-zone matrix (GLSZM),

and neighborhood gray-tone difference matrix (NGTDM)].

Most features defined by Pyradiomics follow feature

definitions as described by the Imaging Biomarker

Standardization Initiative (IBSI) (31).

In order to check the inter- and intra-observer reproducibility

of the 105 radiomics features that we extracted, 60 cases (20 AIS,

20 MIA, and 20 IAC) were randomly chosen for analysis. Author

#1 and author #3 repeated the nodule segmentation procedure for

the selected 60 cases separately approximately 3 months later. The

intra- and inter-observer agreement of the 105 extracted features

were assessed by interclass correlation coefficients and ICCs. An

ICC greater than 0.75 indicated good reproducibility of the

feature extraction.
Feature selection and rad-score building

Firstly, all features were normalized with z-score (subtracted

mean value and divided by standard deviation), then minimum-

Redundancy Maximum Relevance (mRMR) was used to remove

redundant features. The remaining 30 features were used to

build the radiomics model with least absolute shrinkage and

selection operator (LASSO), a classifier suitable for high-

dimensional data regression. Parameter and thus the

appropriate number of the most weighted predictive features

was determined using a 10-fold cross-validation over the

derivation set. To minimize the number of features in the final

model, we chose the model with the least number of features and

a binomial deviance within 1 standard deviation from the

minimum binomial deviance.

After the model had been built, Rad-score, namely, the

predictive probability of the radiomics model for each patient,

was calculated via a linear combination of the selected most

weighted features with their respective coefficients.
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Statistical analyses

Univariable and multivariable logistic regression analyses

were carried out on the clinical and radiographic features of the

derivation set to determine the independent predictors for IAC

and establish the clinical-radiographic model. The independent

predictors and Rad-score were analyzed using multivariable

logistic regression; thus, a combined model and an individual

prediction nomogram were constructed. Receiver operating

characteristic (ROC) curve analysis was used to evaluate the

performance of the clinical-radiographic model, radiomics

model, and combined model in the derivation, internal

validation, and external validation sets. The optimal cutoff

value was determined by Youden index in the ROC analysis.

DeLong’s test was also used to compare the performance of the

models. Model evaluation metrics such as positive predictive

value (PPV), negative predictive value (NPV), F1-score, and

Matthews correlation coefficient (MCC) were calculated to

identify the best prediction model. Waterfall plot was used to

show the prediction probability of all patients, and calibration

curves were plotted to analyze the diagnostic performance of the

nomogram in each dataset. Hosmer–Lemeshow test and

decision curve analysis (DCA) were used to evaluate the

goodness of fit and clinical value of the nomogram.

Statistical analysis was performed using IBM SPSS software

(version 26.0; https://www.ibm.com) and R software (version

4.1.0; https://www.r-project.org). Specifically, we used rms

package for calibration analysis, ResourceSelection package for

Hosmer–Lemeshow test, rmda for DCA, mRMRe for feature

selection, and glmnet for LASSO. p-values <0.05 were considered

statistically significant.
Results

Predictive performance of the clinical-
radiographic model

Supplementary Table S2 showed the inter-observer agreement

for the radiographic sign evaluation and measurement of PSNs.

The Kappa values for lesion measurement and radiographic

features evaluation were medium to high.

It can be seen from Table 1 that there were no statistically

significant differences between the derivation set and internal/

external validation set in the comparison of clinical and

radiographic features.

Table 2 and Figure 2 present the comparison on the clinical

and radiographic features between AIS/MIA and IAC in the

derivation, internal validation, and external validation sets.

Univariable and multivariable logistic regression analyses in

the derivation set revealed the maximum diameter [odds ratio

(OR) 3.62, 95% confidence interval (CI) 2.26–5.80, p < 0.001],
Frontiers in Oncology 05
lesion shape (OR 1.89, 95% CI 1.26–2.81, p = 0.002), vacuole sign

(OR 1.89, 95% CI 1.07–3.32, p = 0.028), microvascular sign (OR

1.91, 95% CI 1.31–2.79, p = 0.001), and maximum diameter of

the solid component (OR 26.83, 95% CI 6.81–105.76, p < 0.001)

were independent predictors for IAC.

