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Cells migrate in multiple different ways depending on their

environment, which includes the extracellular matrix

composition, interactions with other cells, and chemical stimuli.

For all types of cell migration, Rho GTPases play a central role,

although the relative contribution of each Rho GTPase depends

on the environment and cell type. Here, I review recent

advances in our understanding of how Rho GTPases contribute

to different types of migration, comparing lamellipodium-driven

versus bleb-driven migration modes. I also describe how cells

migrate across the endothelium. In addition to Rho, Rac and

Cdc42, which are well known to regulate migration, I discuss

the roles of other less-well characterized members of the

Rho family.
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Introduction
Cell migration is essential for the development of multi-

cellular animals. During development, some cell popula-

tions migrate long distances, for example neural crest cells

migrate throughout the embryo to form different kinds of

cells such as melanocytes, vascular smooth muscle and

Schwann cells [1]. Cell migration also contributes to

progression of most human diseases. Cancer cells migrate

into lymph nodes or blood vessels to form metastases [2],

while immune cell migration is central to autoimmune

diseases and chronic inflammation [3].

Over the last few years it has become clear that cells are

highly flexible in the ways they migrate, and can change

rapidly between different migration modes. Cells can

migrate as single cells or collectively as groups [4]. They

interchange between lamellipodium-based and bleb-

based motility depending on the stiffness and composi-

tion of their environment, including extracellular matrix
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components and surrounding cells [5,6]. Cell–cell inter-

actions strongly affect how cells move and what regulates

their migration. When a cell meets another cell, they

often stop migrating in a process called contact inhibition,

and either form cell–cell adhesions or change direction,

leading to cell dispersal in vivo [7]. Cells may be guided

towards a particular place by soluble or matrix-associated

signals, or may apparently migrate randomly with fre-

quent direction changes [8]. What is common to all these

modes of migration is the involvement of Rho GTPases.

Rho GTPases were first identified to have roles in cell

migration around 20 years ago [9]. Many experiments use

cells migrating on 2-dimensional (2D) substrata in vitro,

but more recent work in 3-dimensional (3D) environ-

ments in vitro and in animals in vivo have considerably

expanded our understanding of how different Rho

GTPases contribute to cell migration through tissues

and tissue-like environments.

There are 20 Rho GTPase genes in humans (Table 1).

Most Rho GTPases are active and stimulate their down-

stream targets when bound to GTP, and inactive when

bound to GDP. They are activated by guanine nucleotide

exchange factors (GEFs), which induce exchange of GDP

for GTP, and inactivated by GTPase-activating proteins

(GAPs), which catalyse the hydrolysis of GTP to GDP on

Rho proteins. The best studied Rho GTPases, Rho, Rac

and Cdc42, are the most highly conserved Rho family

members across eukaryotic species, being found in plants,

fungi and/or animals [10]. They contribute to cell migra-

tion in all animal model organisms tested, but continue to

provide surprises on their multiple roles in cell migration.

In humans, there are three closely related Rho and Rac

genes, and splice variants of Rac1 and Cdc42 increase the

diversity of proteins (Table 1), complicating the analysis

of how each protein contributes to migration. In addition,

there are 13 other Rho family members in mammals,

which have diverse and much less well characterized roles

in cell migration.

Here, I describe the roles of Rho family proteins in animal

cell migration, using information from both in vitro and in
vivo models.

Lamellipodium-driven migration
Plasma membrane extension in lamellipodia is driven

predominantly through Rac-mediated actin polymeriza-

tion (Figures 1 and 2). In order for lamellipodia to

contribute productively to cell migration, lamellipodial

protrusion needs to be limited to one part of the plasma

membrane. In 3D environments, slow moving cells such
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Table 1

Rho GTPase family The 20 human Rho GTPases are listed in

subfamilies. Reported splice variants and C-terminal lipid

modifications are shown. GG, geranylgeranylation; F, farnesyla-

tion; P, palmitoylation.

