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Background: Patients with Parkinson’s disease (PD) and progressive supranuclear palsy

Richardson’s syndrome (PSP-RS) often show overlapping clinical features, leading to

misdiagnoses. The objective of this study was to investigate the feasibility and utility of

using multi-modal MRI datasets for an automatic differentiation of PD patients, PSP-RS

patients, and healthy control (HC) subjects.

Material and Methods: T1-weighted, T2-weighted, and diffusion-tensor (DTI) MRI

datasets from 45 PD patients, 20 PSP-RS patients, and 38 HC subjects were available

for this study. Using an atlas-based approach, regional values of brain morphology

(T1-weighted), brain iron metabolism (T2-weighted), and microstructural integrity (DTI)

were measured and employed for feature selection and subsequent classification using

combinations of various established machine learning methods.

Results: The optimal machine learning model using regional morphology features only

achieved a classification accuracy of 65% (67/103 correct classifications) differentiating

PD patients, PSP-RS patients, and HC subjects. The optimal machine learning model

using only quantitative T2 values performed slightly better and achieved an accuracy of

75.7% (78/103). The optimal classifier using DTI features alone performed considerably

better with 95.1% accuracy (98/103). The optimal multi-modal classifier using all features

also achieved an accuracy of 95.1% but required more features and achieved a slightly

lower F1-score compared to the optimal model using DTI features alone.

Conclusion: Machine learning models using multi-modal MRI perform significantly

better than uni-modal machine learning models using morphological parameters based

on T1-weighted MRI datasets alone or brain iron metabolism markers based on

T2-weighted MRI datasets alone. However, machine learnig models using regional brain

microstructural integrity metrics computed from DTI datasets perform similar to the

optimal multi-modal machine learning model. Thus, given the results from this study

cohort, it appears that morphology and brain iron metabolism markers may not provide

additional value for classification compared to using DTI metrics alone.

Keywords: machine learning, magnetic resonance imaging, computer-assisted image analysis, Parkinson’s

disease, progressive supranuclear palsy
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INTRODUCTION

The early differential diagnosis of classical Parkinson’s disease
(PD) and progressive supranuclear palsy (PSP)—in particular
the Richardson’s syndrome (PSP-RS)—is often limited by
overlapping symptom profiles, which are not effectively captured
by existing clinical scores or established diagnostic methods.
Within this context, failure rates of up to 24% have been
reported, even by movement disorders specialists (1). In clinical
practice, diagnosis of PD and PSP-RS is mostly based on clinical
examination including key features, response to levodopa, and
established scores such as the Unified PD Rating Scale (UPDRS)
(2). However, due to significant overlap of clinical symptoms
and inadequate accuracy of bedside tests, differential diagnosis
is often challenging, particularly in the early disease course. The
relevance of an accurate early diagnosis is closely related to
better disease management via appropriate drug administration,
patient care protocols, and might improve disease prognosis
considerably. Furthermore, the identification of early disease
manifestations may lead to better targeted pharmaceutical
therapies and enable advancements in developing more effective
drug therapies in this domain.

In this context, group-wise studies using various magnetic
resonance imaging (MRI) modalities such as T1-weighted (3, 4),
T2-weighted (5, 6), and diffusion-tensor MRI (DTI) (7, 8) have
shown significant differences between PD and PSP-RS patients
and healthy control (HC) subjects. These differences indicate
alterations in regional brain volume, brain iron metabolism, and
microstructural brain tissue degradation, all off which are closely
related to the neurodegenerative profiles of PD and PSP-RS
compared to HC subjects (9–11). Supervised machine learning
techniques are capable of identifying complex patterns in high-
dimensional data, whereas the identified patterns can then be
used to make patient-specific predictions on new unseen cases
(12). Machine learning has been used successfully for various
precision medicine problems (13) and multiple studies have
attempted to utilize features obtained from the aforementioned
group-wise studies to classify individual PD and PSP-RS patients
[e.g., (14–16)].

However, only a few scientific studies have truly tried to
harness the power of multi-modal imaging features to improve
differential classification of patients with PD and PSP-RS so far
[e.g., (17, 18)]. Moreover, the true benefit of using multi-modal
imaging over single modality imaging information has not been
explored in detail yet. Therefore, this study aims to present a
comprehensive end-to-end framework to classify patients with
PD, patients with PSP-RS, and HC subjects using T1-weighted,
T2-weighted, and DTI datasets and evaluate the accuracy of
optimal machine learning models trained using individual single
modality features as well as multi-modality features.

MATERIALS AND METHODS

Patients and Imaging
The study cohort used for this work has been previously
described in detail by Boelmans et al. (16). Briefly described, 45
PD, 20 PSP-RS, and 38 HC subjects presenting to the movement

disorder outpatient clinic of the Neurology Department of
the University Medical Center Hamburg-Eppendorf between
July 2009 and September 2010 were used for this secondary,
retrospective study. No sample size estimates were computed
or required for the primary observational study. The clinical
diagnosis of PD and PSP-RS was conducted according to the
UK Brain Bank criteria (19) and the National Institute of
Neurological Disorders and Stroke and Society for PSP (NINDS-
SPSP) (20), respectively. The inclusion criteria for the PSP-RS
group were probable PSP-RS subjects presenting as classical
Richardson’s syndrome with vertical palsy, axial rigidity, and
balance instability with early falls. PSP-RS patients who exhibited
prominent freezing phenomena, asymmetric clinical features,
and a clinically relevant levodopa response were excluded from
the study. The clinical characteristics of the study participants
are summarized in Table 1. The study was approved by the
local ethics committee and informed consent was attained from
all subjects.