The Az value of the clinical-radiographic model was 0.779

(95% CI 0.747–0.809) in the derivation set, 0.810 (95% CI 0.762–

0.852) in the internal validation set, and 0.855 (95% CI 0.799–

0.901) in the external validation set (Figure 3).
Feature selection and rad-score building

The inter-observer ICCs, calculated on the basis of author #1’s

first-extracted 105 features and those of author #3 ranged from

0.80 to 0.99 (Supplementary Table S3). The intra-observer ICCs,

calculated based on author #1’s twice feature extraction ranged

from 0.84 to 0.99 (Supplementary Table S4). Therefore, the 105

features we extracted proved robust and achieved satisfactory

inter- and intra-observer reproducibility.

A Rad-score was calculated for each patient based on seven

features with non-zero coefficients selected from the 105 robust

radiomics features using a LASSO logistic regression model (l =

0.039727) (Figures 4A, B).

Rad-score = 0.831176 * gldm_DependenceEntropy

+ 0.301168 * firstorder_RootMeanSquared

- 0.004266 * shape_SurfaceVolumeRatio

+ 0.336894 * shape_Maximum2DDiameterSlice

+ 0.155065 * firstorder_90Percentile

+ 0.107055 * glcm_JointEntropy

+ 0.039099 * shape_Maximum2DDiameterColumn - 0.101629

The bar chart of the coefficients of features used in the model

is shown in Figure 4C.

The Az value of the radiomics model was 0.865 (95% CI

0.839–0.889) in the derivation set, 0.884 (95% CI 0.843–0.917) in

the internal validation set, and 0.924 (95% CI 0.878–0.957) in the

external validation set (Figure 3).
Prediction nomogram construction
and validation

Multivariable logistic regression analysis identified the Rad-

score (OR 2,232.55, 95% CI 650.95–7656.89, p < 0.001),

maximum diameter (OR 0.40, 95% CI 0.21–0.75, p = 0.004),

and lesion shape (OR 1.94, 95% CI 1.23–3.06, p = 0.004) as

independent predictors for IAC. All of these parameters were

used to develop a prediction nomogram. Representative

examples of the nomogram to predict the invasiveness are

given in Figures 5.

The Az value of the combined model was 0.872 (95% CI

0.846–0.895) in the derivation set, 0.887 (95% CI 0.847–0.920) in

the internal validation set, and 0.917 (95% CI 0.869–0.951) in the
frontiersin.org
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external validation set (Figure 3). It can be seen from the detailed

metrics listed in Table 3 that the radiomics models showed

superior predictive performance than the clinical-radiographic

models in all sets; however, the combined models showed

comparable predictive performance to the radiomics models.

The calibration curve of the radiomics nomogram smoothed

with bootstrapping also indicated good agreement between

predicted probability and actual occurrence in the derivation,

internal validation, and external validation sets (Figure 6A). The

Hosmer–Lemeshow test indicated no significant difference

between the combined model’s predictions and the observed

values in the derivation, internal validation, and external

validation sets (p = 0.779, p = 0.580, p = 0.209, respectively),

implying the model’s good generalization.

Figure 6B showed the decision curves of the developed

models on both the internal and external validation sets. It

would be more beneficial to use a model with Rad-score for
Frontiers in Oncology 06
identifying the invasive lesions than that without the Rad-score

if the threshold probability of a patient was in the range of

10%~85%.

Waterfall plots of the combined model on both the internal

and external validation sets were shown in Figure 6C. The cutoff

value was set by maximizing the Youden index in the derivation

set. From the waterfall plots, it can be seen clearly that the

combined model can differentiate IAC from AIS/MIA well.
Discussion

Our research objective was to predict the invasiveness of

lung adenocarcinoma manifesting as PSNs with solid

components <6 mm. We confirmed that radiomics was

superior to the clinical-radiographic model and showed

comparable predictive performance to the combined model in
TABLE 1 Comparison of clinical and radiographic characteristics between derivation and internal/external validation sets.

Characteristics Derivation set
(n = 735)

Internal validation set
(n = 315)

External validation set
(n = 198)

p value p’ value

Clinical Characteristics

Age (years) 54.27 ± 10.90 53.91 ± 11.91 54.90 ± 12.29 0.364a 0.512a

Sex (Men/Women) 227 (30.9)/508 (69.1) 101 (32.1)/214 (67.9) 58 (29.3)/140 (70.7) 0.760b 0.666b

Smoking history (Yes/No) 89 (12.1)/646 (87.9) 36 (11.4)/279 (88.6) 20 (10.1)/178 (89.9) 0.835b 0.435b

CEA (ng/ml) 1.96 ± 1.28 2.08 ± 1.60 2.02 ± 1.27 0.189a 0.568a

History of COPD (Yes/No) 50 (6.8)/685 (93.2) 18 (5.7)/297 (94.3) 9 (4.5)/189 (95.5) 0.603b 0.247b

