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ABSTRACT
This review discusses our current understanding of the small ubiquitin-like modifier (SUMO)
pathway and how it functionally intersects with Ras signaling in cancer. The Ras family of small
GTPases are frequently mutated in cancer. The role of the SUMO pathway in cancer and in Ras
signaling is currently not well understood. Recent studies have shown that the SUMO pathway can
both regulate Ras/MAPK pathway activity directly and support Ras-driven oncogenesis through the
regulation of proteins that are not direct Ras effectors. We recently discovered that in Ras mutant
cancer cells, the SUMOylation status of a subset of proteins is altered and one such protein, KAP1, is
required for Ras-driven transformation. A better understanding of the functional interaction
between the SUMO and Ras pathways could lead to new insights into the mechanism of Ras-driven
oncogenesis.
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Ras genes are among the first oncogenes identified in
human cancer and they are also among the most fre-
quently mutated oncogenes.1 In mammals, the Ras fam-
ily of small GTPases include 3 conserved members
KRAS, NRAS and HRAS. Ras are membrane proteins
and their activity is regulated through a GTP/GDP
exchange cycle. Activation of receptor tyrosine kinases
(RTKs) recruits Ras Guanine nucleotide exchange fac-
tors (GEFs) to the membrane which in turn promote
Ras GTP loading. In addition to RTKs, Ras can also be
activated by other signaling molecules including G pro-
tein-coupled receptors (GPCR), calcium influx and the
T-cell receptor (TCR) complex.2-4 GTP binding leads to
a conformational change in Ras and enables it to inter-
act with a number of downstream effector proteins
(Fig. 1). The effectors of Ras comprise of the MAP
kinase (MAPK) pathway, the PI 3-kinase (PI3K) path-
way, the small GTPases Rho, Rac, RalA and RalB, and
the lipid enzyme phospholipase-Ce.1,5 These pathways
coordinately regulate cell proliferation, survival, growth
and motility. The role of Ras signaling in cancer has
been recently reviewed.1,5,6 KRAS mutation occurs at a
higher frequency than NRAS or HRAS, particularly in
solid tumors. This might be due to different isoform-
specific functions among Ras proteins as well as the
ability of mutant KRAS to confer stem-like properties

in cancer cells.7,8 Cancer cells that harbor Ras mutations
often exhibit oncogene addiction to Ras, thus the Ras
pathway represents a promising drug target in these
cells.9,10 Direct inhibition of mutant Ras proteins, par-
ticularly KRAS, has proved difficult pharmacologically.
However, currently there is a major effort underway to
develop novel KRAS inhibitors based on new biochemi-
cal and structural insights of its function.1 Downstream
of Ras, the MAPK pathway represents an attractive tar-
get as it is essential for Ras-dependent cell prolifera-
tion.11 However, inhibitors targeting the MAPK
pathway, such as RAF and MEK kinase inhibitors, have
not been particularly effective at shrinking Ras mutant
tumors in patients.12 RAF inhibitors are unable to block
MAPK signaling in Ras mutant cells due to their ability
to paradoxically activate CRAF in this context.13-15

MEK inhibitors failed demonstrate substantial benefits
in phase II trials among patients whose tumors were
not genotyped for Ras mutation13-15 In a recent study
among lung cancer patients whose tumors harbor
KRAS mutation, MEK inhibitor in combination with
chemotherapy led to improved progression free survival
but not overall survival.16 Thus, Ras mutant cancer
remains a major therapeutic challenge. In addition to
directly targeting Ras and its effector kinases, synthetic
lethal and co-dependency studies have been employed

CONTACT Ji Luo ji.luo@nih.gov 37 Convent Drive, Bethesda, MD 20814, USA.

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/ksgt.
Commentary to: Yu B, Swatkoski S, Holly A, Lee LC, Giroux V, Lee CS, Hsu D, Smith JL, Yuen G, Yue J, et al. Oncogenesis driven by the Ras/Raf pathway requires the
SUMO E2 ligase Ubc9. Proc Natl Acad Sci U S A 2015; 112:E1724-33; PMID:25805818; http://dx.doi.org/10.1073/pnas.1415569112
Published with license by Taylor & Francis. This article not subject to US copyright law.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which per-
mits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been
asserted.

