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INTRODUCTION

Human respiratory syncytial virus (RSV), an enveloped, non-
segmented negative-sense RNA virus of the family Paramyxo-
viridae is the leading cause of severe lower respiratory tract 
infection in both infants and the elderly, despite limited viral 
variation and protective immunity.1 Most infants are infected 
during the first year of life, and re-infections occur throughout 
life. The immature immune system of infants is associated with 
pathologic symptoms and mortality as well as RSV vaccine-
enhanced disease. Additionally, RSV infection is likely to be 
associated with specific side effects, such as asthma-like le-
sions following RSV re-infection. RSV infection is also a serious 
problem in elderly persons due to their weak immune systems. 
According to a retrospective cohort study, adult hospitalization 

due to RSV infection is associated with substantial rates of com-
plications and mortality.2 These facts have increased the pub-
lic health concern related to RSV worldwide; however, no ap-
proved vaccine for RSV is available. Developing an effective 
RSV vaccine is problematic, as the major target populations 
are infants and immunocompromised adults. The efficacy and 
safety of any vaccine are important aspects in its development.

In this review, we discuss the latest research on protective 
immunity against RSV infection and suggest what should be 
considered for the development of safe and effective vaccines 
against RSV infection.

RSV INFECTION AND INNATE IMMUNITY 

Viruses are recognized mainly by Toll-like receptors (TLRs) and 
other pattern recognition receptors, which detect structural 
components including viral nucleic acids and surface glycopro-
teins as pathogen-associated molecular patterns. The recogni-
tion of viruses by these innate immune receptors commonly 
induces type I interferon (IFN) production, which mediates 
strong antiviral defenses. Similar to other viruses, RSV infection 
elicits host innate immune responses, in which innate recep-
tors expressed on resident leukocytes and lung epithelial cells 
play key roles.3,4 TLRs are directly involved in activating innate 
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immunity against RSV by recognizing certain conserved viral 
motifs.5,6 For instance, the fusion (F) protein of RSV has been 
observed to activate TLR4.7 Moreover, RSV induces produc-
tion of inflammatory cytokines and chemokines through 
TLR2 and TLR6, which activate innate immunity by promot-
ing TNF-α, interleukin (IL)-6, MCP-1, and RANTES produc-
tion.8 The early inflammatory signals generated by RSV-TLR 
interactions during RSV infection are likely to recruit neutro-
phils and natural killer (NK) cells into the lung, which are im-
portant for clearing RSV-infected cells. Indeed, TLR4-deficient 
mice challenged with RSV, though not influenza virus, exhib-
ited impaired NK cell and CD14+ cell pulmonary trafficking, 
deficient NK cell function, impaired IL-12 expression, and im-
paired virus clearance compared to control mice.9 However, 
Ehl, et al.10 reported that the absence of TLR4 had no impact 
on NK cell recruitment, NK cell activity, or recruitment of oth-
er pulmonary inflammatory cells, arguing against a significant 
role for TLR4 in primary murine RSV infection. In humans, 
Awomoyi, et al.11 suggested that a defect in TLR4 signaling is 
linked to RSV-induced pathology in preterm, high-risk infants. 
Supporting these findings, Tulic, et al.12 demonstrated that pe-
ripheral blood mononuclear cells isolated from children with 
variant forms of TLR4 exhibited reduced expression of the re-
ceptor on the surface and reduced response to RSV, suggest-
ing that weakened immune responses contribute to enhanced 
susceptibility to RSV infection in these individuals. Thus, it is 
likely that TLR-dependent signaling is important for activating 
early inflammatory responses to RSV and that aberrant TLR 
signaling contributes to RSV-induced disease in humans. The 
RIG-I-like receptors (RLRs), including RIG-I and MDA5, detect 
viral dsRNA, 5’-triphosphorylated uncapped viral RNA, or ss-
RNA genome bearing 5’-triphosphates, and activate the down-
stream NF-κB and IRFs pathways through the common adap-
tor, mitochondrial anti-viral signaling protein (MAVS). Bhoj, 
et al.3 demonstrated in vitro and in vivo that MAVS is essential 
for the production of type I IFN and many inflammatory cyto-
kines in response to RSV infection. However, Myd88-/-Mavs-/- 
mice mounted a normal cytotoxic T-lymphocyte response 
and exhibited delayed yet effective viral clearance, suggesting 
that comparable adaptive immune responses could be induced 
in the absence of innate immunity mediated by the MAVS and 
MyD88 pathways.3 Therefore, it is clear that innate immunity 
is involved in RSV recognition and the subsequent immune 
response, and further studies of anti-RSV innate immunity are 
required for the development of effective vaccines and thera-
peutics against RSV infection.