Rho GTPase Subfamily Splice variants C-terminal

modifications

RhoA Rho GG

RhoB Rho GG, F

RhoC Rho GG

Rac1 Rac Extra exon 3b GG, P

Rac2 Rac GG

Rac3 Rac GG

RhoG Rac GG

Cdc42 Cdc42 Alternative

C-terminal exon

GG, P

RhoJ Cdc42 GG

RhoQ Cdc42 GG

RhoU RhoU/V P

RhoV RhoU/V P

RhoD RhoD/F GG

RhoF RhoD/F GG

Rnd1 Rnd F

Rnd2 Rnd F

Rnd3 Rnd F

RhoH RhoH F

RhoBTB1 RhoBTB None

RhoBTB2 RhoBTB None

Figure 1

adh esions  to 
Rac /PAK
Rho/R OCK

Cell Mo vement

Actomyosin contraction
Rho/R OCK
Cdc42/MRCK
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as fibroblasts can extend lamellipodia [11]. Lamellipodia

are frequently observed at the front of single cells mi-

grating in vivo, as well as at the front of leading cell(s) of

collectively migrating cells. For example, dendritic cells

use lamellipodia to crawl along lymphatic endothelial

vessels towards lymph nodes following activation in the

tissues [12], and cells at the front of collectively migrating

Drosophila border cells extend long Rac-driven lamelli-

podia [13]. Integrin-mediated adhesion is generally con-

sidered essential for lamellipodium-driven migration, in

part because it perpetuates Rac activation in a positive

feedback loop, in which engagement of integrins at the

leading edge stimulates Rac activation [14]. By contrast,

in situations of low adhesion or if cells lack integrins, cells

tend to migrate using bleb-based motility [5].

Actin polymerization in lamellipodia

Under normal conditions, lamellipodium-driven migra-

tion requires active Rac proteins (Rac1, Rac2 and/or Rac3

depending on the cell type and conditions), and indeed

local Rac activation is sufficient to drive migration in vivo
[13,15]. Several Rac GEFs are involved in activating Rac

to induce lamellipodia, including Tiam1, b-PIX, and

DOCK180 [16,17]. Active Rac proteins interact with a

WAVE-associated complex of proteins (Figures 1 and 2),

which in turn activates actin nucleation by the Arp2/3
 ext racellular matrix

Lamellipodia
Rac /WAVE  compl ex
Rho/mDia?

Directionality
Cdc42/Par compl ex
Microtubules

Filopodia
Cdc42/mDia
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 formins. Rac induces lamellipodium extension through the WAVE

r matrix form in lamellipodia, initially through Rac and its target PAK,

ersistent integrin-based adhesions. Actomyosin contraction in the cell

k of the cell, and is mediated by Rho and ROCKs and/or Cdc42 and
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Figure 2
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Signalling in lamellipodia. In lamellipodium-driven migration, actin polymerization at the front of cells requires Rac, which recruits the WAVE

complex to activate Arp2/3 complex-mediated actin polymerization. VASP and the adaptor protein lamellipodin (which interacts with VASP, Rac

and the WAVE complex) contribute to actin polymerization. RhoA is also active at the front of extending lamellipodia, and might contribute to actin

polymerization through a formin such as mDia1. Cdc42 and integrins contribute to inducing and maintaining active Rac selectively at the leading

edge of migrating cells. Negative feedback loops restrict the extent of Rac activation, including Arpin (which inhibits the Arp2/3 complex) and

SrGAP1 (a GAP for Rac). RhoC acts further back in the cell, behind Rac, to downregulate cofilin activity (via LIMK) and hence decrease actin

polymerization, and stimulate actomyosin contractility (via ROCK), which pulls the lamellipodial network rearwards. During migration, integrin-

based focal contacts need to be turned over, and this involves Rac itself, acting through a PAK/GIT/b-PIX complex that is localized to focal

contacts. RhoJ and RhoD also contribute to focal contact turnover.
complex. Active Rac interacts with the scaffold protein

lamellipodin, which contributes to actin filament exten-

sion in lamellipodia by binding to the WAVE complex

[18�,19], and hence may act to bring Rac close to the

WAVE complex.