All participants were scanned at the University Medical
Center Hamburg-Eppendorf, Germany, using a 3T Siemens
Skyra MR scanner (Figure 1). Among others, T1-weighted
MPRAGE, DTI, and triple-echo T2- and T2∗-weighted MRI
datasets were acquired for each patient. The high-resolution T1-
weighted MPRAGE dataset was acquired using TR = 1,900ms,
TE = 2.46ms, flip angle = 90◦, TI = 900ms, image in-plane
resolution of 0.94× 0.94 mm², and 0.94mm slice thickness.

T2-weighted and T2∗-weighted image sequences were
acquired for this study for R2, R2∗, and R2′ mapping. In detail,
for R2 mapping, a spin-echo sequence with 15 echoes per shot
was employed to record images using echo times of 12, 85,
and 158ms. A total of 24 slices with a thickness of 5mm with
a field-of-view of 240mm were acquired using a repetition
time of 4,590ms and a flip angle of 150◦. The T2∗-weighted
images were acquired with the same settings except for using a
single shot echo-planar sequence with TEs of 21, 52, and 88ms.

TABLE 1 | Demographic and clinical characteristics of study participants.

Parkinson’s

disease

Progressive

supranuclear palsy

Healthy

controls

Number of patients 45 20 38

Sex, M/F 33/12 9/11 24/14

Age at examination,

y, mean ± SD

(range)

66.1 ± 7.2 (45–77) 71.2 ± 5.7 (59–79) 61.9 ± 11.3

(41–80)

Disease duration, y,

mean ± SD (range)

13.7 ± 6.6 (2–30) 6.1 ± 3.4 (1–12) -

Hoehn&Yahr, mean

± SD (range)

2.6 ± 0.8 (1–4) 2.6 ± 0.8 (1–4) -

UPDRS motor score

(OFF condition),

mean ± SD (range)

37.4 ± 13.1

(14–63)

32.8 ± 12.0 (9–52) -

UPDRS motor score

(ON condition),

mean ± SD (range)

20.0 ± 10.7

(5–52)

28.9 ± 10.8 (6–48) -

MMSE, mean ± SD

(range)

28.1 ± 1.4 (23–30) 25.1 ± 2.8 (19–29) -
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FIGURE 1 | Selected slice from a multi-modal MRI dataset of a patient with Parkinson’s disease.

The R2 map was calculated by fitting the exponential function
SI(t) = SI0 exp(−t/T2) to the signal intensity decay curve SI(t)
given by the three TE images for each voxel of the T2-weighted
sequence, whereas R2 is defined by R2 = 1/T2. The R2∗ map
was calculated in the same fashion using the three TE images of
the T2∗-weighted sequence. Finally, the R2′ map was calculated
using the formula: 1/T2′ = 1/qT2∗ − 1/qT2, whereas R2′ is
defined by R2′ = 1/T2′. All computations required for R2/T2
mapping were performed using the in-house developed software
tool Antonia (21).

The DTI sequence was acquired using a single-shot balanced
echo-planar imaging sequence with TR = 4,500ms, TE = 83ms,
and flip angle = 90◦. A total of 27 slices with a thickness
of 5mm with an image in-plane resolution of 1.875 × 1.875
mm2 were acquired without diffusion gradients (b = 0 s/mm2)
and with diffusion gradients (b = 1,000 s/mm2) applied along
20 non-collinear directions, averaged over two acquisitions.
The DTI preprocess tool (22) was used for DTI processing to
generate the diffusion parameter maps (mean diffusivity [MD],
fractional anisotropy [FA], radial diffusivity [RD], and axial
diffusivity [AD]).

Image Registration
The automatic segmentation of anatomical brain regions was
performed by registration of the Montreal Neurological Institute
(MNI 152) brain atlas to each T1-weighted MPRAGE image
using NiftyReg (23), which allows transforming atlas brain
regions defined in the MNI space to each individual dataset
for volumetric analysis. More precisely, the MNI brain atlas
was registered to each T1-weighted MRI dataset using a
rigid transformation followed by an affine transformation. The
resulting affine transformation was then used for initialization of
a non-linear registration using a cubic B-Spline parametrisation
(free-form deformation). After this, the Harvard-Oxford cortical,
Harvard-Oxford subcortical, MNI, and the Johns Hopkins

University (JHU) white matter tractography atlas brain regions
were transformed to each T1-weighted MRI dataset using the
corresponding non-linear transformation and a nearest-neighbor
interpolation. In addition to the parcellated atlas brain regions,
the non-linear deformation field was also used for transforming
a binary segmentation of the total intracranial volume to the
T1-weighted dataset of each patient.

