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Members of the conserved FANCM family of DNAmotor
proteins play key roles in genomemaintenance processes.
FANCM supports genome duplication and repair under
different circumstances and also functions in the ATR-
mediated DNA damage checkpoint. Some of these roles
are shared among lower eukaryotic family members.
Human FANCM has been linked to Fanconi anemia, a
syndrome characterized by cancer predisposition, devel-
opmental disorder, and bone marrow failure. Recent
studies on human FANCM and its orthologs from other
organisms have provided insights into their biological
functions, regulation, and collaboration with other ge-
nome maintenance factors. This review summarizes the
progress made, with the goal of providing an integrated
view of the functions and regulation of these enzymes in
humans and model organisms and how they advance
our understanding of genome maintenance processes.

Vertebrate FANCM proteins and their influence
in genome repair, replication, and surveillance

The Fanconi anemia (FA) pathway and replicative
traversal of DNA interstrand cross-links (ICLs)

FANCM is one of the 17 proteins found to be mutated in
FA patients (for review, see Soulier 2011; Wang and Smo-
gorzewska 2015). These FA proteins constitute the core of
the FA pathway that serves to eliminate DNA ICLs (for re-
view, see Deans and West 2011; Kim and D’Andrea 2012;
Kottemann and Smogorzewska 2013). ICLs interfere with
DNA replication by blocking the progression of both lead-
ing and lagging strand DNA synthesis. These obstacles
are removed during replication via the FA pathway.
Within this pathway, FANCM collaborates with two obli-
gate partners; namely, FAAP24 (FA-associated protein of

24 kDa) and MHF (a histone-fold complex consisting
of MHF1 and MHF2) (Ciccia et al. 2007; Kim et al.
2008; Singh et al. 2010; Yan et al. 2010). The FANCM–

FAAP24–MHF complex, which recognizes different DNA
structures, provides an important means to target the oth-
er core FA proteins to ICL sites (Fig. 1). Upon association
with the DNA lesion, the ubiquitin ligase FANCL within
the FA core, in conjunction with the ubiquitin-conjugat-
ing enzyme UBE2T, mediates the monoubiquitination of
FANCI and FANCD2 (Fig. 1). These ubiquitination events
lead to the recruitment of several enzymatic entities to in-
cise the ICL so as to “unhook” it, replicatively bypass the
unhooked lesion, and complete the repair process via ho-
mologous recombination (Fig. 1). For details of the FA
pathway, we recommend several comprehensive reviews
(Deans and West 2011; Kim and D’Andrea 2012; Kotte-
mann and Smogorzewska 2013).
Interestingly, a recent study suggests that FANCM and

MHF promote replicative traversal across ICLs (Fig. 1;
Huang et al. 2013). This function requires DNA binding
by both FANCMandMHF and also theDNAmotor activ-
ity of FANCM, suggesting that translocation of FANCM–

MHF on the damaged DNA template somehow allows
DNA synthesis to continue past ICLs, leaving the lesion
to be removed by another mechanism post-replicatively.
The investigators showed that this is a FA-independent
mechanism and is used in several organisms. While the
mechanism underlying ICL traversal remains to be deter-
mined, the study by Huang et al. (2013) raises several in-
teresting questions. Most notably, what are the cues
that prompt FANCM–MHF to initiate repair via the FA
pathway versus lesion traversal? Moreover, as DNA
cross-linking agents are commonly used in cancer treat-
ment, how does pathway choice affect the efficacy of can-
cer therapy?
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The role of FANCM in DNA replication
and the replication stress response

Aside frompromoting ICLtoleranceandremoval,FANCM
has a role in DNA replication under normal growth condi-
tions and upon exposure of cells to clastogens such as the
topoisomerase I poison camptothecin, ultraviolet light,
andtheDNAmethylatingagentmethylmethanesulfonate
(MMS) (Rosado et al. 2009; Singh et al. 2009; Luke-Glaser
et al. 2010; Schwab et al. 2010; Blackford et al. 2012).
From these studies in human and chicken DT40 cells,
FANCM and its ATPase activity have been shown to pre-
vent replication forks from stalling and/or allow damaged
forks to restart. Two distinct mechanisms have been in-
voked toexplain the involvementof FANCMinthis capac-
ity. One model posits that FANCM catalyzes replication
fork regression, whereby the newly synthesized strands
are dissociated from their template strands and anneal to
formapartialduplexwithaprimer–template junctionsuit-

able for priming newDNA synthesis, and this is accompa-
nied by reannealing of template strands (Figs. 1, 2A; Gari
et al. 2008a,b). This process can help restart the stalled
forks by several means (for review, see Yeeles et al. 2013).
For example, it allows the use of the sister strand to tem-
plate DNA synthesis (Fig. 2A). In addition, it leads to the
relocation of the template lesion to a duplex region, which
renders it amenable to repair (Fig. 2A). The fork regression
function of FANCMappears to be independent of other FA
proteins but is likely facilitated by MHF, which enhances
the fork regression reaction in vitro (Luke-Glaser et al.
2010; Schwabet al. 2010; Singh et al. 2010;Yan et al. 2010).