History of other cancers (Yes/No) 53 (7.2)/682 (92.8) 21 (6.7)/294 (93.3) 16 (8.1)/182 (91.9) 0.854b 0.678b

Family history of lung cancer (Yes/No) 34 (4.6)/701 (95.4) 15 (4.8)/300 (95.2) 14 (7.1)/184 (92.9) 0.676b 0.167b

Radiographic Characteristics

Lesion location 0.833b 0.224b

Right upper lobe 271 (36.9) 117 (37.1) 61 (30.8)

Right middle lobe 50 (6.8) 22 (7.0) 17 (8.6)

Right lower lobe 119 (16.2) 49 (15.6) 30 (15.2)

Left upper lobe 182 (24.7) 86 (27.3) 63 (31.8)

Left lower lobe 113 (15.4) 41 (13.0) 27 (13.6)

Maximum diameter (cm) 1.25 ± 0.43 1.26 ± 0.43 1.20 ± 0.41 0.236a 0.215a

Maximum diameter of the solid component (cm) 0.31 ± 0.13 0.30 ± 0.13 0.30 ± 0.14 0.493a 0.738a

CTR (%) 25.89 ± 11.23 26.09 ± 13.95 27.12 ± 13.01 0.359a 0.474a

Lesion shape 0.717b 0.175b

Round/Oval 537 (73.1) 226 (71.7) 135 (68.2)

Irregular 198 (26.9) 89 (28.3) 63 (31.8)

Lesion border 0.920b 0.350b

Defined 587 (79.9) 250 (79.4) 164 (82.8)

Undefined 148 (20.1) 65 (20.6) 34 (17.2)

Vacuole sign (Yes/No) 79 (10.7)/656 (89.3) 32 (10.2)/283 (89.8) 17 (8.6)/181 (91.4) 0.861b 0.374b

Air bronchogram (Yes/No) 81 (11.0)/654 (89.0) 28 (8.9)/287 (91.1) 14 (7.1)/184 (92.9) 0.354b 0.103b

Microvascular sign (Yes/No) 226 (30.7)/509 (69.3) 98 (31.1)/217 (68.9) 63 (31.8)/135 (68.2) 0.850b 0.773b

Pleural indentation (Yes/No) 228 (31.0)/507 (69.0) 110 (34.9)/205 (65.1) 73 (36.9)/125 (63.1) 0.243b 0.118b
front
CEA, carcinoembryonic antigen; COPD, chronic obstructive pulmonary disease; CTR, consolidation-to-tumor ratio.
Values are presented as no. (%) or mean ± standard deviation.
aMann–Whitney U test. bPearson’s chi-square test and Fisher’s exact test.
p value: Derivation set vs. Internal validation set; p’ value: Derivation set vs. External validation set.
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TABLE 2 Comparison on the clinical and radiographic characteristics between AIS-MIA and IAC in the derivation, internal validation, and external validation sets.

Characteristics Derivation set (n =735) p value Internal validation set (n = 315) p value External validation set (n = 198) p value

C group
= 151)

AIS-MIA group
(n = 104)

IAC group
(n = 94)

.64 ± 10.88 0.016a 52.21 ± 12.89 58.99 ± 10.19 0.000a

.1)/101 (66.9) 0.702b 27 (26.0)/77 (74.0) 31 (33.0)/63 (67.0) 0.279b

.6)/126 (83.4) 0.006b 8 (7.7)/96 (92.3) 12 (12.8)/82 (87.2) 0.237b

.20 ± 1.41 0.017a 1.83 ± 1.04 2.23 ± 1.45 0.025a

.9)/139 (92.1) 0.101b 4 (3.8)/100 (96.2) 5 (5.3)/89 (94.7) 0.877b

.3)/137 (90.7) 0.075b 7 (6.7)/97 (93.3) 9 (9.6)/85 (90.4) 0.463b

3)/143 (94.7) 0.668b 6 (5.8)/98 (94.2) 8 (8.5)/86 (91.5) 0.452b

0.217b 0.200b

53 (35.1) 27 (26.0) 34 (36.2)

15 (9.9) 10 (9.6) 7 (7.4)

21 (13.9) 21 (20.2) 9 (9.6)

39 (25.8) 31 (29.8) 32 (34.0)

23 (15.3) 15 (14.4) 12 (12.8)