After this, the T2-weighted and diffusion-weighted datasets
were non-linearly registered to the corresponding T1-weighted
MRI dataset from the same patients using ANTs (24) to enable
a combined analysis. More precisely, the average (b = 1,000
s/mm2) DTI image was used as the reference for this due to
improved anatomical details and higher similarity to the T1-
weighted dataset. This registration also consisted of a rigid
followed by an affine transformation used for initialization
of the non-linear registration, which was performed using a
symmetric diffeomorphic image registration method, to allow
correcting for distortion artifacts. The resulting transformation
was then used to transform the DTI-derived parameter maps
(MD, FA, RD, AD) to the corresponding T1-weighted MRI
dataset from the same patient. The same approach was used for
registration of the T2-weighted datasets to the T1-weighted MRI
dataset whereas the dataset from the triple-echo T2-weighted
sequence acquired with the longest echo time was used as the
reference in this case. The resulting transformation was then
used to transform the T2 parameter maps (R2, R2∗, R2′) to the
corresponding T1-weighted MRI dataset. All registration results
were visually checked to ensure optimal registration quality, so
that no missing values or significant outliers were present in the
extracted features.

Feature Extraction
An overview of the extracted features using the different brain
atlas regions is presented in Table 2. In detail, the Harvard-
Oxford subcortical atlas defined in the MNI reference space
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TABLE 2 | Overview of atlases and number of features extracted for regional analysis of morphology, brain iron accumulation/deposition, and microstructural integrity.

Modality Type of feature Atlases used Total number of

extracted features

T1-weighted MRI Morphology:

Regional Volume (V)

Regional Brain Surface (SA)

Regional Surface area to

Volume Ratio (SA:V)

Harvard-Oxford Cortical 234

Harvard-Oxford Sub Cortical

MNI brain regions

T2-weighted MRI Brain iron content:

R2, R2*, R2′
Harvard-Oxford Cortical 396

Harvard-Oxford Sub Cortical

Johns Hopkins University

White Matter Tractography

Diffusion-tensor MRI Microstructural integrity:

Mean diffusivity (MD)

Fractional anisotropy (FA)

Radial diffusivity (RD)

Axial diffusivity (AD)

Harvard-Oxford Cortical 520

Harvard-Oxford Sub Cortical

Johns Hopkins University

White Matter Tractography

consists of 21 brain regions such as the thalamus, caudate,
hippocampus, and brainstem. The Harvard-Oxford cortical atlas
consists of 48 brain regions such as the insular cortex, precentral
gyrus, and temporal pole. The MNI brain regions (not to
be confused with the MNI 152 atlas used for registration)
include nine well-known large structures such as the cerebellum,
frontal lobe, temporal lobe, and others. Finally, the JHU atlas
includes 20 structural white matter tracts such as anterior
thalamic radiation, forceps major/minor, superior longitudinal
fasciculus and others, which have been widely used in DTI-
based studies.

In a first step, the registered Harvard-Oxford cortical,
Harvard-Oxford sub-cortical, and MNI brain regions were used
to quantify the volumes of the corresponding brain regions. To
account for different global head sizes, the extracted volumes
were normalized using the full intracranial volumes as described
previously (25). Apart from the volume, the surface area as well
as the surface-area-to-volume ratio (SA:V) was also determined
for each brain region in the Harvard-Oxford cortical, Harvard-
Oxford sub-cortical, and MNI brain atlas. For calculation of the
SA:V, the raw regional volumes instead of the volumes corrected
for the full intracranial volume were used since the SA:V metric
is intrinsically normalized by dividing the surface area by the
corresponding volume and would be skewed otherwise. Since
the morphological parameters are of reduced interest for white
matter tract analysis, the JHU atlas regions were not considered
for morphological analysis. It should be noted that the regions
used from the MNI brain atlas for the morphological analysis
include the large lobes and cerebellum, which are composed of
many of the smaller structures defined in the other atlases. These
larger structures were included for the morphological analysis to
quantify more global atrophy effects that might be missed when
analyzing the small structures only. As each lobe contains a large
number of the smaller structures defined in the other atlases, the
measured morphological parameters for the large lobes are not
likely to show high redundancy despite the overlap.

After this, the registered Harvard-Oxford cortical, Harvard-
Oxford sub-cortical, and JHU atlas brain regions were used to

quantify the corresponding median DTI parameters (MD, FA,
RD, AD) and T2 parameters (R2, R2∗, R2′) in the corresponding
atlas brain regions. Median instead of average values were
used to account for potential non-normal value distribution
and partial volume effects at the border of brain structures.
The MNI brain regions were not used for analysis of the
DTI and T2-weighted datasets because the corresponding brain
regions are rather large, so that localized microstructural and
iron deposition differences would not be captured. Using this
approach, a total of 1,150 features describing the regional
morphology, iron accumulation/deposition, and microstructural
integrity were extracted and used for training and testing of
machine learning models described below.