The actin polymerization in lamellipodia involves not

only the Arp2/3 complex but also formins and VASP

(Figure 2) [20,21]. Rac proteins interact with several

formins [20], but whether these interactions contribute

to lamellipodia or cell migration is not clear. The WAVE

complex can also interact directly with VASP, and this

interaction is important for lamellipodium formation in

Caenorhabditis elegans embryogenesis [22�]. Altogether,

these results indicate a complex network of proteins

acting to regulate lamellipodium extension (Figure 2).

In addition to Rac, RhoA and Cdc42 are active in lamelli-

podial regions and contribute to lamellipodium extension

[23,24]. RhoA is activated right at the front of lamellipodia

[25]. It is thought that RhoA activates formins such as

mDia proteins at the leading edge of lamellipodia

(Figure 2), but this has not been proven so far.

Lamellipodia are not essential for migration, and indeed

melanoblasts and fibroblasts can migrate without Rac or

the Arp2/3 complex, albeit more slowly [26–28]. In the

absence of Arp2/3 complex, fibroblasts predominantly use

filopodia to migrate [26,27]. Melanoblasts use short stub-

by protrusions, which might be driven by formins [28].

Cells lacking WAVE2 have severely impaired lamellipo-

dium formation and reduced migration [29], and WAVE1

and WAVE3 may have different functions in regulating

actin dynamics [29–31]. However, Dictyostelium cells can

still form lamellipodia in the absence of the WAVE
www.sciencedirect.com 
complex. In these cells, WASP is recruited to the leading

edge by Rac and activates the Arp2/3 complex [32]. Rac is

more active in the absence of WAVE complex compo-

nents, possibly because a negative feedback loop involv-

ing the WAVE complex is not present.

A fine balance is needed between actin polymerization

and adhesion to allow productive lamellipodium-based

migration. The Rac/Cdc42-activated PAK family of

kinases play key roles in promoting integrin-based adhe-

sion turnover (Figure 1) [33]. Three relatively little-

characterized Rho GTPases also contribute to this bal-

ance. RhoJ regulates endothelial cell motility by promot-

ing endothelial focal adhesion disassembly and reducing

actomyosin contractility [34,35]. RhoJ interacts with a

GIT/b-PIX complex at focal adhesions to stimulate their

disassembly. b-PIX is a GEF for Rac1 and Cdc42 [16] and

RhoJ and b-PIX also interact with Rac/Cdc42-activated

PAK kinases [33,36], but whether RhoJ activates either of

these proteins is not known. RhoD depletion similarly

increases focal adhesions and reduces cell migration [37],

although again the mechanism is not known (Figure 2).

RhoH is highly expressed in haematopoietic cells, which

migrate very fast in vivo. RhoH inhibits adhesion via the

T-cell integrin LFA-1 (aLb2), which could contribute to

its role in cell migration [38]. Altogether, it is clear that

cells have multiple ways to regulate adhesion turnover

during migration. Different Rho family members may be

used depending on the cell type and other signalling

inputs.