Another means by which FANCM could help to cope
with replication stress stems from its ability to activate
the ATR-mediated DNA damage checkpoint (Collis
et al. 2008; Sobeck et al. 2009; Huang et al. 2010; Luke-
Glaser et al. 2010; Schwab et al. 2010; Wang et al.
2013b), which stabilizes replication forks and inhibits
the firing of dormant replication origins (for review, see
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Figure 1. The role of FANCM and partner proteins in coping with template lesions during DNA replication. MHF forms a complex with
FANCMand FAAP24 and stabilizes FANCM. This complex localizes to ICL sites through its DNA-binding attribute. FANCMcarries out
several FA-independent functions at ICL sites and in other replication blockage situations. FANCM–MHFpromote ICL traversal, allowing
replication to proceed past the lesionwithout repair. FANCMalso can catalyze replication fork regression under certain circumstances. In
addition, FANCM and FAAP24 interact with the checkpoint protein HCLK2 to activate the ATR checkpoint signaling pathway (other
means by which FANCM can promote checkpoint activation are not depicted here). In the FA pathway, FANCM–MHF–FAAP24 recruits
the FA core complex to the ICL sites. The subsequent monoubiquitination of FANCI and FANCD2 leads to multiple repair steps, includ-
ing ICL incision, DNA gap filling, and recombinational repair. The recruitment of the BLM–topoisomerase IIIα (Topo IIIα)–RMI (BTR)
complex by FANCM enables double Holliday junction (dHJ) dissolution.
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Labib andDe Piccoli 2011; Errico andCostanzo 2012). The
checkpoint function of FANCM requires FAAP24 but not
other FA proteins and entails the associationwith and reg-
ulation of other checkpoint factors (Fig. 1; more below).
How FANCM-mediated replication fork regression and
ATR activation contribute to replication fork stabiliza-
tion and restart and how these attributes may be related
to the lesion traversal function of the protein remain
open questions. It is worth noting that several other FA
proteins also appear to possess FA pathway-independent
roles in DNA replication (Sobeck et al. 2006; Schlacher

et al. 2012; Lossaint et al. 2013; Luebben et al. 2014).
Investigating the molecular events that dictate the par-
ticipation of FANCMand other FAproteins in FA-depend-
ent versus FA-independent functions will be informative
to understand the mechanisms of replication fork protec-
tion and restart.

Regulation of recombinational repair outcome

Another FANCM function important for genomemainte-
nance pertains to the regulation of the outcome of
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Figure 2. The roles of FANCM family proteins in
replication fork repair and crossover control. (A) Path-
ways that cope with replication blockage (denoted by
the star), including error-prone translesion DNA syn-
thesis and FANCM/Fml1/Mph1-mediated fork re-
gression and subsequent recombination, are
depicted. Note that Smc5/6 (structural maintenance
of chromosomes 5/6) down-regulates Mph1’s replica-
tion fork regression (or fork reversal) andDNAbranch
migration activities to prevent the generation of po-
tentially harmful recombination intermediates, and
Saccharomyces cerevisiae MHF (ScMHF) helps over-
come this effect of Smc5/6. Two scenarios following
fork reversal are shown. Following DNA synthesis,
where one nascent strand uses the other to prime
DNA synthesis, the fork can be reset, allowing repli-
cation resumption. Alternatively, the dsDNA ends
can be resected to generate a substrate for invading
the template strands that share sequence homology,
generating a dHJ that requires resolution to allow rep-
lication resumption. Note that fork reversal can also
lead to other outcomes that are not depicted here.
(B) Model showing how FANCM family proteins pro-
mote DNA double-strand break repair via the synthe-
sis-dependent strand annealing (SDSA) pathway that
generates noncrossover products only. Repair via
the double-strand break repair pathway (DSBR) leads
to the formation of a dHJ intermediate that is resolved
nucleolytically into crossover or noncrossover prod-
ucts. Alternatively, the dHJ can be dissolved by a heli-
case/topoisomerase complex composed of BTR or the
yeast counterpart Sgs1/Top3/Rmi1 (STR), to yield
noncrossover products. The dotted line denotes new-
ly synthesized DNA.
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recombinational repair. Homologous recombination
repairs both DNA double-strand breaks and structures
formed during perturbed replication, such as single-strand
gaps and regressed replication forks. The DNA inter-
mediates resulting from strand invasion and subsequent
DNA synthesis, such as the displacement loop (D loop),
Holliday junction (HJ), and double HJ (dHJ), can be re-
solved into either a crossover or noncrossover configura-
tion (Fig. 2B). While resolvase-mediated resolution leads
to both product types at similar frequencies, DNA heli-
case-dependent DNA strand displacement or dHJ dis-
solution by a helicase–topoisomerase complex generates
exclusively noncrossover products (Fig. 2B). FANCM and
its orthologs possess an anti-crossover function, as their
loss in human, mouse, and chicken DT40 cells leads to el-
evated sister chromatid exchanges (SCEs), a crossover in-
dicator (Mosedale et al. 2005; Bakker et al. 2009; Deans
andWest 2009; Rosado et al. 2009). This function requires
the DNA translocase activity of FANCM as well as
FAAP24 andMHF but is independent of other FA proteins
(Niedzwiedz et al. 2004; Bakker et al. 2009; Rosado et al.
2009; Yan et al. 2010; Suhasini et al. 2011; Wang et al.
2013b). The anti-crossover function of FANCM and its
orthologs are discussed in detail in a later section. As
crossovers can lead to chromosome translocations and a
loss of heterozygosity (for review, see Wyatt and West
2014), the anti-crossover attribute of FANCM helps pre-
serve genomic integrity during recombination-mediated
chromosomal repair.