Machine Learning Pipeline
The machine learning framework implemented for this study
consists of a feature ranking/selection and classification stage.
In detail, features are initially ranked based on their relevance
for the classification task using each of the following feature
selection algorithms: correlation attribute evaluator, gain
ratio/information gain evaluator, principle component analysis,
RELIEFF, and support vector machine attribute evaluator.
After this, the 100 highest ranked features for each ranking
method were selected for initial inclusion for classification.
This number was selected to decrease computational processing
times associated with higher number of features but also to
ensure that more observations than features are available to
solve the classification problems. Each set of ranked features
was then used to train each of the following classification
models: simple decision tree, random forest, logistic model
tree, k-nearest neighbors, naive Bayes, support vector machine
(SVM), and multi-layer perceptron. All models were trained
using the models implemented in Weka (26) with standard
hyper-parameter values to reduce the risk of overfitting.

A leave-one-out cross validation routine was employed for
classifier performance evaluation. To prevent double dipping, the
leave-one-out cross validation also included the feature ranking.
The optimal number of highest ranked features used for training
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TABLE 3 | Confusion matrix following a gain ratio + SVM classification combination using morphological features only.

Morphology Features (Surface area, Volume, and Surface-Area-to-Volume Ratio Features)

Class TP Rate FP Rate Precision Recall F-Measure MCC ROC Area Confusion Matrix Accuracy

HC PD PSP-RS

HC 0.605 0.185 0.657 0.605 0.630 0.429 0.710 23 12 3 65.0%

PD 0.622 0.241 0.667 0.622 0.644 0.384 0.690 10 28 7

PSP-RS 0.800 0.120 0.615 0.800 0.696 0.619 0.840 2 2 16

TP, True Positive; FP, False Positive; MCC, Matthews Correlation Coefficient; ROC AUC, Area under the receiver operating characteristic curve; HC, Healthy Controls; PD, Parkinson’s

disease; PSP-RS, Progressive supranuclear palsy Richardson’s syndrome.

TABLE 4 | Confusion matrix following a PCA + LMT classification combination using brain iron content measures only.

T2-weighted Image Features (based on quantitative R2, R2′, and R2* Features)

Class TP Rate FP Rate Precision Recall F-Measure MCC ROC Area Confusion Matrix Accuracy

HC PD PSP-RS

HC 0.763 0.108 0.806 0.763 0.784 0.663 0.875 29 7 2 75.7%

PD 0.756 0.207 0.739 0.756 0.747 0.547 0.845 7 34 4

PSP-RS 0.750 0.072 0.714 0.750 0.732 0.665 0.948 0 5 15

TP, True Positive; FP, False Positive; MCC, Matthews Correlation Coefficient; ROC AUC, Area under the receiver operating characteristic curve; HC, Healthy Controls; PD, Parkinson’s

disease; PSP-RS, Progressive supranuclear palsy Richardson’s syndrome.

and testing of the classifier was systematically optimized by
iteratively removing the lowest ranked feature from the training
and testing sets. This recursive feature elimination approach was
performed by continuously removing the features from the initial
100 highest ranked features until only a single feature was left in
the training and testing sets.

In order to identify the optimal combination of feature
selection and classification method, the overall 3-level
classification accuracy was used as the main evaluation metric. In
case of equal classification performance, the feature selection and
classification method combination requiring the lowest number
of features is reported following the Occam’s razor principle (27).

The pipeline described above was applied four times: (1)
using the morphological features only, (2) using the R2 features
only, (3) using the diffusion features only, and (4) using all
features together.

RESULTS

In the following, the results of the best performing feature
selection and classification combination using the singlemodality
features and the combined multi-modal features, as well as the
corresponding selected features are described.

T1-Weighted MRI
Regional brain volume, surface area, and surface area to volume
ratio features derived from structural T1-weighted MRI datasets
resulted in a top overall accuracy of 65% differentiating PD, PSP-
RS, and HC subjects, respectively. The confusion matrix and
additional evaluation metrics for the optimal machine learning
model are presented in Table 3. This accuracy was achieved when

the top 40 features were selected using a combination of the
gain ratio feature ranking and linear kernel SVM classification
approach. In detail, the differentiation of HC subjects and
patients with PD or PSP-RS was rather poor, with a total of 15
out of 38 misclassified HC subjects. Furthermore, classification
of PD was also sub-optimal, resulting in 10 and seven PD
patients wrongly classified as HC and PSP-RS, respectively. The
top ranked features consisted mainly of sub-cortical structures
such as brainstem, pallidum, putamen, thalamus, and cortical
structures, including the occipital pole, frontal and temporal
gyrus, and opercular gyrus. In addition, volume, surface area, and
SA:V features were equally present in the ranking, indicating the
importance of including various multi-aspect (not multi-modal)
T1-weighted features and not only the simple volumes.

T2-Weighted MRI
The classification results using the regional R2, R2∗, and
R2′ features are described in Table 4. In this case, the
highest classification accuracy of 75.7% was obtained using the
top 30 features selected by the principle component feature
selection method in combination with a logistic model tree
(LMT) classification model. In detail, nine HC subjects were
misclassified as patients (7 PD and 2 PSP-RS), seven PD patients
were wrongly classified as HC, and two PD patients wrongly
classified as PSP-RS. In addition, five patients with PSP-RS were
wrongly classified as PD. Overall, weighted combinations of brain
iron metabolism measures in the cerebral cortex, left accumbens,
left amygdala, and left hippocampus were present in the highest
ranked principle component features.
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TABLE 5 | Confusion matrix following an information gain + LMT classification combination using DTI maps only.