B-CELL IMMUNITY TO RSV AND VACCINE 
DEVELOPMENT

Although natural infection with RSV induces neutralizing anti-
bodies, the levels of which are correlated with protection against 

reinfection with RSV of the same strain, it does not provide 
long-lasting protective immunity.1,13 In humans, levels of RSV-
specific antibodies decline more than 4-fold within 1 year fol-
lowing a natural RSV infection,14 and this decline was reported 
to correlate with susceptibility to recurrent symptomatic RSV 
infection.1 In particular, RSV-specific nasal IgA was correlated 
more strongly with protection from RSV infection, although the 
levels were less well maintained than those of serum neutral-
izing antibodies.15 As RSV antibodies are important for protec-
tion following RSV infection, strategies to modulate antibody 
persistence and confer protection against RSV are needed.

The major glycoproteins on the surface of RSV, the F and at-
tachment (G) proteins, control the initial phases of viral infec-
tion and are the major protective antigens targeted by neutral-
izing antibodies.16 The F protein is highly conserved between 
RSV A and B subtypes (90% similarity) and elicits production 
of neutralizing antibodies and a T cell response against RSV 
challenge. F protein mediates virus entry via membrane fusion 
and exists on the RSV membrane in both prefusion (pre-F) and 
postfusion (post-F) conformations. Briefly, F-protein trimers 
in the envelope of resting RSV (pre-F form) are triggered, re-
folded, and attached to the target cell membrane (intermedi-
ate stage). The trimer then folds in half, and the viral and cellu-
lar membranes fuse (post-F form) (Fig. 1A). Although epitopes 
for neutralizing antibody production reside in both conforma-
tions, post-F exhibits less effective neutralization through im-
munoglobulins produced via natural infection with RSV, sug-
gesting that pre-F has greater potency.17 The atomic-level 
structure of pre-F has increased our understanding of the targets 
of neutralizing antibodies produced via vaccination with RSV 
F protein. Identification of neutralization-sensitive epitopes in 
pre-F as a candidate for a subunit vaccine or for prophylactic 
monoclonal antibody development is a promising strategy for 
the development of an RSV vaccine.

The RSV G protein is involved in attachment.16 The heparin-
binding domain and the third and fourth cysteines separated 
by three amino acids (CX3C) in the cysteine noose of the 
membrane-anchored G protein bind their respective targets, 
heparan sulfate18 and CX3CR1, on the surface of most cell types 
(Fig. 1B).18,19 The RSV A- and B-type G proteins share only 53% 
identity,20 and the antigenic variability of RSV is a barrier to 
vaccine development. However, recent research suggests that 
the G protein has a conserved region from amino acids 148 to 
198, which contains four conserved cysteine residues forming 
a noose (amino acid positions 173, 176, 182, and 186), and the 
central conserved region is targeted by antibodies protective 
against RSV challenge.17 The cysteine noose has a CX3C che-
mokine motif within amino acids 182 to 186 that shares struc-
tural similarity with the chemokine fractalkine (CX3CL1) and 
can bind to CX3CR1-expressing leukocytes competitive with 
CX3CL1.21 Although a monoclonal antibody against the CX3C 
region of the G protein was found to have no neutralizing ac-
tivity in RSV-infected Hep2 cells,22 it directly blocked the bind-
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ing between CX3C and CX3CRl and reduced viral replication 
in both prophylaxis and treatment mouse models of RSV chal-
lenge.23 A non-neutralizing monoclonal antibody against a G 
protein epitope (amino acid positions 174–187) was reported 
to provide passive protection via both ADCC and comple-
ment-mediated cytolysis.24 Previous works suggested that a re-
combinant G protein core fragment of amino acids 131 to 230 
(Gcf) induced strong immunoglobulin responses (RSV-spe-
cific IgG and IgA) in mice as well as potent chemotactic activi-
ty in a cell migration assay.25 An excellent vector-based muco-
sal vaccine comprising a recombinant replication-deficient 
adenovirus expressing the tandem repeats of Gcf also induced 
strong RSV-specific B-cell responses and showed protective 
efficacy against human RSV A and B.26,27

As prophylactic vaccine candidates or therapeutics, con-
served RSV antigens and neutralizing and/or non-neutralizing 
antibodies to these target antigens could play a role in provid-
ing protection against RSV infection.