In summary, recent progress has shed light on the role
of vertebrate FANCM in DNA replication and repair.
Besides its well-known function in the FA pathway,
FANCM exerts FA-independent roles in ICL traversal,
replication fork restart, ATR checkpoint activation, and
anti-crossover control. While the role of FANCM in the
FA pathway stems from its ability to recruit other FA pro-
teins to the DNA lesion independently of its DNA trans-
locase activity, all of the other known functions of
FANCM require this activity. The distinct functions ful-
filled by FANCM implicate it inmultiple genomemainte-
nance processes but also render the delineation of its
biological roles a challenging task. In this regard, insights
into some of the highly conserved FANCMfunctions have
been gained from studying its orthologs in lower eukary-
otic cells or plants as described below.

FANCM orthologs in lower eukaryotes and plants

FANCM orthologs, which are members of the SF2 heli-
case family, have been identified in many organisms out-
side the vertebrate realm, such as the Hef protein in
archaea and Mph1 and Fml1 in budding and fission
yeasts, respectively (Singleton et al. 2007). All of these
proteins share significant homology at their helicase do-
mains and regions C-terminal to the helicase domain
(Fig. 3; Meetei et al. 2005; Mosedale et al. 2005). We rec-
ommend a detailed description of the FANCM family of
proteins in a review by Whitby (2010). As lower eukary-
otes appear to lack many FA proteins, they are useful
models for deriving mechanistic information regarding

the FA-independent functions of FANCM. Below, we
summarize the progress in understanding the biological
functions of FANCM orthologs in yeasts and other mod-
el systems.

Roles of Schizosaccharomyces pombe Fml1
and Saccharomyces cerevisiae Mph1 in DNA
replication

Like FANCM, Fml1 andMph1 play a role in DNA replica-
tion, particularly under stress conditions. Based on their
ability to catalyze replication fork regression (Sun et al.
2008; Zheng et al. 2011) and on a replication-coupled re-
combination assay in S. pombe, a model has been pro-
posed in which nucleolytic processing of the 5′ terminus
of the regressed fork enables the formation of Rad51
recombinase-coated ssDNA that can invade the intact
template DNA followed byDNA synthesis and resolution
of the DNA joint (Fig. 2A; Sun et al. 2008). In this manner,
a damaged or stalled replication fork is channeled into the
homologous recombination pathway for repair. Also in
support of this model, Mph1-made recombination inter-
mediates have been detected by two-dimensional DNA
gel analysis upon replication fork stalling (Chen et al.
2009; Choi et al. 2010; Chavez et al. 2011). However,
even though fork regression is clearly useful for restarting
replication, it may dislodge the replisome or generate
hard-to-resolve DNA structures (for review, see Yeeles
et al. 2013). Eukaryotic cells possess at least one other
means for DNA damage tolerance; namely, translesion
DNA synthesis (TLS) that is catalyzed by specialized
and generally error-prone DNA polymerases (Fig. 2A).
That the Fml1/Mph1-mediated pathway and TLS act on
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Figure 3. The FANCM family of DNA motor proteins. The
domain structures of selected FANCM family proteins are indi-
cated. These domains include the SF2 helicase domain (blue),
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the same or a derivative DNA structure is made evident
by the observation that the mutation rate via TLS be-
comes elevated upon the loss of Mph1 (Scheller et al.
2000; Schurer et al. 2004).
Unlike in vertebrates, where FANCM regulates the

ATR checkpoint, Mph1 loss does not reduce the check-
point function in S. cerevisiae (Chen et al. 2013). Never-
theless, Mph1 may also affect replication by additional
means. Recent genetic evidence suggests that Mph1 func-
tionswith theDNAmotor protein Rad54 in extending the
Rad51-made D loop to promote sister chromatid associa-
tion (Ede et al. 2011). The sensitivity of fml1 and mph1
mutants to replication-blocking agents likely stems
from the simultaneous ablation of multiple mechanisms
of fork preservation and recombinational repair (Scheller
et al. 2000; Sun et al. 2008).