SMALL GTPASES
2016, VOL. 7, NO. 2, 39–46
http://dx.doi.org/10.1080/21541248.2016.1161698

http://creativecommons.org/licenses/by-nc/3.0/
http://dx.doi.org/10.1080/21541248.2016.1161698


to explore additional genetic vulnerabilities in Ras
mutant cancer cells beyond its canonical effectors.17

This approach is based on the idea that cancer cells
driven by mutant Ras exhibit non-oncogene addiction
to stress-response pathways for the maintenance of cell
viability.18 Using this approach, we have recently identi-
fied the protein SUMO pathway as being required for
Ras-driven transformation.19

The SUMO pathway conjugates SUMO proteins onto
lysine residues of target proteins (Fig. 1). Current knowl-
edge of this pathway’s role in normal cellular function
and in stress response has been reviewed recently.20-22 In
mammals there are 3 SUMO proteins (SUMO1, 2 and
3). All three isoforms can form mono-conjugates,
whereas SUMO2 and SUMO3 are highly homologous
and can also form poly-SUMO chains. Thousands of

cellular proteins have been shown as substrates for
SUMOylation, thus this pathway could regulate a wide
array of cellular processes. SUMOylation often occurs on
lysine residues in the sequence context CKxE/D, where
C represents hydrophobic amino acids with large side
chains and x represents any amino acids.20 In some
instances SUMOylation can also occur on lysine residues
not residing in the consensus motif.20 Analogous to pro-
tein ubiquitination, SUMOylation occurs in several dis-
tinct steps. First, the newly synthesized SUMO precursor
protein is cleaved by sentrin-specific proteases (SENPs).
SUMO is then activated by the E1 activating enzyme and
transferred to the E2 enzyme. In the last step, E3 proteins
promote the conjugation of SUMO to either a substrate
protein or an existing poly-SUMO chain. SUMOylation
is reversible via cleavage by SENPs. In mammalian cells

Figure 1. Intersection between the Ras and the SUMO pathway in cancer. Ras can be activated by multiple upstream signaling inputs
including receptor tyrosine kinases (RTKs), G protein-coupled receptors (GPCRs), calcium influx (Ca2C) and the T-cell receptor (TCR) com-
plex. Downstream of Ras, several members of MAPK pathway, including MEK kinases and the transcription factors Ets-1 and Elk-1, are
SUMOylated. The SUMO pathway consists of a single E1 ligase (SAE1/SAE2 heterodimer), a single E2 ligase (Ubc9) and several E3 pro-
teins. Through the regulation of KRAS-associated SUMOylated proteins (KASPs) such as KAP1, the SUMO pathway plays a supportive
role in KRAS-driven transformation. SUMO modification is reversible by sentrin-specific proteases (SENPs).
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there is a single E1 enzyme formed by the SAE1/SAE2
heterodimer, a single E2 enzyme Ubc9 and several E3s
and SENPs. In contrast to the ubiquitin pathway where
hundreds of E3s exist to serve different target proteins,
the number of functionally validated SUMO E3s is small
(less than 20). Thus, how substrate specificity is deter-
mined in the SUMO pathway remains an enigma.

The identification of SUMO substrates has been
greatly facilitated by protein mass-spectrometry.23,24 For
many proteins, SUMOylation serves to regulate their
activity and/or subcellular localization rather than their
stability. However, poly-SUMOylation can act as a recog-
nition signal for SUMO-targeted ubiquitin ligases
(STUBLs) that degrade poly-SUMOylated proteins.25 The
majority of SUMOylation appears to occur in the nucleus
and many transcription factors/co-factors, DNA binding
proteins and chromatin-remodeling proteins are subject
to SUMOylation.23,24 SUMOylation can either positively
or negatively regulate the function of these proteins
through mechanisms including changes in DNA-binding
affinity, alterations in subcellular localization, induction
or inhibition of protein-protein interaction, and modifica-
tion of chromatin structure. SUMOylation of individual
proteins can be regulated through proximity to the ligase
and through phosphorylation (see below). With the
exception of a few proteins including PML and RanGAP
that show near stoichiometric levels of SUMOylation,
most cellular proteins appear to be SUMOylated at low
levels. There is evidence that the SUMOylated form of a
protein could represent its active form, thus even low lev-
els of SUMOylation could critically influence protein
function. Indeed, the SUMO pathway is essential for cell
viability: deletion of Ubc9 in mouse is lethal26 and cells
without Ubc9 failed to complete mitosis.27