.45 ± 0.44 0.000a 0.99 ± 0.26 1.42 ± 0.43 0.000a

.34 ± 0.13 0.000a 0.24 ± 0.10 0.37 ± 0.14 0.000a

.54 ± 14.74 0.793a 25.77 ± 12.79 28.62 ± 13.15 0.112a

0.000b 0.000b

85 (56.3) 83 (79.8) 52 (55.3)

66 (43.7) 21 (20.2) 42 (44.7)

0.014b 0.118b

11 (73.5) 82 (78.8) 82 (87.2)

40 (26.5) 22 (21.2) 12 (12.8)

.6)/135 (89.4) 0.805b 5 (4.8)/99 (95.2) 12 (12.8)/82 (87.2) 0.046b

.9)/130 (86.1) 0.003b 6 (5.8)/98 (94.2) 8 (8.5)/86 (91.5) 0.452b

5.0)/83 (55.0) 0.000b 25 (24.0)/79 (76.0) 38 (40.4)/56 (59.6) 0.013b

5.0)/83 (55.0) 0.000b 30 (28.8)/74 (71.2) 43 (45.7)/51 (54.3) 0.014b

structive pulmonary disease; CTR, consolidation-to-tumor ratio.

Z
h
an

g
e
t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
2
.9
0
0
0
4
9

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

0
7

AIS-MIA group
(n = 383)

IAC group
(n = 352)

AIS-MIA group
(n = 164)

IA
(

Clinical Characteristics

Age (years) 52.47 ± 11.18 56.23 ± 10.24 0.000a 52.31 ± 12.62 55

Sex (Men/Women) 101 (26.4)/282 (73.6) 126 (35.8)/226 (64.2) 0.006b 51 (31.1)/113 (68.9) 50 (3

Smoking history (Yes/No) 34 (8.9)/349 (91.1) 55 (15.6)/297 (84.4) 0.005b 11 (6.7)/153 (93.3) 25 (1

CEA (ng/ml) 1.81 ± 1.14 2.12 ± 1.40 0.003a 1.97 ± 1.75 2

History of COPD (Yes/No) 21 (5.5)/362 (94.5) 29 (8.2)/323 (91.8) 0.138b 6 (3.7)/158 (96.3) 12 (7

History of other cancers (Yes/No) 20 (5.2)/363 (94.8) 33 (9.4)/319 (90.6) 0.030b 7 (4.3)/157 (95.7) 14 (9

Family history of lung cancer (Yes/No) 20 (5.2)/363 (94.8) 14 (4.0)/338 (96.0) 0.422b 7 (4.3)/157 (95.7) 8 (5

Radiographic Characteristics

Lesion location 0.571b

Right upper lobe 148 (38.6) 123 (34.9) 64 (39.0)

Right middle lobe 25 (6.5) 25 (7.1) 7 (4.3)

Right lower lobe 58 (15.1) 61 (17.3) 28 (17.1)

Left upper lobe 99 (25.9) 83 (23.6) 47 (28.7)

Left lower lobe 53 (13.9) 60 (17.1) 18 (10.9)

Maximum diameter (cm) 1.09 ± 0.38 1.42 ± 0.42 0.000a 1.08 ± 0.34 1

Maximum diameter of the solid component (cm) 0.26 ± 0.11 0.35 ± 0.14 0.000a 0.25 ± 0.10 0

CTR (%) 25.72 ± 11.53 26.07 ± 10.90 0.424a 25.67 ± 13.22 26

Lesion shape 0.000b

Round/Oval 326 (85.1) 211 (59.9) 141 (86.0)

Irregular 57 (14.9) 141 (40.1) 23 (14.0)

Lesion border 0.190b

Defined 313 (81.7) 274 (77.8) 139 (84.8)

Undefined 70 (18.3) 78 (22.2) 25 (15.2)

Vacuole sign (Yes/No) 24 (6.3)/359 (93.7) 55 (15.6)/297 (84.4) 0.000b 16 (9.8)/148 (90.2) 16 (1

Air bronchogram (Yes/No) 23 (6.0)/360 (94.0) 58 (16.5)/294 (83.5) 0.000b 7 (4.3)/157 (95.7) 21 (1

Microvascular sign (Yes/No) 68 (17.8)/315 (82.2) 158 (44.9)/194 (55.1) 0.000b 30 (18.3)/134 (81.7) 68 (4

Pleural indentation (Yes/No) 95 (24.8)/288 (75.2) 133 (37.8)/219 (62.2) 0.000b 42 (25.6)/122 (74.4) 68 (4

AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IAC, invasive adenocarcinoma; CEA, carcinoembryonic antigen; COPD, chronic o
Values are presented as no. (%) or mean ± standard deviation.
aMann–Whitney U test. bPearson’s chi-square test and Fisher’s exact test.
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differentiating IAC from AIS/MIA. It seems that radiomics can

provide a simple and robust prediction method for accurate

preoperative judgment of lesion invasiveness.