The role of Fml1 and Mph1 in crossover suppression
and DNA cross-link repair

As in the case of FANCM, Fml1 and Mph1 serve to sup-
press crossover during homologous recombination (Sun
et al. 2008; Prakash et al. 2009; Lorenz et al. 2012). While
this function of Fml1 is evident in both mitotic and mei-
otic cells, such a role for Mph1 has only been demonstrat-
ed inmitotic cells, whichmay be due to its low expression
in meiosis (Primig et al. 2000). Crossover suppression by
these motor proteins likely stems from their ability to
dissociate D loops made by Rad51 (Sun et al. 2008; Pra-
kash et al. 2009; Sebesta et al. 2011; Lorenz et al. 2012).
Recent studies provide further insights into the anti-
crossover role ofMph1. For example, findings fromMazon
and Symington (2013) suggest that Mph1 recognizes an
early recombination intermediate, such as the D loop,
and channels it into the synthesis-dependent strand an-
nealing (SDSA) recombination pathway that yields only
noncrossover products (Fig. 2B). In the absence of Mph1,
the nascent D loop is stabilized by DNA synthesis. It is
then channeled into either the double-strand break repair
(DSBR) pathway,which generates both crossover and non-
crossover products due to resolvase-mediated resolution
of the dHJ, or the break-induced replication mechanism,
which can lead to extensive acquisition of genetic infor-
mation from the donor chromosome or chromosome
translocation (Fig. 2B; Luke-Glaser and Luke 2012; Stafa
et al. 2014).
Both Fml1 and Mph1 are involved in ICL repair (Daee

et al. 2012; McHugh et al. 2012; Ward et al. 2012; Fonte-
basso et al. 2013), but the repair function of Mph1 is
only apparent in the absence of an exonuclease capable
of degrading the oligonucleotide stemming from ICL un-
hooking. The fact that S. pombe and S. cerevisiae contain
only a few equivalents of FA proteins suggests a major dif-
ference in themechanism of ICL repair in these organisms
compared with higher eukaryotes. On the other hand, as
discussed above, Fml1 and Mph1 clearly possess at least
some of the FA-independent functions shared among
FANCM family members. Thus, it is quite possible that
the FA pathway of ICL repair is a relatively recent acquisi-
tion in vertebrate species.

Progress made on other FANCM family proteins

Drosophila melanogaster FANCM (DmFANCM) was re-
cently shown to function in crossover control in both
mitotic and meiotic cells (Kuo et al. 2014). Similar to
what was found in S. cerevisiae, genetic evidence sug-
gests that the role of DmFANCM is to channel a critical
DNA intermediate into the SDSA pathway of homolo-
gous recombination. This study also demonstrates that
DmFANCM is required for cellular resistance to not
only ICL-inducing agents but also MMS and ionizing
radiation, while the FANCL homolog is only required
for ICL resistance. This finding provides evidence that
DmFANCM also possesses FA-dependent and FA-inde-
pendent functions, as seen in the vertebrate counterparts.
Two studies of theArabidopsis thaliana FANCM suggest
that this protein appears to be more specialized, control-
ling crossover and chromosome synapsis during meiosis
but not functioning in DNA replication or repair (Cris-
mani et al. 2012; Knoll et al. 2012).

Summary

All of the FANCM familymembers examined to date pos-
sess an anti-crossover function inmitotic cells, with some
members also serving the same role during meiosis. In ad-
dition, most family members are also involved in replica-
tion fork repair such as by catalyzing fork regression. In
contrast, their involvement in ICL repair appears to vary
among species. Another important difference is that the
FANCM counterpart in lower eukaryotes does not appear
to possess a DNA damage checkpoint function. Among
family members, human FANCM seems to fulfill the
most diverse biological roles, which likely stems from
the acquisition of additional protein domains and inter-
actors. For example, human FANCM contains a large
C-terminal region that is absent in Fml1, Mph1, and
D.melanogaster andA. thaliana FANCM (Fig. 3). In addi-
tion, FAAP24 and most other FA proteins appear to be
unique to vertebrate species. Despite this divergence,
the presence of MHF and several FA protein equivalents
in yeasts, such as Chl1 (FANCJ) and Slx4 (FANCP) in S.
cerevisiae (McHugh et al. 2012; Ward et al. 2012), is aptly
reflective of conserved functions of these motor proteins.
Below, we summarize the biochemical attributes of sever-
al of the FANCM family members and how their biologi-
cal functions are regulated.

Biochemical attributes of FANCM family proteins
and their relevance for biological functions

The biochemical attributes of Fml1, Mph1, and human
FANCMhave been examined in detail, and these FANCM
familymembershavebeen found to share several common
features. All three proteins bind to ssDNA and structured
DNA, with a clear preference for branched DNA struc-
tures, including the HJ, DNA fork, and D loop (Mosedale
et al. 2005; Gari et al. 2008b; Sun et al. 2008; Xue et al.
2008, 2014; Prakash et al. 2009; Nandi and Whitby 2012).
The DNA-binding ability is attributed to the conserved

FANCM family motor proteins
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helicase domain, while the region distal to the helicase
domain confers the ability to interact with other protein
factors and serves a regulatory role (Ciccia et al. 2007;
Sun et al. 2008; Bhattacharjee et al. 2013; Xue et al. 2014).
Some of the partner proteins of FANCM/Fml1/Mph1
also possess a DNA-binding ability and exert an influence
on the DNA-binding specificity of complexes harboring
the FANCM orthologs. For example, FAAP24 bestows
the ability to bind the 3′ DNA flap and splayed arm DNA
(Ciccia et al. 2007), while human MHF facilitates the en-
gagement of other branched DNA species (Zhao et al.
2014). As such, the partner proteins facilitate the targeting
of complexes of FANCMorthologs to specific DNA struc-
tures. Below, we summarize several major activities of
human FANCM, Fml1, andMph1 and their biological rel-
evance. These features are also summarized in Table 1.