Diffusion Tensor Imaging Features (MD, FA, RD, AD Features)

Class TP Rate FP Rate Precision Recall F-Measure MCC ROC Area Confusion Matrix Accuracy

HC PD PSP-RS

HC 1.000 0.000 1.000 1.000 1.000 1.000 1.000 38 0 0 95.1%

PD 0.933 0.034 0.955 0.933 0.944 0.901 0.975 0 42 3

PSP-RS 0.900 0.036 0.857 0.900 0.878 0.848 0.968 0 2 18

TP, True Positive; FP, False Positive; MCC, Matthews Correlation Coefficient; ROC AUC, Area under the receiver operating characteristic curve; HC, Healthy Controls; PD, Parkinson’s

disease; PSP-RS, Progressive supranuclear palsy Richardson’s syndrome; MD, Mean diffusivity; FA, Fractional anisotropy; RD, Radial diffusivity; AD, Axial diffusivity.

Diffusion-Tensor Imaging (DTI)
The classification results based on the DTI measurements alone
(MD, FA, RD, AD maps) are shown in Table 5. The highest
classification accuracy was obtained when the top 69 features
were used. In detail, the information gain-based feature ranking
method in combination with a logistic model tree (LMT)
classification resulted in a classification accuracy of 95.1%.
Overall, a total of five subjects were misclassified (three PD and
two PSP-RS patients), whereas no HC subjects were misclassified.
The highest-ranking diffusion features included mostly cortical
regions such as the parahipocampal gyrus, cingulum, cingulate
gyrus, opercular cortex as well as sub-cortical structures such as
the thalamus, brainstem, and pallidum.

Combining Multiple Modalities
The classification results based on the complete multi-modal
feature set utilizing features from T1-weighted MRI (brain
surface area, brain volume, SA:V), T2-weighted MRI (R2, R2∗,
and R2′), as well as DTI (MD, FA, RD, AD maps) are shown in
Table 6. The highest classification accuracy in this multi-modal
model was obtained when the top 79 features were used. In
detail, the support vector machine feature ranking method in
combination with a multi layer perceptron (MLP) classification
resulted in the highest performance of 95%. Overall, a total of five
subjects were misclassified including one PD and four PSP-RS
patients, whereas none of the HC subjects were misclassified.

The selected features included features from all three MRI
sequences (see Table 7). In detail, eleven features from the total
set of 79 were morphological features, including deep gray
matter regions such as the left pallidum, left and right thalamus,
left caudate, and brainstem. Several cortical structures such as
precentral and supramarginal gyrus, angular gyrus, temporal
fusiform cortex, and planum polare were also among the top
ranked features. Moreover, most of the morphological features
selected for this classification problem included volume values
rather than brain surface area or the SA:V. In terms of brain
iron metabolism markers, a total of 12 features were present in
the optimal feature set. Brain iron metabolism markers in areas
such as the temporal fusiform, parahippocampal gyrus, frontal
gyrus, and others were ranked highly according to the SVM-
based feature selector with R2′ features being selected more than
twice as often as R2 and R2∗ features. All remaining top ranked
features (n = 56) were diffusion features. Diffusion attributes in

regions such as parahippocampal gyrus, insular cortex, pallidum,
thalamus, brainstem, putamen, and others were ranked as the
most discriminative features. Similar numbers of all diffusion
parameters were selected.

DISCUSSION

Low accuracies of differential diagnosis between classical PD and
PSP-RS based on established criteria, even when combined with
standard anatomical MRI, have promoted the development of
sophisticated machine learning frameworks for assisting with
clinical diagnosis. Neuro-imaging data obtained from various
MRI modalities have been widely employed for this purpose,
whereas T1-, T2-, and diffusion-tensor MRI have been used most
frequently. The main contribution of this work is that, for the
first time, the benefit of a multi-parametric machine learning
approach compared to uni-modal machine learning models was
systematically investigated, whereas the results indicate that brain
morphology and brain iron metabolism markers do not lead to
quantitative benefits compared to using DTI features alone for
an automatic classification of PD patients, PSP-RS patients, and
HC subjects.

Overall, the results of this study are generally well in line
with previous research as discussed in the following. However,
it should be noted that it is not possible to directly compare
the individual classification results of this study with others due
to different patient samples, different evaluation schemes, and
specific aims.

T1-Weighted MRI
Most previously described classification models are based on
morphological parameters determined using T1-weighted MRI
datasets.While several other individual level classification studies
using volumetric features have reported accuracies differentiating
Parkinsonian syndromes ranging from <50% up to 86% [e.g.,
(14, 28)], previously described volumetric-based studies mostly
report low accuracies differentiating patients with PD from HC
subjects using volume-based features. The optimal morphology-
based classifier in this study performed poorly classifying PD
patients andHC subjects resulting in a∼26% error rate. Thus, the
results obtained in this study for classifying PD patients and HC
subjects using morphology features are consistent with previous
studies. One potential reason for the poor ability of morphology
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TABLE 6 | Confusion matrix following an SVM based feature selection + MLP classification combination using features from multiple MRI modalities.