Our statistical analysis of the patients’ clinical data shows

that the incidence of IAC increased with age, male gender,

smoking history, and high CEA level, which is consistent with

the results of previous studies (32). Although some studies have

found that patients with COPD, history of other cancers, and

family history of lung cancer were more susceptible to lung
Frontiers in Oncology 08
cancer (33, 34), our data show that these features have no

statistical significance in predicting the invasiveness of PSNs.

Maximum diameter, lesion shape, vacuole sign, and

microvascular sign were considered independent predictors for

IAC in our study. The size of PSNs is significantly related to the

risk of malignancy and is the leading factor in the management

of PSNs. In our study, the average maximum diameter of IAC

was significantly larger than that of AIS/MIA (1.42 cm vs.

1.09 cm, p < 0.001), and the predicted cutoff value for IAC
A B D

E F G H

C

FIGURE 2

For the PSNs included in our study, thin-section CT radiographic features were evaluated. The lesion shape is evaluated as (A) round/oval or (B)
irregular. The lesion border is evaluated as (A, B) defined and (C) undefined. (D) Vacuole sign: MIA in the right upper lobe exhibits a bubble-like
lucency within the nodule (white arrow). (E) Air bronchogram sign: MIA in the right lower lobe shows air-filled bronchi present inside the lesion
(white arrowhead). (F) Pleural indentation: MIA in the left lower lobe shows pleural indentation adjacent to the oblique fissure (black arrow). (G,
H) Microvascular sign: IAC in the right upper lobe shows a small adjacent pulmonary vessel entering the lesion (black dotted arrow). Reverse
tracing shows that the blood vessel is a branch of the pulmonary artery. Coronal reconstruction better shows the dilation of the supplying vessel
(black arrowhead).
FIGURE 3

The Az value of the three models in the derivation set, internal validation set, and external validation set. Radiomics showed superior predictive
performance than clinical-radiographic models in all sets; however, the combined models showed comparable predictive performance to the
radiomics models.
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was 1.18 cm. Li et al. (35) and Zhou et al. (36) confirmed that the

maximum diameter is an independent predictor of the

invasiveness of PSNs, and the predicted cutoff values for IAC

in their studies were 1.65 and 1.96 cm, respectively, which were

significantly higher than ours. This difference could be due to the

fact that other studies included PSNs with solid components ≥6

mm, which may be more aggressive and have larger diameters.

As the invasiveness of PSNs increased, their morphology became

irregular and the probability of vacuole formation increased due

to the proliferation of fibroblasts, tumor cell infiltration in the

lung interstitium, and heterogeneity of growth speed inside the

tumor (37). Vascular remodeling and sustained angiogenesis

play an important role in the early development and progression

of tumors (38). When tumor cells infiltrate the pulmonary

interstitium, they will create traction on the surrounding blood

vessels, causing them to stiffen, twist, and aggregate. Many

previous studies have confirmed that irregular shape, vacuole

sign, and microvascular sign are more frequently seen in IAC

manifesting as PSNs, but no studies considered any of these

features as independent predictors (32, 35, 36). The main reason

may be that their predictive model was based on the

comprehensive analysis of both radiographic features and

quantitative parameters instead of only analyzing radiographic

features as we did in our study. Zhao et al. (39) found that the
Frontiers in Oncology 09
mean CT value showed superior predictive performance

compared with irregular shape and microvascular sign and

was considered to be an independent predictor for IAC. In

addition, the different findings could also be due to the exclusion

of PSNs with solid components ≥6 mm from our study and the

difference in sample size. At present, there are a few studies on

PSNs with solid components <6 mm; hence, more studies are

needed to determine which radiographic features can be used as

the best predictors for invasiveness, and our research results

need further verification.

Previous studies have confirmed that measuring the

maximum size of solid components or comparing the CTR is

more accurate than measuring the maximum diameter of lesions

in predicting the invasiveness of PSNs (12, 40). Our study also

confirmed that the maximum size of solid components was an

independent predictor for IAC. The CTR calculated in our study

showed no significant statistical difference between IAC and

AIS/MIA. It may be because our study excluded PSNs with solid

components ≥6 mm while maintaining the same size enrollment

criteria of the lesions (5–30 mm) with previous studies.