DNA translocase and unwinding activities

Human FANCM and Fml1 exhibit ssDNA- and dsDNA-
dependent ATPase activities (Meetei et al. 2005; Nandi

and Whitby 2012), while Mph1 possesses ssDNA-depen-
dent ATPase activity only (Prakash et al. 2005). ATP hy-
drolysis by these proteins can lead to the unwinding of
duplex DNA or dissociation of DNA triplex as observed
for Fml1/Mph1 and human FANCM, respectively (Table
1; Meetei et al. 2005; Prakash et al. 2005; Sun et al.
2008; Kang et al. 2012). These functions support different
DNA transactions as described below.

DNA fork regression and branch migration

Human FANCM, Fml1, and Mph1 not only regress the
DNA replication fork but can also catalyze translocation
of the branch point (i.e., branch migration) in the re-
gressed fork (Table 1; Gari et al. 2008a,b; Sun et al.
2008; Zheng et al. 2011; Kang et al. 2012; Xue et al.
2014). These activities have been demonstrated in vitro
using DNA oligonucleotide or plasmid-based replication
fork substrates. In all cases, DNA replication fork
regression and branch migration are fueled by ATP hy-
drolysis. Genetic studies, DNA fiber analysis, and two-

Table 1. Biochemical activities of the FANCM family of DNA motor proteins

Activity
DNA

substrate FANCM Mph1 Fml1 Hef
In vivo

implications References

Triple
  helix

Translocase � ND ND ND Translocate along
  dsDNA

Meetei et al. 2005

3′
overhang Unwinding � � ND ND 3′–5′ DNA helicase Meetei et al. 2005;

  Prakash et al. 2005

Flap Unwinding � � � � Lagging strand
  unwinding

Nishino et al. 2005;
  Sun et al. 2008; Zheng
  et al. 2011

Movable
  replication
  fork 

Fork reversal � � � � Replication fork
  repair

Komori et al. 2002;
  Gari et al. 2008a,b;
  Sun et al. 2008; Zheng
  et al. 2011; Xue et al.
   2014

Movable
  Holliday
  junction

Branch
  migration 

� � � ND Replication fork
  repair

Gari et al. 2008b; Sun
  et al. 2008; Zheng et al.
  2011; Xue et al. 2014

σσ structure Branch
  migration

� � � ND Replication fork
  repair

Gari et al. 2008a;
  Zheng et al. 2011;
  Nandi and Whitby
  2012

Synthetic
  D loop

D-loop
  unwinding

� � � ND Crossover control Sun et al. 2008;
  Prakash et al. 2009

D loop D-loop
  dissociation

� � � ND Crossover control Gari et al. 2008a; Sun
  et al. 2008; Prakash et
  al. 2009
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dimensional DNA gel analysis have linked these activi-
ties to the recombinational repair of stalled replication
forks (Sun et al. 2008; Chen et al. 2009; Choi et al.
2010; Blackford et al. 2012). On the other hand, since
this repair mechanism could generate hard-to-resolve
DNA structures or replisome destabilization, tight regu-
lation is thought to be necessary to minimize potential
harm (see below).

D-loop dissociation

During recombinational repair, ssDNA associated with a
lesion becomes coated by the recombinase Rad51, which
then mediates the search for a homologous duplex target,
leading to invasion of the latter to form a D loop (Fig. 2B;
Sung and Klein 2006). The D loop can be either extended
via DNA synthesis or dissolved by rejecting the invading
strand after limited DNA synthesis has occurred (Sung
and Klein 2006). Biochemical assays have shown that
human FANCM, Mph1, and Fml1 can dismantle D loops
in an ATP hydrolysis-dependent manner, and Mph1 is
capable of doing so even with Rad51 remains bound to
the D loop (Table 1; Fig. 2B; Gari et al. 2008a; Sun et al.
2008; Prakash et al. 2009). This shared activity likely
provides a means for channeling the D loop into the
noncrossover SDSA pathway as described above. It is
noteworthy that some of the aforementioned attributes
of eukaryotic FANCM family members are conserved in
the archaeal Hef protein, which also exhibits DNA un-
winding and replication fork regression activities (Table
1). However, it uniquely possesses a structure-specific nu-
clease activity that is thought to collaborate with
the other Hef activities in replication fork remodeling
(Komori et al. 2002, 2004; Nishino et al. 2005).