Combination of All Imaging Features (Morphology, Brain Iron Content Marker, Diffusion)

Class TP Rate FP Rate Precision Recall F-Measure MCC ROC AUC Confusion Matrix Accuracy

HC PD PSP-RS

HC 1.000 0.000 1.000 1.000 1.000 1.000 1.000 38 0 0 95.1%

PD 0.978 0.069 0.917 0.978 0.946 0.904 0.986 0 44 1

PSP-RS 0.800 0.012 0.941 0.800 0.865 0.840 0.983 0 4 16

TP, True Positive; FP, False Positive; MCC, Matthews Correlation Coefficient; ROC AUC, Area under the receiver operating characteristic curve; HC Healthy Controls; PD, Parkinson’s

disease; PSP-RS, Progressive supranuclear palsy Richardson’s syndrome.

TABLE 7 | Feature composition of the SVM based feature selection + MLP classification combination using features from multiple MRI modalities.

Modality V SA SA:V R2 R2* R2′ FA MD AD RD Total

T1-weighted 6 2 3 – – – – – – – 11

T2-weighted – – – 2 3 7 – – – – 12

DTI – – – – – – 15 12 13 16 56

V, Volume; SA, Surface Area; SA:V, Surface-Area-to-Volume ratio; FA, Fractional Anisotropy; MD, Mean Diffusivity; AD, Axial Diffusivity; RD, Radial Diffusivity.

metrics to differentiate PD patients and HC subjects could be
related to less pronounced structural differences in these groups
(29). Consequently, macro-structural features (i.e., morphology)
do not seem sensitive enough to differentiate PD patients from
HC subjects. In terms of PD vs. PSP classification, individual
level classification methods using morphology features as, for
example, previously described by Scherfler et al. (30), Sarica
et al. (31), and Focke et al. (32) all reported comparably high
classification accuracies. Unlike the PD vs. HC classification, it
appears that features derived from high-resolution T1-weighted
images are indeed valuable for differentiation of these two
entities. Similarly, the optimal machine learning model in this
work performed relatively well, only misclassifying 13% of the
patients. Finally, studies focusing on PSP vs. HC classification
have resulted in even higher accuracies of up to 94%. In detail,
the highest accuracy for classification of PSP vs. HC with 93.98%
was previously reported by Sarica et al. (31) by using volumetric
features in a naive Bayes classifier validated by a 10-fold cross
validation in a relatively large cohort of 46 HC, 65 PD, and 32
PSP. These results are to be expected considering the significant
structural and functional differences in PSP patients compared to
HC subjects. In the present study, a classification accuracy of 89%
was achieved for the PSP-RS vs. HC classification in a three-level
classification routine, also including HC subjects. Due to the clear
potential for differentiating PSP-RS patients from PD patients
and HC subjects, incorporation of morphological features within
a computer-aided diagnosis framework appears still valuable and
can add predictive value to such tools.

The main findings of this research project with implications
to future developments of classification methods for PD vs.
PSP-RS vs. HC differentiation using morphology features are
2-fold. First, the inclusion of the surface area and SA:V
values provide complimentary information compared to using
volumetric features only as the top features for this classification
task consist (almost evenly) of a wide variety of all three

morphological metrics, which is in line with findings from
another recent study (25). Second, adding the morphological
profiles of cortical structures for classification does not seem
to improve the classification accuracy as most selected features
belong to sub-cortical rather than cortical regions, which is in line
with previous findings (25).

T2-Weighted MRI
In a similar study, Boelmans et al. utilized brain iron metabolism
markers in a logistic discriminant analysis approach to classify
24 HC, 30 PD, and 12 PSP subjects (16). Subsequently, the
classification resulted in an overall accuracy of 74.2%. Using
a similar classification pipeline, Eckert et al. achieved a total
accuracy of 75.4% based on a sample of 20 HC, 15 PD, 10
PSP, and 12 multiple system atrophy (MSA) subjects (33).
However, the two studies mentioned did not utilize a feature
section method but employed a manual selection of a few
brain regions. In this study, a similar accuracy of 75.7% was
obtained using a sample size of 45 PD, 20 PSP-RS, and 38
HC subjects following an automatic PCA feature selection and
LMT classification method. While the accuracies obtained are
similar, there are three significant differences between the other
two studies and ours. First, the patient sample used in this
study is considerably larger. Second, the previous studies did not
perform cross validation, whereas leave-one-out-cross-validation
was used in this study. Third, the features used for classification in
the two previous studies were handpicked and not automatically
identified as done in this work, which could introduce a
selection bias.