Although we can clearly identify solid components smaller

than 6 mm in PSNs with the aid of automatic segmentation

software, errors still exist to a certain extent in the measurement

of solid components. No studies focused on the solid component
A B

C

FIGURE 4

Features selection using the LASSO regression model and the selection of the tuning parameter l. (A) Change of binomial deviance with log(l).
The maximum log(l) corresponding to the binomial deviance within 1 standard error from the minimum binomial deviance was chosen for the
final model. (B) Change of the number of features with non-zero coefficients with log(l), as determined in a 10-fold validation. (C) Coefficients
of the seven features retained in the model.
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analysis in PSNs with solid components <6 mm before; our

research results also need further verification.

In addition to the analysis of radiographic features, there

have been many studies using quantitative parameters to predict

the invasiveness of PSNs. Lower kurtosis and bigger mass were

confirmed as significant differentiators of IAC from AIS/MIA by

Chae et al. (41). Ko et al. (27) demonstrated that the total volume

and percentage solid volume measurements of PSNs helped

differentiate between IAC and AIS/MIA with an accuracy of

73.2%. Therefore, although previous studies are numerous, their

results vary due to differences in sample size, quantitative

parameters, and analysis methods. For this reason, it is still

unclear which parameters contribute the most to the prediction

of invasiveness of PSNs. The classification of PSNs can still be

challenging for radiologists. However, there were few pieces of

research that focused on PSNs with solid component <6 mm. Qi

et al. (42) illustrated that the mass of PSNs with solid component

<6 mm, with the best cutoff value of 283.2 mg, was the only

independent predictor for IAC, and the Az value was 0.859;

sensitivity was 68.7% and specificity was 92.9%, which were
Frontiers in Oncology 10
lower than those achieved by the radiomics model in the external

validation set of our study (Az value 0.924, sensitivity 83.5%,

specificity 84.2%).

During the growth and evolution of PSNs, as the invasive

components containing structural deformities of the stromal

elastic fiber framework increase within a homogeneous lepidic

or acinar background, the diameter and density of the lesion will

increase, the shape will become irregular, and the pixel values will

become inhomogeneous. In the seven selected most identifiable

radiomics features in our study, gldm_DependenceEntropy and

glcm_JointEntropy reflect the uniformity of texture and gray scale,

higher Entropy value represents the inhomogeneous of pixels in

the tumor and greater probability of IAC. Son et al. (43) reviewed

191 resected ground-glass opacity nodules with little or no solid

component and identified entropy as an independent predictor

for IAC, which is consistent with our results to some extent.

Firstorder_RootMeanSquared and firstorder_90Percentile reflect

the brightness and shape_Maximum2DdiameterSlice and

shape_Maximum2DdiameterColumn reflect the maximum 2D

diameter, which were all positively correlated with the
A

B

C

FIGURE 5

(A) A 45-year-old woman with IAC in the right middle lobe shows a regular shape and with a diameter of 1.26 cm. The nomogram shows that
this case had a total of 90 points after summing all points (69 + 21 + 0), which corresponds to a 79.6% probability of IAC. (B) A 26-year-old
woman with MIA in the right upper lobe shows an irregular shape and with a diameter of 1.32 cm. The nomogram shows that this case had a
total of 69 points after summing all points (41 + 20 + 8), which corresponds to a 44.3% probability of IAC. (C) A 36-year-old woman with AIS in
the right upper lobe shows a regular shape and with a diameter of 1.34 cm. The nomogram shows that this case had a total of 59 points after
summing all points (39 + 20 + 0), which corresponds to a 25.9% probability of IAC.
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significant density and diameter difference between IAC and AIS/

MIA. As the invasiveness of PSNs increase, their shape will

become irregular and with higher surface/volume ratio, so it is

reasonable that shape_SurfaceVolumeRatio is retained in our

radiomics model.

In our study, radiomics outperformed the clinical-

radiographic model in predicting the invasiveness of PSNs

with solid components <6 mm. In the research of Sun et al.

(25), radiomics also showed superior predictive performance

compared with the clinical-radiographic model in predicting the

invasiveness of NSNs. However, compared with radiomics, our

combined model did not demonstrate any significant

improvement in predictive ability, which was different from

the study of Sun et al. This difference can be explained by the fact

that we can only extract finite subjective and semiquantitative

information from CT images by the naked eyes, while radiomics

can analyze conventional descriptive signs and transform image

data into spatial data that can be mined in depth and

quantitatively analyzed. Some radiographic features we

analyzed are probably included in the features extracted

by radiomics. Which surprised us was that both the radiomics

and the combined model achieved better results in the external

validation set than in the internal validation set in our study.