Partners and regulators of the FANCM family
proteins

The FANCM family members depend on partner proteins
in the execution of biological functions (Table 2). This
is best demonstrated in the FA pathway, in which
FANCM, in partnership with FAAP24 andMHF, interacts
with FANCF to recruit the FA core complex to DNA le-
sions (Fig. 1). A growing number of additional interactors
have been identified, and the biological consequences of
these interactions are being elucidated. While some inter-
actors facilitate reactions catalyzed the FANCM family
members, others exert negative regulation. There are dif-
ferences in how the FANCM family members are regulat-
ed that likely reflect the specific genome maintenance
needs of various organisms. Below, we discuss recent pro-
gress on how the functions of this family of enzymes are
regulated in the cellular context, with a focus on regulato-
ry events mediated by non-FA proteins. We recommend
recent reviews on the regulation of FANCM within the
context of the FA pathway (Deans and West 2011; Kim
and D’Andrea 2012; Kottemann and Smogorzewska
2013).

The histone-fold MHF complex and the Smc5/6 complex

As mentioned earlier, MHF is a conserved partner of
FANCM family members and generally acts to enhance
the activities of the latter (Table 2). Important progress
has been made to elucidate the structure, biochemical at-
tributes, and cellular roles of MHF in human and yeast
cells. MHF from these organisms, a dimer of the hetero-
dimer composed of the histone-fold proteins MHF1 and
MHF2, resembles the histone H3/H4 tetramer in struc-
ture (Nishino et al. 2012; Tao et al. 2012; Yang et al.
2012; Wang et al. 2013a; Fox et al. 2014; Zhao et al.
2014). Human MHF binds various types of DNA and pro-
motes FANCM functions in DNA binding, replication
fork reversal, and DNA branch migration (Singh et al.
2010; Yan et al. 2010; Tao et al. 2012; Fox et al. 2014;
Zhao et al. 2014). Cells lacking MHF or harboring muta-
tions affecting its DNA binding or FANCM interaction
are compromised for FANCM stability and FA core com-
plex recruitment to damaged chromatin and are prone to
chromosome aberrations and loss of viability upon expo-
sure to clastogens (Singh et al. 2010; Yan et al. 2010; Tao
et al. 2012; Fox et al. 2014; Zhao et al. 2014). Human
MHF also aids FANCM in SCE suppression (Yan et al.
2010; Fox et al. 2014). Biochemical and structural studies
have suggested possible modes of DNA interaction for
MHF and theMHF–FANCM complex. A crystal structure

Table 2. Partners of FANCM and its orthologs

Partners Biological functions References

HsMHF FANCM stabilization;
DNA damage
localization; assisting
FANCM in RF repair;
replicative ICL traverse;
crossover control

Singh et al. 2010;
Yan et al. 2010

ScMHF Assisting Mph1 in RF
repair; relieving the
inhibitory effect of
Smc5

Xue et al. 2015

SpMHF Assisting Fml1 in RF
repair, ICL repair, and
crossover control

Yan et al. 2010;
Bhattacharjee et al.
2013

ScSmc5 Inhibiting Mph1’s fork
reversal and branch
migration activity;
preventing the
accumulation of toxic
recombination
intermediates

Chen et al. 2009;
Chavez et al. 2011;
Xue et al. 2014

FAAP24 Recruitment of the FA
core complex to
chromatin; checkpoint
activation; crossover
control

Ciccia et al. 2007;
Collis et al. 2008;
Kim et al. 2008

BLM–

Topo
IIIα–
RMI

DNA break repair; dHJ
dissolution; crossover
control

Deans and West
2009; Hoadley
et al. 2012

(RF) Replication fork.
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of an MHF–DNA complex showed that MHF can bind a
pair of DNA duplexes, while a small-angle X-ray-scatter-
ing study of MHF raised the possibility that it may form
an elongated octamer on duplex DNA (Wang et al.
2013a; Zhao et al. 2014). These findings suggest that
MHFengagesDNA through different bindingmodes.How
these DNA-binding modes facilitate FANCM functions
remains to be determined.

S. pombe MHF (SpMHF) also enhances Fml1 functions
in ICL repair, crossover control, and replication fork repair
(Table 2; Yan et al. 2010; Bhattacharjee et al. 2013). Inter-
estingly, a new role of SpMHF in conjunction with Fml1
in the resolution of DNA bridges between sister chroma-
tids has been reported (Bhattacharjee et al. 2013). Unlike
its human and fission yeast counterpart, S. cerevisiae
MHF (ScMHF) has no DNA-binding capability and does
not affect DNA binding by Mph1 (Table 2; Xue et al.
2015). The absence of a DNA-binding attribute in ScMHF
may account for the lack of effect onMph1-mediated reac-
tions in vitro and Mph1-dependent crossover control in
vivo (Xue et al. 2015). Despite these differences, genetic
evidence supports a role of ScMHF in Mph1-mediated
DNA damage repair and tolerance, partly by helping over-
come the negative regulation imposed on Mph1 by the
Smc5/6 complex (Fig. 2A; Xue et al. 2015).