In terms of PD vs. HC classification, the optimal machine
learning model identified in this study performs rather poorly
with seven PD wrongly classified as HC subjects and vice
versa. The misclassification in this category was also the
main contributor for downgrading the overall classification
performance. A potential explanation for this result could
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be that iron metabolism markers do not differ considerably
between HC subjects and PD patients, therefore resulting in
sub-optimal classification performance. Similar tomorphological
information, brain iron metabolism markers, seem to be
inadequate features to differentiate between PD patients and
HC subjects. Likewise, the differentiation of PSP-RS vs. PD
patients was rather modest with four PD and five PSP-RS patients
wrongly classified as PSP-RS and PD, respectively. While the
optimal classifier using morphological features also resulted in
a total of nine misclassified instances differentiating PD vs.
PSP-RS, the difference is that misclassified patients using brain
iron metabolism features were rather balanced between the two
diseases, whereas morphological features exhibited a weaker PSP-
RS classification ability. In addition, the differentiation of HC
subjects vs. PSP-RS patients was far better resulting in only
two PSP-RS subjects misclassified as HC. Thus, regional iron
metabolism markers seem to differ considerably between PSP-
RS patients and HC subjects, which is consistent with current
literature (34).

Overall, brain iron metabolism markers do not seem to
be good predictors for the differentiation of HC subjects
from PD patients and PSP-RS from PD patients. Finally, it
should be mentioned that the optimal feature selection method
used for this classification task (PCA: principle component
analysis) composes new features from a linear combination
of the original features, which makes it more complicated to
investigate how individual features from the initial feature set
contribute to the overall classification. Generally, more research
needs to be focused on investigating the association of the
regional brain atrophy (i.e., morphological cell loss) and tissue
iron accumulation.

Diffusion-Tensor MRI
Various previous studies have shown that diffusion-based
features can be used for a classification of PD patients and
HC subjects. For example, Scherfler et al. (35), Salamanca et
al. (36), and Banerjee et al. (37) used diffusion metrics such as
MD (synonym: apparent diffusion coefficient [ADC]) and FA
parameter maps for classification and obtained accuracies of up
to 98%. This is generally in line with the findings of this work,
with a top accuracy of 100% achieved for the classification of
PD patients and HC subjects using an information gain feature
ranking and LMT classification approach with a sample size of 45
PD patients and 38 HC subjects. Thus, it may be concluded that
the differentiation potential of DTImeasurements is much higher
than the previously discussed regional brain morphological and
iron metabolism features. One potential explanation for this
finding is that micro-structural changes are assumed to occur
earlier than macro-structural changes or measurable tissue iron
accumulation (38).

With respect to differentiating PD and PSP-RS syndromes,
two PSP-RS and three PD patients were wrongly classified
as PD and PSP-RS, respectively. The obtained sub-syndrome
classification accuracy is among the top results reported in
literature thus far. However, it should be noted that this is not
the first work to employ DTI measurements for classification of
PD and PSP-RS subjects although previous research on this is

rather scarce. For example, Haller et al. presented an approach
to classify PD subjects (n = 17) and subjects with atypical forms
(n = 23) of Parkinsonism using the RELIEFF feature selection
method and a support vector machine classifier, and voxel-wise
FA values as features (15). A correct classification between PD
patients vs. patients with atypical forms was achieved in up to
97.5 ± 7.5%. However, it should be noted that the group of
23 subjects with atypical forms of Parkinsonism included only
one patient with PSP while the other subjects in this group
were, for example, diagnosed with MSA, dementia with Lewy
bodies, vascular Parkinsonism, and even traumatic brain injury.
Thus, the results are not really comparable to those described in
this work.

Several interesting conclusions can be made by investigating
the results of the optimal classification model and selected
features in more detail. First, it appears that diffusion changes
are a global effect since cortical as well as sub-cortical structures
brain regions can be found among the highest ranked features
selected for the classification. The 69 selected features used
for classification included brain regions that are well-known
to be affected in by PD such as the brainstem, and deep
gray matter structures including the thalamus, putamen, and
pallidum. Additionally, brain regions that are part of the frontal
cortex, namely the superior frontal gyrus and frontal medial
cortex are among the selected regions, which are part of
the prefrontal dopaminergic system. Additionally, it appears
useful to investigate all four diffusion parameters as similar
numbers of the four DTI features were selected for the optimal
machine learning model. Within this context, it should be
noted that most previous studies have only used FA and MD
values for classification or group-wise studies. Similar to the
different morphological features, the incorporation of multi-
facet DTI features seems to have the potential to improve
machine learning models by elucidating several aspects of
PD syndromes.

Multi-Modal Features
Several studies have been performed in the past aiming to classify
patients with PD and HC patients by combining multi-modal
image features. For example, Long et al. utilized structural and
functional MRI information to classify PD patients and HC
subjects (17). The results reported show that the combination of
features leads to an improved classification accuracy of 86.9%.
In a study similar to this work, Peran et al. combined T1-
weighted, T2-weighted, and diffusion-weightedMRI features and
reported a PD vs. HC classification accuracy of 95% for the
corresponding machine learning model (18). In line with these
findings, the optimal PD vs. HC classification model developed
in this work using the multi-modal MRI data achieved a slightly
better accuracy of 100% for differentiating PD patients and
HC subjects. However, unlike the aforementioned studies that
performed binary classifications, the differentiation task in this
study was inherently more complex as three classes (PD, PSP-
RS, HC) were considered. While the differentiation of PD vs.
HC using the full multi-modal feature set outperformed single
modality machine learning models using morphological and iron
content markers alone, it was not superior compared to the
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machine learning model using only DTI features. In line with
this finding, most of the features selected for the final model were
DTI parameters.