T-CELL IMMUNITY AGAINST RSV  
INFECTION

T cells are believed to be essential for the clearance of RSV from 
the lungs and host defense. In mice, adoptive transfer of RSV-

specific memory T cells cleared primary RSV infection,28 and 
depletion of CD4 or CD8 T cells markedly prolonged the dura-
tion of RSV shedding,29 suggesting that T cells contribute to the 
elimination of infected cells during acute RSV infection. In hu-
mans, the numbers and functional capacity of RSV-specific T 
cells might be implicated in viral clearance, as aging and/or im-
munodeficiency affecting T-cell function resulted in more se-
vere disease and higher levels of virus shedding.30,31 A recent 
human study has shown that a CD8 resident memory T cell 
subset was maintained at an increased level during the recov-
ery period, and their abundance was highly correlated with vi-
rus clearance and protection against RSV infection, despite 
lower cytotoxicity compared with peripheral blood CD8 T 
cells.32 In addition, a number of RSV gene products are impli-
cated in the modulation of the immune system, including T-
cell immunity (reviewed in Openshaw and Chiu33). For exam-
ple, RSV infection of DCs impairs their activation of protective 
T cells yet promotes their proliferation and activation of 
pathologic Th2 cells.34 RSV infection might modulate the as-
sembly of immunological synapses35 or affect the expression 
of co-stimulatory molecules and cytokine production.36 Thus, 
it is clear that a greater understanding of the role of T-cell im-
munity in RSV infection and viral counter-regulation is re-
quired for the development of a vaccine that provides long-
term protective immunity. 
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Fig. 1. RSV genome, proteins, and their functions. In the schematic diagram of the RSV genome, 10 genes are indicated in the order NS1-NS2-N-P-M-SH-
G-F-M2-L. Filled square, genes encoding proteins targeted by neutralizing antibodies. (A) Simplified diagram of RSV F protein-mediated membrane fusion. 
(B) Attachment of RSV G protein to the host cell membrane is mediated by HS and HBD and/or the CX3C-CX3CR1 interaction. Pre-fusion, pre-fusion form 
of the F protein; Intermediate, refolding of the F protein to initiate membrane attachment; Post-fusion, membrane fusion between RSV and the target cell;  
HS, heparan sulfate; HBD, heparin-binding domain; RSV, respiratory syncytial virus.
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Despite their importance in RSV clearance, T cells are also 
associated with RSV disease severity. For example, transfer of 
CTLs augmented lung pathology,28 and in vivo depletion of 
CD8 T cells29 resulted in reduced illness in mice. In the 1960s, 
formalin-inactivated RSV (FI-RSV) underwent a clinical trial 
as a vaccine candidate yet failed to induce protective immu-
nity to RSV challenge.37 Instead, the vaccinated subjects devel-
oped exacerbated symptoms that were associated with strong 
Th2 responses such as severe lung eosinophilia.38,39 This aber-
rant response can be mimicked in murine models by priming 
with inactivated RSV40 or recombinant vaccinia virus express-
ing RSV G protein,29,41 which is associated with Th2 cytokines 
and a specific oligoclonal CD4 T-cell response.42 In a mouse 
model, a strong RSV M2-specific CD8 T-cell response suppressed 
Th2-type cytokine production and subsequent pulmonary eo-
sinophilia, suggesting that CD8 T cells play a regulatory role in 
the differentiation and activation of Th cells.43 However, it is un-
likely that Th2-biased responses and vaccine-enhanced diseas-
es are an intrinsic property of G antigen, as other vaccine plat-
forms targeting G protein did not exhibit these properties.44 
Nonetheless, the data from animal models and humans con-
cerning vaccine-associated pathology can be used to form a 
consensus that Th2-biased CD4 T-cell responses and subse-
quent vaccine-enhanced diseases should be avoided in future 
RSV vaccine trials. However, other studies failed to find an as-
sociation between clinical severity and Th2-like T-cell respons-
es.45,46 Thus, it remains to be determined whether the balance 
between Th1- and Th2-type responses induced by vaccination 
has an effect on subsequent RSV infection and RSV-induced 
disease severity. 