Smc5/6 is a conserved SMC family complex with a role
in the regulation of recombination intermediate levels.
Several lines of evidence support the notion that Smc5/6
counteracts the prorecombinogenic activity of Mph1
through physical interaction with the C-terminal region
of the latter (Table 2; Chen et al. 2009; Choi et al. 2010;
Xue et al. 2014). For example, removing Mph1 or abolish-
ing its DNAmotor function alleviates multiple defects of
smc5/6mutants, including the increased level of recombi-
nation intermediates seen in these mutants (Chen et al.
2009; Choi et al. 2010; Chavez et al. 2011). Importantly,
purified Smc5/6 selectively inhibits Mph1’s replication
fork regression and branch migration activities (which
can lead to the generation of recombination intermedi-
ates) without affecting its D-loop dissociative function
(Xue et al. 2014). Mechanistically, through physical inter-
action with Mph1, Smc5 prevents the assembly of Mph1
oligomers at the junction of DNA forks (Xue et al. 2014).
The observation that negative regulation of specific
Mph1 activities can limit the formation of cytotoxic re-
combination intermediates reinforces the concept that al-
though replication fork regression is beneficial for lesion
removal or tolerance, it could also increase the risk of un-
desirable chromosomal rearrangements. The existence of
a restraining mechanism provides flexibility in the repair
response so that other less risky repair mechanisms, such
as TLS, may be efficiently engaged. In principle, this neg-
ative regulation must be overcome when replication fork
regression or HJ migration is needed, such as when a par-
ticular template lesion cannot be dealt with by TLS. Our
recent findings show that by competing with Smc5 for
Mph1 binding, ScMHF liberates Mph1 from Smc5 inhibi-
tion (Xue et al. 2015). The antagonistic action of Smc5/6
and MHF provides a cellular mechanism to attenuate or
activate the DNA replication fork regression and branch

migration activities of Mph1, respectively, thus allowing
repair pathway choice to bemade at a damaged replication
fork (Fig. 2A). Considering the high degree of conservation
of Smc5/6 and MHF, it will be of considerable interest to
test whether a similar antagonistic relationship exists be-
tween these proteins in other organisms.

FANCM regulation by FAAP24 and kinases

The vertebrate-specific FAAP24 helps target the FA core
complex to ICLs and also collaborates with FANCM to
promote ATR kinase-mediated checkpoint signaling by
several mechanisms (Fig. 1; Table 2; Collis et al. 2008;
Huang et al. 2010; Luke-Glaser et al. 2010; Schwab et al.
2010; Wang et al. 2013b). First, FAAP24 and FANCM in-
teract with theHCLK2 kinase, anATR–ATRIP-associated
protein required for the S-phase checkpoint function (Col-
lis et al. 2007, 2008). In addition, FAAP24 leads to the re-
cruitment of the ssDNA-binding protein RPA to ICLs and
activation of the ATR checkpoint pathway (Huang et al.
2010). FANCM also influences another checkpoint ki-
nase, Chk1, as the two proteins appear to stabilize each
other in HeLa cells (Luke-Glaser et al. 2010). Moreover,
the FANCM DNA motor activity contributes to optimal
ATR/Chk1 signaling, likely through generating long
stretches of ssDNA that are recognized as a DNA stress
signal by the checkpoint machinery (Collis et al. 2008;
Schwab et al. 2010). Indeed, the loss of FANCM reduces
chromosomal association of the ATR activator TopBP1
in chicken DT40 cells (Schwab et al. 2010). Future studies
will be needed to elucidate the molecular mechanisms
through which FANCM/FAAP24 triggers the different
ATR activation modes under distinct cellular stress
situations.

While the aforementioned studies have established a
role of FANCM upstream of the ATR checkpoint, recent
work has also revealed a dependence of FANCM on
ATR. Specifically, ATR is responsible for FANCM phos-
phorylation at Ser1045 in response to genotoxic stress,
and this modification is important for the recruitment
of FANCMto ICL sites; FA pathway activation, as indicat-
ed by FANCD2 monoubiquitination; and ATR/CHK1
checkpoint function (Singh et al. 2013b). Taken together,
these findings suggest the existence of a positive feed-
back loop between FANCM and ATR (Fig. 1). Further ex-
amination of the molecular details of this feedback loop
and its connection with the ATR-mediated regulation of
other FA proteins will be important for understanding
the intricate role of ATR in the regulation of the FA
pathway.

FANCM phosphorylation also occurs in the absence of
genotoxic stress, and the cell cycle stage has amajor influ-
ence in this regard, with the level of phosphorylation ris-
ing when cells transit from S phase into mitosis and
declining after mitotic exit (Kim et al. 2008). FANCM
phosphorylation in mitosis is mediated by the Polo-like
kinase PLK1, and thismodification leads to SCF-mediated
degradation of FANCM (Kee et al. 2009). This phosphory-
lation-triggered FANCM degradation provides a neat
mechanism for releasing the FA core complex from

Xue et al.

1784 GENES & DEVELOPMENT



chromatin during mitosis (Kee et al. 2009). It will be in-
teresting to test whether other kinases are also involved
in regulating the abundance and activity of FANCM
throughout the cell cycle and also determine how dephos-
phorylation is achieved after mitotic exit.