Similarly, multiple studies have also attempted to develop and
evaluate multi-modal machine learning models for classification
of PD vs. PSP. For example, Morisi et al. combined volumetric,
diffusion, and proton spectroscopy measures within a linear
kernel SVM model and obtained an accuracy of 98% (39).
Cherubini et al. used volumetric and diffusion features from
a large sample of 57 PD and 21 PSP patients and achieved
an accuracy of 100% using only white matter features (40).
In the present study, a PSP vs. PD differentiation of 93%
was achieved using multi-modal MRI features, which is in the
range of the previously described results of binary classification
problems. While the multi-modal machine learning model
clearly outperforms the corresponding machine learning models
using morphology or brain iron accumulation features alone,
the accuracy is on par with the machine learning model using
DTI parameters only. However, themulti-modal model wasmore
precise correctly classifying PD patients, but less precise correctly
classifying PSP patients compared to the machine learning model
using DTI metrics only.

Classification Model
A large number of feature selection methods such as information
gain, principal component analysis, linear-kernel SVM based
feature selection, RELIEFF, Fisher vector algorithm, evolutionary
based techniques, fuzzy based data transformation, graph
theory methods, and others have been employed in previous
studies. At the same time, many previous studies did not
incorporate any feature selection algorithm and simply
employed pre-selected sub-syndrome specific features from
a limited number of regions-of-interest instead. Within this
context, the use of feature selection methods allows identifying
important regions in a data-driven way, while manually
selecting brain regions for a machine learning model might miss
important regions.

Similar to the feature selection methods, a wide range
of classification techniques such as support vector machines,
different types of decision trees, linear and logistic regression,
multi-layer perceptron models, and others have been used in
previous machine learning models.

The fact that different setups of feature selection methods
and machine learning models were found to be optimal for
the different classification tasks in this work shows that it is
important to test and evaluate different setups to identify the
optimal setup for a given classification task. Within this context,
it is important to ensure that the developed models do not
overfit the training data. For this reason, the machine learning
models were trained and tested only using the standard hyper
parameters in this work. Additionally, the results of all machine
learning models were carefully checked and none of the models
reported outperformed the next best machine learning model by
far. Thus, further classification improvements might be possible
by further fine-tuning of the hyper-parameters. Nevertheless, we

are confident that the main findings of this research study will
still hold true.

Limitations
This study has some limitations that should be discussed.
First, the study cohort used in this work, while relatively large
compared to similar studies, is still not large enough to fully
expand on the generalizability of the proposed model. This
limitation is further perpetuated by the lower incidences for PSP-
RS compared to PD. Furthermore, an independent validation
dataset, preferably acquired in different imaging centers, would
be a more rigorous approach of model verification. However,
this separate dataset was not available for this present study
to further test the proposed model. We opted not to separate
the current dataset into completely separate training and
validation sub-groups as the training cohort would not have
been sufficiently large enough to train a generalized classifier,
potentially resulting in an over-fitted model. It is worth noting
that studies employing separate validation datasets are rather
scarce in this context, so that cross validation methods are used
most frequently for classifier validation. Second, the ground truth
classifications were determined by an expert clinician according
to established consensus criteria without neuropathological
proofs. Thus, there may be still a minor level of uncertainty
left regarding the ground truth classification used for training
and evaluation of the classifier. It should also be mentioned
that due to the retrospective design of this study, the ground
truth diagnoses were not based on the most recent guidelines
for PD and PSP-RS diagnosis (41–43). However, all patients and
participants included in this study were seen by two movement
disorder specialists at least two times ensuring highly probable
ground truth classifications. Third, the patient groups differed
considerably regarding the age and sex distribution, which might
bias the results obtained in this research project towards higher
accuracies. Ideally, datasets from subjects with similar age and
sex distributions should be used for training and testing to
obtain more accurate and generalizable classification models.
However, this is not an easy task as obtaining data with such
strict specifications is time-consuming and expensive and is
an undertaking that was not feasible for this research project
due to the retrospective data analysis. Finally, it should be
mentioned that only conventional machine learning techniques
were used in this study instead of sophisticated deep learning
models, which have recently shown good achievements for PD
classification (44). However, the machine learning models used
in this work require less data compared to novel deep learning
models and, thus, allowed investigating different imaging setups
in detail given the sample size available. We believe that the
main findings of this study also hold true for novel deep learning
methods with a deep learning model using DTI parameter maps
performing on par or outperforming deep learning models based
on T1-weighted datasets or T2-weighted datasets alone or a
combination of all of these images. Nevertheless, this needs to
be investigated in future studies with larger sample sizes as
deep learning models are assumed to be more “data-hungry”
compared to traditional machine learning techniques.
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CONCLUSION

The results of this study suggest that machine learning models
using regional brain microstructural integrity metrics computed
from DTI datasets perform similar to multi-modal machine
learning models incorporating additional imaging metrics such
as brain morphology and iron metabolism to differentiate PD,
PSP-RS, and HC subjects.
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