Limiting Rac activity during lamellipodium-driven

migration

As mentioned above, it is crucial to limit actin polymeri-

zation to one part of the plasma membrane for a cell to
Current Opinion in Cell Biology 2015, 36:103–112
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move productively using lamellipodium-driven migra-

tion. This is generally believed to involve restricting

Rac activity, which can occur by several different mecha-

nisms. First, Cdc42 plays an important role in establishing

cell migratory polarity and migratory persistence, acting

through the Par polarity complex (Figure 1) as well as

other targets. Cdc42 can localize Rac activity through

multiple potentially synergistic pathways including mi-

crotubule capture at the leading edge, RacGEF localiza-

tion and directed vesicle trafficking [39]. Second,

feedback loops involving Rho/ROCK and actomyosin

contractility are postulated to turn off lamellipodia in

other regions of the cell, and indeed reducing RhoA,

RhoC or ROCK activity can lead to multiple and/or larger

lamellipodia [40], indicating the importance of balancing

lamellipodia with contractility in lamellipodium-driven

migration. RhoC is important for acute lamellipodium

extension in response to EGF, and acts behind the

lamellipodium, at least in part to turn off cofilin activity

away from the leading edge [41]. In this model, cofilin

severs existing actin filaments to initiate Arp2/3-driven

actin polymerization in lamellipodia [41]. Similarly, in

migration in 3D, RhoC plays an important role in inhibit-

ing cofilin activity around invadopodia, thereby restrict-

ing cofilin-induced generation of actin filament barbed

ends to the core of invadopodia [42]. Keratinocytes lack-

ing RhoA are defective in directed migration [43], sug-

gesting that it regulates where Rac proteins are active.

Macrophages lacking RhoA and RhoB (and do not express

RhoC) apparently have no defect in lamellipodial protru-

sion but a defect in lamellipodial retraction and tail

retraction [44�]. This is consistent with RhoA/B activating

ROCKs and hence increasing levels of actomyosin con-

tractility at the front and back of cells. Surprisingly, RhoA/

B-null macrophages migrate faster in 2D in vitro and get

recruited into tissues more rapidly in vivo. Interestingly,

levels of phosphorylated MLC (a measure of actomyosin

contractility) increased rather than decreased in RhoA/

RhoB-null cells [44�], suggesting the cells could compen-

sate for lack of Rho proteins by upregulating other sig-

nalling pathways that affect MLC phosphorylation.

Whether there is also compensation for Rho function

in lamellipodia through increased expression of another

Rho GTPase such as RhoF, which is known to interact

with the mDia formins [45], is not known.

Finally, Rac itself could act to provide a negative feed-

back loop to restrict its activity to one region of the plasma

membrane via a Rac-WAVE-Arp2/3-Arpin route [46]

(Figure 2). Arpin is an inhibitor of the Arp2/3 complex.

An alternative loop involves Rac recruiting its own GAP,

such as srGAP1 [47].

Limiting Rho activity during lamellipodium-driven

migration

Although RhoA is active at the leading edge of lamelli-

podia (see above), high levels of RhoA/ROCK activity
Current Opinion in Cell Biology 2015, 36:103–112 
induce actomyosin-mediated retraction of lamellipodia

and inhibit this type of migration [48]. For example, cells

switch from lamellipodium-driven migration to bleb/

lobopodium-driven migration when RhoA/ROCK activity

goes up [49�,50].

Most pathways so far implicated in neuronal migration in

the developing brain appear to converge on regulating

RhoA activity [51], probably because high RhoA activity

impairs migration. The atypical Rho members Rnd2 and

Rnd3 are expressed in different regions and timepoints

during cortical development. They both promote migra-

tion by suppressing RhoA activity [52]. Rnd proteins are

known to activate the Rho-specific p190RhoGAP to re-

duce RhoA activity [53]. RhoA is also directly phosphor-

ylated by the kinase Mst3, reducing its activity and hence

promoting migration of neurons in the cortex [54�]. Mst3

in turn is part of the STRIPAK complex, which includes

the cerebral cavernous malformation 3 (CCM3) protein

[55]. Deletion of CCM3 inhibits migration of cortical

neurons, also by increasing RhoA activation [56]. Con-

versely, the Semaphorin receptor Plexin B2 binds to and

titrates down Rnd3, thereby maintaining appropriate

levels of active RhoA required for neuronal migration

[57].