Crossover control and the BLM—topoisomerase IIIαTopo
IIIα—RMI (BTR) complex

The BTR complex—composed of BLM (a member of the
RecQ helicase family), Topo IIIα, and the OB-fold RMI
complex (a heterodimer of RMI1 and RMI2)—is the struc-
tural and functional equivalent of the Sgs1–Top3–Rmi1
(STR) complex in S. cerevisiae (Table 2). These protein
complexes can dissolve the dHJ to yield noncrossover re-
combinants exclusively (Fig. 2B). This activity stems
from the HJ branch migration activity of BLM/Sgs1 fol-
lowed by DNA decatenation by Topo IIIα/Top3, while
RMI/Rmi1 stimulates BLM/Sgs1 and Topo IIIα/Top3 ac-
tivities (Wu and Hickson 2003; Plank et al. 2006; Raynard
et al. 2006; Wu et al. 2006; Singh et al. 2008; Xu et al.
2008).
The role of STR in crossover control is mechanistically

distinct from the anti-crossover role of Mph1/Fml1 and
that of another helicase, Srs2, which acts early in the re-
combination process by dismantling the Rad51–ssDNA
nucleoprotein filament (Krejci et al. 2003; Veaute et al.
2003). Genetic analyses have shown that simultaneously
removing any two of these helicases increases crossover
level more than ablating just one of them (Prakash et al.
2009; Mitchel et al. 2013). Nonoverlapping DNA repair
roles between Mph1 and either Sgs1 or Srs2 lead to syn-
thetic sickness or lethality of double mutants upon
DNA damage occurrence (St Onge et al. 2007; Chen
et al. 2009; Panico et al. 2010). Similarly, Mph1 and STR
orthologs in fission yeast and A. thaliana also have inde-
pendent functions in crossover control and/or DNA repair
(Sun et al. 2008; Knoll et al. 2012; Seguela-Arnaud et al.
2015). In D. melanogaster, FANCM and BTR appear to
be epistatic for crossover control but additive for DNA re-
pair (Kuo et al. 2014).
The situation in vertebrates is different. First, human

BTR forms a higher-order ensemblewith the FA core com-
plex, termed the BRAFT supercomplex (Meetei et al.
2003; Wang 2007). FANCM is responsible for recruiting
the BTR complex to ICL sites and to the FA core complex
through two domains calledMM1 andMM2 (Fig. 1; Deans
and West 2009). While MM1 mediates association with
the FA core complex through FANCF, MM2 binds RMI1
and Topo IIIα (Deans and West 2009; Hoadley et al.
2012). A deletion of either MM1 or MM2 in FANCM
engenders ICL sensitivity and elevates SCEs (Deans
and West 2009). Interestingly, MM1 deletion impairs
FANCD2 foci formation after treatment of cross-link
agents or irradiation, while MM2 deletion or mutation af-
fects BLM foci formation under replication stress (Deans
and West 2009). This finding is consistent with the idea
that FANCM possesses FA-dependent and FA-indepen-
dent functions, the latter of which requires BTR. Based
on these observations, FANCM appears to collaborate

with BTR in crossover control and thus SCE suppression.
A similar conclusion has been drawn in chicken DT40
cells (Rosado et al. 2009). As BLM mutations underlie
Bloom’s syndrome (BS), which is characterized by high
levels of SCEs (Chaganti et al. 1974; Ellis et al. 1995;
Cheok et al. 2005), it will be interesting to examine the
possible involvement of FANCM in BS and define the
mechanism by which the two DNA motor proteins func-
tionally collaborate to suppress SCEs.

Concluding remarks

The past few years havewitnessed rapid progress in under-
standing the role of the FANCM family of DNA motor
proteins in genome replication and repair and the DNA
damage response. Members of this family share common
biochemical activities, with some possessing unique attri-
butes. The studies of human FANCM and its orthologs in
model systems have provided a framework for deciphering
their roles in ICL repair and tolerance, replication fork re-
pair, DNA damage checkpoints, and crossover control.
Many important questions regarding these DNA motor
proteins remain. Most notably, how do the regulators of
FANCM family proteins act in different cellular contexts
to selectively affect enzyme functions? Besides the inter-
actors described above, other potential partners and regu-
lators have been identified, but the roles that they fulfill
have not yet been defined. For example, Mph1 associates
with RPA in affecting gross chromosomal rearrangements
via an unknown mechanism (Banerjee et al. 2008). Like-
wise, the manner in which Mph1 functions with Fkh1,
Msh2–Msh6, and Mgm101 in ICL repair or with Elg1 pos-
sibly in lagging strandDNA synthesis remains to be delin-
eated (Ho et al. 2002; Gavin et al. 2006; Kang et al. 2012;
Ward et al. 2012; Singh et al. 2013a). In addition, recent
studies suggest that FANCM family proteins function in
additional processes; e.g., in nucleotide excision repair
to remove bulky DNA adducts induced by ultraviolet
light treatment (Kelsall et al. 2012). Finally, even though
FANCM phosphorylation is clearly important for its cel-
lular functions, there is a paucity of information regarding
how the biochemical attributes of FANCM family pro-
teins are influenced by phosphorylation and other post-
translational modifications. Ongoing studies that entail
biochemistry, genetics, cell biology, and structural biol-
ogy will undoubtedly provide mechanistic answers to
these questions and will continue to yield insights into
the multifaceted role of these DNA motor proteins in ge-
nome maintenance.
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