We studied the distribution of contributing features in these

datasets, and the distributions of the two most weighted features

(gldm_DependenceEntropy, shape_Maximum2DDiameter

Slice) were visualized with violin-box plot in Supplementary

Figure S3. It can be seen that the differences between the

distributions of these two features in the positive and negative

samples are larger in the external validation set. Therefore, it is

understandable that models using these features achieved better

results over those of the external validation set.

Deep learning has also been used to predict the invasiveness

of PSNs. Kim et al. (44) developed a deep learning model using

2.5D CT images and confirmed that it performed better than the

size-based logistic model in distinguishing between IAC and

AIS/MIA. However, a deep learning model based on 3D

convolutional neural networks in the study by Park et al. (45)

showed comparable classification performance with the

radiologists’ measurements of solid component size in PSNs.

The deep learning method learns features from data and avoids

the burden of identifying the effective features manually in

images without lesion segmentation. However, deep learning

has its own limitations: a large number of cases are needed to

train the established model and the interpretability is very

limited, users cannot get an effective explanation of the

classification results (46, 47). Nevertheless, after expanding the

number of cases, we will try to apply the deep learning method to

our studies.

Although yearly surveillance CT is recommended for PSNs

with solid components <6 mm by Fleischner Society guidelines,

the treatment of an individual should also be guided by the

probability that the nodule is an IAC and patient preferences.
T
A
B
LE

3
E
ff
e
ct
iv
e
n
e
ss

o
f
th
e
th
re
e
m
o
d
e
ls

in
d
is
cr
im

in
at
in
g
A
IS
-M

IA
fr
o
m

IA
C

in
th
e
d
e
ri
va

ti
o
n
,
in
te
rn
al

va
lid

at
io
n
,
an

d
e
xt
e
rn
al

va
lid

at
io
n
se
ts
.

A
z
(9
5%

C
I)

C
ut
of
f
va
lu
e

SE
N

(%
)

SP
E
(%

)
P
P
V

(%
)

N
P
V

(%
)

A
C
C
(%

)
F
1-
sc
or
e

M
C
C

M
od

el
-fi
tt
in
g
in
fo
rm

at
io
n

A
IC

(%
)

R
2
va
lu
e

D
er
iv
at
io
n
se
t

C
lin

ic
al
-r
ad
io
gr
ap
hi
c
m
od

el
0.
77
9
(0
.7
47
-0
.8
09
)

>0
.4
71

64
.8

76
.8

71
.9

70
.3

71
.0

0.
68
2

0.
44
3

47
.5

0.
22
5

R
ad
io
m
ic
s
m
od

el
0.
86
5
(0
.8
39
-0
.8
89
)

>0
.4
56

75
.3

81
.5

78
.9

78
.2

78
.5

0.
77
0

0.
56
9

63
.2

0.
39
8

C
om

bi
ne
d
m
od

el
0.
87
2
(0
.8
46
-0
.8
95
)

>0
.4
94

78
.7

82
.0

80
.1

80
.7

80
.4

0.
79
4

0.
60
7

64
.5

0.
41
5

In
te
rn
al

va
li
da
ti
on

se
t

C
lin

ic
al
-r
ad
io
gr
ap
hi
c
m
od

el
0.
81
0
(0
.7
62
-0
.8
52
)

>0
.4
16

66
.9

76
.8

72
.7

71
.6

72
.1

0.
69
7

0.
43
9

53
.0

0.
27
9

R
ad
io
m
ic
s
m
od

el
0.
88
4
(0
.8
43
-0
.9
17
)

>0
.5
31

78
.1

83
.5

81
.4

80
.6

81
.0

0.
79
7

0.
61
8

66
.8

0.
44
4

C
om

bi
ne
d
m
od

el
0.
88
7
(0
.8
47
-0
.9
20
)

>0
.5
60

80
.1

84
.8

82
.9

82
.2

82
.5

0.
81
5

0.
65
0

68
.4

0.
46
6

E
xt
er
n
al

va
li
da
ti
on

se
t

C
lin

ic
al
-r
ad
io
gr
ap
hi
c
m
od

el
0.
85
5
(0
.7
99
-0
.9
01
)