Contact inhibition of migration: suppressing

lamellipodia

Contact inhibition of migration can occur between two

cells moving using lamellipodium-based migration [7].

When two cells meet, the lamellipodia stop extending,

are retracted and eventually the cells extend lamellipodia

in a different direction [58]. This has been beautifully

visualised in vitro and in vivo. Contact inhibition is

important for spacing of Drosophila haemocytes (macro-

phage-like cells) in the developing larva [59]. In several

mammalian cell types, contact inhibition is mediated by

EphA receptor-induced activation of RhoA/ROCK sig-

nalling to induce local retraction of lamellipodia at sites of

cell–cell contact [7]. In neural crest cells in vivo, the Wnt-

PCP (planar cell polarity) pathway activates RhoA and

inhibits Rac1 upon cell–cell collision, thereby inhibiting

migration [60]. Microtubule catastrophe is also increased

in neural crest cells at sites of contact inhibition, mediated

by inhibition of the Rac1 GEF Trio [61]. This is consis-

tent with a role for Rac in stabilizing microtubules [62].

Migration in 3D and in vivo: different types of
protrusions?
During cancer cell migration in 3D, degradation of ex-

tracellular matrix is usually required, and is driven at

localized protrusions known as invadopodia [63]. Rho

GTPases are well known to contribute to invadopodial

protrusions [64]. Cdc42 in particular is involved in forma-

tion of invadopodia, acting through its target N-WASP,

and several Cdc42 GEFs have been implicated in inva-

dopodia [63]. In 3D environments Rac1, PAK1 and the
www.sciencedirect.com
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WAVE complex inhibit invasion and matrix degradation

[65,66��], perhaps in part by inhibiting Cdc42 activity.

Two modes of migration of fibroblasts have been described

in 3D: one elongated mode driven by Cdc42 and Rac1,

which is lamellipodium-dependent, the other involves

‘lobopodia’tm), driven by Rho/ROCK and myosin II

[11]. The balance between the two types of migration

depends on the elasticity of surrounding matrix: more

pliable matrices favour Rho/ROCK-driven migration. Sim-

ilarly, melanoma cells shift between Rac-mediated lamel-

lipodium-based migration and rounded Rho/ROCK-

driven bleb-based migration, depending on the conditions

[67]. The Rac/Cdc42 GEF b-PIX has a specific role during

fibroblast migration in collagen [49�]: b-PIX-depleted

fibroblasts have lost polarized Cdc42 but not Rac1 activity,

and have hyperactive RhoA. b-PIX interacts with srGAP1,

which is normally needed to suppress RhoA activity (al-

though srGAP1 also acts as a GAP for Rac1, see above), and

thus the b-PIX/srGAP1 complex mediates Cdc42/RhoA

crosstalk.

Filopodia and cell migration
Filopodia are observed on many cell types and are impli-

cated in directed cell migration and neuronal guidance

[68]. Filopodia can also mediate initial cell–cell contact

when epithelial cells are moving towards each other [69],

and are observed in the leading cells during angiogenesis

[70��]. Fibroblasts lacking Arp2/3 function predominantly

use filopodia for migration [26,27]. Recently, filopodia

have also been implicated in long-range signalling and

communication between cells [71]. For example, Cdc42/

WASP-driven filopodia transport Wnt8a to responding

cells during neural plate formation in zebrafish [72��].

Cdc42 is the best characterized Rho GTPase involved in

filopodium formation (Figure 1), acting predominantly

through formins [20]. Several other Rho GTPases can

induce filopodia under different contexts. RhoF induces

filopodia through the formins mDia1 and mDia2 [45].

RhoD overexpression induces filopodium-like protru-

sions, at least in part by interacting with the WASP-

related WHAMM protein and/or mDia3C [37,73]. Multi-

ple proteins in addition to Rho GTPases are important in

generating filopodia [68]. These include fascin, which

bundles actin filaments in filopodia [74]. Interestingly,

the binding of fascin to actin filaments is stimulated by

Rho/ROCK signalling, which induces fascin interaction

with the ROCK-activated LIMK1/2 [75].