Recently, emerging evidence has suggested that IL-17 and 
possibly Th17-type responses are involved in the pathophysiol-
ogy of RSV infection and airway inflammation.47-49 In mice, neu-
tralization of IL-17 during RSV infection resulted in reduced 
inflammation, inhibition of mucus production, decreased vi-
ral load, and increased RSV-specific CD8 T cells.49 The level of 
IL-17 in tracheal aspirates from hospitalized infants also in-
creased significantly compared to the control, suggesting a 
pathogenic role for IL-17. Tregs might also play an important 
role in the regulation of cellular infiltration in the lungs and 
disease severity following acute RSV infection. Depletion of 
Tregs following RSV infection resulted in increased cellular 
trafficking and enhanced disease severity without affecting 
viral clearance.50,51 However, the significance of Th17-type and 
Treg responses to RSV infection requires further studies in 
both humans and animal models.

T cells are essential for the generation of protective immu-
nity against RSV. A successful RSV vaccine should elicit a bal-
anced immune response without vaccine-enhanced disease as 
well as protective memory. Our understanding of T-cell–medi-
ated immunity is a work in progress, and further studies on the 
protective and pathologic roles of T cells are required.

RSV VACCINES IN CLINICAL TRIALS

Vaccination might be the most effective and economic strate-
gy for obtaining protective immunity against RSV. Since the fail-
ure of the FI-RSV vaccine, many groups have investigated RSV 
immunity and vaccine-enhanced disease. Several RSV vac-
cine candidates are undergoing clinical trials (Table 1). 

Live-attenuated RSV vaccines that lack vaccine-associated 
enhanced RSV disease might be suitable for RSV-naïve infants 
and young children.52 These vaccines offer several advantag-
es: 1) needle-free administration via the nasal cavity, 2) upper 
respiratory tract infection of the live-attenuated RSV and local 
mucosal immunity even in the presence of maternal neutral-
izing antibody, and 3) broad stimulation of innate, humoral 
and cellular immunity.53 Despite the fact that balancing atten-
uation and immunogenicity is difficult54 and that the vaccine 
itself is extremely unstable,53 several candidate live-attenuated 
vaccines that use temperature sensitivity and/or reverse ge-
netics to derive attenuation are currently undergoing clinical 
trials (Table 1).

Infants less than 0.5 years old, children from 0.5 to 2 years of 
age, pregnant women, and the elderly are the target popula-
tions for RSV vaccines. The immature and/or pre-existing im-
munity in certain groups necessitates effective vaccine plat-
forms. Although subunit vaccines are expected to elicit a strong 
neutralizing antibody response,21 animal and human studies 
indicate that some subunit vaccine candidates weaken cellular 
immunity and elicit a Th2-skewed immune response accom-
panied by severe vaccine-enhanced disease.55 Currently, sub-
unit vaccine candidates including F and SHe proteins are be-
ing evaluated in clinical trials (Table 1).

Since the advent of recombinant vector technology, many 
vectored vaccines have been used as gene carrier systems, and 
viral vectors such as adenovirus and vaccinia virus have un-
dergone clinical trials for RSV vaccine development. According 
to the delivery methods, the vectored vaccines might direct the 
production of mRNA and protein antigens inside host cells 
and induce both cellular and humoral immune responses.56 As 
shown in Table 1, various RSV genes of interest–such as F, G, 
N, and M2-1–are delivered to human subjects by means of 
these vectored vaccine platforms.

CONCLUSION

For many decades, RSV vaccine development has been a high 
priority in global healthcare, and much effort has been devot-
ed to the study of host immunity and the development of safe 
and effective vaccine strategies to prevent and/or treat RSV in-
fection. Presently, several vaccine candidates are being evaluat-
ed in clinical trials targeting children, pregnant women, and 
the elderly, and this will continue until an effective vaccine is 
developed. The greater our understanding of the host immu-
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nity, viral immune evasion, and immunopathology of RSV in-
fection, the closer we move towards the first licensed RSV vac-
cine. 
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