How the SUMO pathway is itself regulated is not well
understood. It is known that this pathway plays a critical
role in cellular stress response. For example, transient
heat shock induces a global increase in SUMOylation
that serves to preserve cell viability.23 In the DNA dam-
age response, SUMOylation is required for the proper
localization of DNA repair proteins to sites of DNA
damage and for their subsequent activation.22 SUMOyla-
tion affects protein complex formation in 2 ways. The
addition of a bulky SUMO moiety could occlude a pro-
tein-binding domain and thus disrupt protein-protein
interaction. On the other hand, many proteins possess
short, hydrophobic SUMO-interaction motifs (SIMs)
that bind to SUMO proteins with moderate affinity and
specificity.20 It has been proposed that SUMOylation can
serve as a “molecular glue” to hold protein complex
together through extensive SUMO-SIM interactions.28

The SUMO pathway’s role in cancer is rather com-
plex. Genes in this pathway (E1, E2, E3 and SENPs) are

not significantly mutated, amplified or deleted in cancer,
thus they are unlikely to be oncogenes or tumor suppres-
sors themselves. Expression of the SUMO E2 ligase Ubc9
is up-regulated in colorectal cancer and multiple myelo-
mas, but down-regulated in advanced breast and lung
adenocarcinomas.29,30 In prostate cancer, the expression
of Ubc9 appears to be stage-dependent.30 Because
SUMOylation is critical for stress protection, cell cycle
and DNA repair,20,22,27,31 this pathway is likely to play a
supportive role in tumorigenesis. This is consistent with
the notion that this pathway is required for KRAS-driven
transformation and for the viability of Myc-driven can-
cer cells.19,32 However, since SUMOylation of both onco-
proteins and tumor suppressors has been described, the
role of this pathway in cancer is likely to be determined
in a context-dependent manner. Among SUMO sub-
strates, several transcription factors with known roles in
cancer are repressed by SUMOylation. These include
Ets-1, c-Myb, androgen receptor, and MITF1.33-36 In
some cases, SUMOylation can promote transcription
activation. For example, SUMOylation of the transcrip-
tion co-factors TBL1 and TBLR1 release them from co-
repressor complex and enable them to bind b-catenin
and promote the assembly of transcription activator
complex.37

A growing body of evidence indicates that the SUMO
pathway functionally interacts with the Ras/MAPK path-
way. Although human Ras proteins are only found to be
ubiquitinated but not SUMOylated,38,39 the Drosophila
Ras protein has been identified as a SUMO substrate.40

Downstream in the Ras/MAPK pathway, both MEK1
and MEK2 kinases are direct SUMO targets.41 SUMOy-
lation of a conserved lysine residue on MEK1 and MEK2
leads to inhibition of their kinase activity. Interestingly,
Ras oncoprotein, but not BRAF oncoprotein, can down
regulate MEK SUMOylation due to Ras’ ability to inhibit
the binding between MEK and its SUMO E3 ligase
MEKK1.41 Further downstream of the Ras/MAPK path-
way, the activity of the Ets-family transcription factor
Elk-1 is inhibited by SUMOylation.42 Within the PI3K/
Akt pathway, Akt1 has been reported as a direct target of
SUMOylation, and this modification enhances its kinase
activity.43,44 Whether other Ras effectors are subjected to
regulation by SUMO is currently unknown.

Genetic studies also support a functional interaction
between the SUMO pathway and Ras signaling. In C. ele-
gans, mutations in SUMO pathway genes can modulate
RTK-mediated Ras signaling during vulva development.45

The worm Elk-1 ortholog, Lin-1, is inhibited by SUMOyla-
tion.46 In Drosophila, SUMO knockdown inhibits ERK
activation downstream of wild type (WT) Ras protein but
not mutant Ras protein, indicating that SUMO modulates
this pathway at or above the level of Ras.40 Through an
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RNAi screen aimed at identify synthetic lethal partners of
the KRAS oncogene in human colorectal cancer cell lines,
we found that KRAS mutant cells are more sensitive to the
depletion of the E1 ligase SAE1 and the E2 ligase Ubc9,
particularly under anchorage-independent conditions.18,19