Recent studies indicate that filopodia are important for

both lamellipodium-driven and bleb-driven migration in
vivo. For example, neural crest cells migrate using lamel-

lipodia [1]. In zebrafish, downregulation of fascin led to

defective guidance of cranial neural crest cells [76],

supporting an important role for filopodia in directed

migration. In zebrafish primordial germ cells, which use
www.sciencedirect.com 
bleb-driven migration, filopodia were not required for

migration itself but for optimal chemotaxis to the chemo-

kine CXCL12 [77��]. Interestingly, filopodia appeared to

capture CXCL12 and bring it back to the cell body, where

a bleb subsequently formed. In addition, filopodia were

required for polarized accumulation of active Rac1 at the

front of cell, consistent with a model where Cdc42 med-

iates localized Rac1 activation (see above). However,

filopodia appear less important for guidance of angiogenic

sprouts in zebrafish, even though the leading cells of

sprouts have abundant filopodia [78]. In this system,

filopodia were suppressed using low concentrations of

latrunculin B, which prevents actin monomers from

polymerizing.

Bleb-driven cell migration
Bleb-based migration is driven by cortical actomyosin

contractility (Figure 3), and is associated with high levels

of active RhoA/ROCK signalling [79]. So far, a role for

RhoC in bleb-based migration has not really been

addressed, but it is relevant that RhoC is frequently

upregulated in metastasis, and is associated with metas-

tasis particularly in melanoma [80], which involves pre-

dominantly rounded bleb-driven migration [67]. Bleb-

based migration is rarely observed in 2D culture condi-

tions, but is frequently observed in vivo and in confined

environments or on low-adhesion 3D systems in vitro. For

example, Dictyostelium normally use ‘pseudopod’tm)-

based migration (equivalent to lamellipodia), but convert

to bleb-based chemotaxis under agarose of increasing

stiffness and thus higher mechanical resistance, which

requires myosin II [81]. Similarly, stable bleb-based mi-

gration of isolated zebrafish germ layer progenitor cells in

confined environments in vitro is driven by Rho/ROCK

signalling and actomyosin contractility [82�]. These cells

have high speed and persistence. This involves lysopho-

sphatidic acid (LPA), which is well known to activate

RhoA/ROCK through LPA receptors [83]. Indeed, local-

ized LPA delivery to germ layer progenitor cells induces

localized myosin II accumulation, at what then becomes

the back of the cell [82�]. This resembles the uropod at

the back of migrating leukocytes, which is similarly

enriched in myosin II [84].

Cells can transition rapidly between bleb-based and

lamellipodium-based migration in vivo, which may re-

flect their adaptation to variations in extracellular matrix

pliability and structure. For example, during early zebra-

fish development, individual involuting mesodermal

cells extend blebs interchangeably with lamellipodia

over time [85]. Primordial zebrafish germ cells use pre-

dominantly bleb-based migration to migrate towards

CXCL12, but Rac1 is also active at the leading edge

(Figure 3) [86]. Higher pH is required at the front of

these cells during migration both for maintaining cell

contractility and polarized Rac1 distribution [87�]. As

with lamellipodium-driven migration, it is important for
Current Opinion in Cell Biology 2015, 36:103–112
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Figure 3
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Rho GTPases in bleb-driven migration. The predominant Rho GTPase involved in bleb-driven migration is RhoA, acting through ROCK to stimulate

myosin light chain phosphorylation (pMLC) and hence cortical actomyosin contractility, which is higher at the front and back of the cell than on the

sides. At the back of the cell, ezrin is associated with the actin cortex and reduces bleb formation [111]. At the front of the cell, actomyosin

contractility leads to focal detachment of the plasma membrane from the actin cortex to form blebs, which initially do not contain actin filaments

(shown in blue). Subsequently actin polymerizes on the bleb membrane to stabilize the protrusion, eventually leading to bleb retraction. This could

be mediated by Rac, which as activated at the front of blebbing primordial germ cells in zebrafish by the G-protein subunits Gbg.
cells using bleb-driven migration to maintain the correct

level of adhesion: germ cells use E-cadherin to gain

traction on neighbouring cells as they migrate between

them [86].