>0
.4
19

71
.3

80
.8

77
.0

75
.7

76
.3

0.
74
0

0.
52
3

60
.9

0.
36
7

R
ad
io
m
ic
s
m
od

el
0.
92
4
(0
.8
78
-0
.9
57
)

>0
.4
44

83
.5

84
.2

83
.5

84
.2

83
.8

0.
83
5

0.
61
3

73
.3

0.
53
5

C
om

bi
ne
d
m
od

el
0.
91
7
(0
.8
69
-0
.9
51
)

>0
.4
72

84
.5

86
.1

85
.4

85
.3

85
.4

0.
85
0

0.
70
7

73
.8

0.
54
2

A
z,
ar
ea

un
de
r
th
e
re
ce
iv
er

op
er
at
in
g
cu
rv
e;
C
I,
co
nfi

de
nc
e
in
te
rv
al
;S
E
N
,s
en
si
ti
vi
ty
;S
P
E
,s
pe
ci
fi
ci
ty
;P

P
V
,p
os
it
iv
e
pr
ed
ic
ti
ve

va
lu
e;
N
P
V
,n
eg
at
iv
e
pr
ed
ic
ti
ve

va
lu
e;
A
C
C
,a
cc
ur
ac
y;
M
C
C
,M

at
th
ew

s
co
rr
el
at
io
n
co
ef
fi
ci
en
t;
A
IC
,A

ka
ik
e
in
fo
rm

at
io
n
cr
it
er
io
n;

A
IS
,a
de
no

ca
rc
in
om

a
in

si
tu
;M

IA
,m

in
im

al
ly

in
va
si
ve

ad
en
oc
ar
ci
no

m
a;
IA

C
,i
nv
as
iv
e
ad
en
oc
ar
ci
no

m
a.
frontiersin.org

https://doi.org/10.3389/fonc.2022.900049
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.900049
Patients without risk factors (COPD history, family history of

lung cancer, etc.) and lower predicted IAC possibility can be

followed up routinely and avoid unnecessary surgery. But closer

follow-up should be recommended for patients with risk factors

and higher predicted IAC possibility. In our study, 16 IAC cases

with solid components <6 mm were classified as pT2 stage

because of the presence of pleural invasion. So, the accurate IAC

prediction in PSNs with solid components <6 mm has important

clinical value in the individualized clinical management (routine

or closer follow-up, even resection for patients desire surgery)

and selection of surgical methods. Our research may provide an

individualized clinical management supplement to Fleischner

Society guidelines to improve the diagnostic accuracy of

radiologists and avoid unnecessary surgery for some patients

or provide a clinical basis for some necessary surgeries.
Frontiers in Oncology 12
Our study has several limitations. First, all VOIs of the lesion

were automatically segmented using software, but as to the lesions

with an unclear tumor–lung interface, the segment will be

inaccurate and affects the result of data analysis. Manual

segmentation is necessary at this time, but the process is tedious

and vulnerable to readers’ subjectivity. Second, the clinical-

radiographic model in our study was established by the authors

#1, #3, and #9 (with 10, 7, and 16 years’ experience in chest CT

imaging, respectively); it cannot represent the best diagnostic

performance of all radiologists. More radiologists should be

enrolled and the “reader performance study” can be performed

in our future study. Lastly, numerous radiomics investigations

have been published, but the robustness and generalizability of

radiomics models still remain questionable and need to be verified

by clinical practice. Although we have confirmed that the
A

B

C

FIGURE 6

(A) Calibration curves of the combined model indicated good agreement between the predicted probability and actual occurrence in the
derivation, internal validation, and external validation sets. (B) Decision curve analysis on both the internal and external validation sets for the
models with and without Rad-score. It can be seen that if the threshold probability of a patient is in the range of 0.10~0.85, using a model with
the Rad-score to predict the invasive lesion would be more beneficial than using one without the Rad-score. (C) Waterfall plot of the combined
model showing the predicted probabilities of internal and external validation sets. It can be seen clearly that the combined model can
differentiate IAC from AIS/MIA well.
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radiomics features we extracted achieved satisfactory inter- and

intra-observer reproducibility and an external validation set from

another hospital was also introduced in our study, multicenter

research is still necessary in the future study.
Conclusions

Radiomics has been proven to achieve outstanding

classification performance in classifying PSNs with solid

components <6 mm. It has the potential as an independent

diagnostic tool to improve the classification ability of

radiologists or thoracic surgeons and save their time and effort

without compromising diagnostic accuracy.
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