RNAi-mediated Ubc9 knockdown strongly inhibits the
colony growth of cancer cells and KRAS-mediated trans-
formation of immortalized normal epithelial cells. In colo-
rectal cancer cells, inhibition of the SUMO pathway does
not appear to affect MAPK signaling, thus the mechanism
is likely to be indirect. Using mass-spectrometry to identify
global changes in protein SUMOylation that is associated
with KRAS mutation, we found that KRAS mutation does
not affects global SUMOylation levels but instead alters the
SUMOylation of only a small subset of proteins we termed
KRAS-associated SUMOylated proteins (KASPs). We fur-
ther showed that SUMOylation of one such KASP, the
KRAB-associated protein 1 (KAP1/TRIM28), functionally
contributed to KRAS-driven transformation. KAP1 is a
transcriptional co-repressor protein with multiple func-
tions.47 It associates with KRAB-domain zinc-finger pro-
teins through its N-terminus,48 with HP1 through its HP1
binding domain,49-51 and with a number of chromatin-
remodeling complexes including N-CoR, NuRD, and
SETDB1 through its C-terminus.52-54 In addition to its
transcriptional co-repressor activity, KAP1 serves several
transcription-independent roles. KAP1 is a scaffold protein
for DNA damage repair,55,56 a SUMO E3 ligase,57 and an
ubiquitin E3 ligase.58,59 KAP1 is SUMOylated on several
lysine residues near its C-terminus, and SUMO modifica-
tion is required for its transcriptional co-repressor activ-
ity.57,60,61 We found that KAP1 is hyper-SUMOylated in
KRASmutant cells, particularly under anchorage-indepen-
dent conditions, and the expression of a SUMO-KAP1
fusion protein could partially rescue Ubc9 depletion. Fur-
thermore, we found that KAP1 knockdown inhibits the
anchorage-independent growth of KRASmutant cells, and
this defect can be rescued by the expression of WT KAP1
but not a SUMO-deficient KAP1.19 KAP1 is not the only
KASP that is required for KRAS-driven transformation
since KAP1 over-expression can only partially rescue Ubc9
knockdown. It is likely that additional KASPs are also co-
opted by the KRAS oncogene to support the growth and
survival of cancer cells. The fact that only a small number
of KASPs were identified in our mass-spectrometry analy-
sis suggest that KRAS-dependent regulation of their
SUMOylation is likely to occur through a specific, yet
unknown mechanism that warrants further investigation.
In addition, how KAP1 contributes to KRAS-driven trans-
formation, and which of the many functions of KAP1 is
relevant in this context remains to be elucidated.

Onemechanism by which the Ras and SUMOpathways
functionally interact is through the co-regulation of

substrate proteins. It has been shown that the phosphoryla-
tion status of a protein can both positively and negatively
influence its SUMOylation. For example, the ETS family
transcription factor Elk-1 is SUMOylated under basal con-
dition and this serves to represse its activity. Upon activa-
tion of the MAPK pathway, ERK phosphorylates Elk-1
and this inhibits Elk-1 SUMOylation and activates Elk-1.42

On the other hand, ERK-dependent phosphorylation of
the nuclear body protein PML enhanced its SUMOylation
in response to arsenic oxide treatment.62 These prior stud-
ies thus suggest the possibility that some of the KASPs
uncovered in our study could be regulated by ERK phos-
phorylation in an analogous fahsion. In some cases, regula-
tion of SUMOylation by phosphorylation occurs through a
phosphorylation-dependent SUMOylation motif (PDSM)
within the amino acid sequence context CKxExxS/T. In
this scenario, SUMOylation on the lysine is directly con-
trolled by the phosphorylation status of the adjacent ser-
ine/threonine residue.63,64 A PDSM of the sequence
CKxExxS/TP has the potential to be regulated by ERK.
Bioinformatics analyses have discovered a number of tran-
scription factors containing this PDSMs.63,65,66 To date,
however, few of these ERK-regulated PDSMs have been
demonstrated experimentally. Nevertheless, this represents
an attractive mechanism by which the Ras and SUMO
pathways could functionally intersect. It would be interest-
ing to determine if some of the KASPs we uncovered can
be regulated through an ERK-directed PDSM.

The SUMO pathway presents a potential targeting
opportunity in cancer. Significant efforts have been
devoted toward targeting the ubiquitin pathway, and
inhibitors of ubiquitin E1, E2, E3s and de-ubiquitnases
have been developed.67 This prior experience could guide
the development of SUMO pathway inhibitors. Several
inhibitors of this pathway have been reported68-75 and
the development of highly specific SUMO ligase inhibi-
tors will be critical for evaluating the druggability of this
pathway in cancer. Given the essentiality of this pathway,
SUMO inhibitors could lead to significant on-target tox-
icity. However, the clinical success of proteasome inhibi-
tors and the development of neddylation inhibitors67

suggest that inhibitors of the SUMO pathway could also
hold potentials as anti-cancer agents.
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