Under some conditions, cells appear to stabilize bleb-

driven migration at the transcriptional level. For example,

a LIF/JAK/STAT-driven positive feedback loop acts to

maintain Rho/ROCK activity in melanoma cells [88].

Indeed, melanoma cells with high actomyosin contractil-

ity and rounded morphology secrete many factors, includ-

ing MMPs, which promote bleb-driven migration through

a positive feedback loop [89]. Recently Rac1 acting in the

nucleus has been found to regulate nuclear morphology

and promote actomyosin contractility and invasion [90�],
although whether Rac1 is regulating transcription in the

nucleus in this case is not clear.

Collective cell migration
Many cell populations migrate collectively during devel-

opment, including epithelial cells, endothelial cells and

neural crest cells [91]. Collective cell migration is usually

driven by lamellipodia and filopodia in the leading cell,

and suppression of these protrusions in the other cells.

For example, in Drosophila border cell migration, Rac1 is

required to be active selectively in the leading cell, and is

suppressed in other cells of the cluster via E-cadherin-

mediated adhesion between the leader and followers

[92��]. Localized photoactivation of Rac1 in one cell leads

to extension of a protrusion, which guides the migration of

the border cell cluster [93]. Neural crest cells are mesen-

chymal but migrate coordinately during development, so

have aspects of collective migration behaviour [94]. In

migrating neural crest cells, Rac1 activity is required at

the leading edge. RhoU contributes to migration of
Current Opinion in Cell Biology 2015, 36:103–112 
cranial neural crest cells by acting together with Rac1

and PAK [95].

Rac1 and Cdc42 are also important in the leading endo-

thelial cells during angiogenic sprouting. In zebrafish,

Cdc42 is activated by ARHGEF9, which then activates

the formin FMNL3 to induce filopodia during angiogenic

sprouting of the caudal vein plexus [70��]. Rac1 is re-

quired for sprouting of endothelial cells in vitro, and

actomyosin contractility suppresses sprouting [96]. How-

ever, in vivo Rac1 only appears to contribute to angiogen-

esis in the absence of the integrin avb3 [17]. The ELMO/

DOCK180 RacGEF acts via Rac1 and PAK to protect

endothelial cells from apoptosis and hence promotes

formation of blood vessels indirectly [97].

It is important to maintain stability of adherens junctions

between collectively migrating cells, which in turn signal

to keep Rac1 active at the front of the leading cells. For

example, in migrating neural crest cells, the adherens

junction protein N-cadherin suppresses Rac1 activity at

cell–cell junctions, whereas Rac1 is active in the leading

edge [98]. During collective endothelial migration, the

extracellular signalling molecule Ang-1 promotes adhe-

rens junction stability via aPKCz and the adherens junc-

tion protein b-catenin, leading to selective activity of

Rac1 at the leading edge [99]. As well as regulating

Rac1 activity, adherens junctions are important for deter-

mining directionality of collectively migrating astrocytes

by ensuring Cdc42 is recruited to the front of leader cells

[100], where it presumably leads to Rac1 activation.

The role of RhoA in adherens junction signalling is more

controversial. On the one hand, Rnd3 contributes to

collective cell migration in epithelial cancer cells by
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repressing ROCK activity and keeping actomyosin con-

tractility at cell–cell junctions low [101]. RhoJ is required

for tumour angiogenesis in mice, and acts by reducing

Rho/ROCK activity [102��]. Conversely, in angiogenesis

in mice, a Raf1/ROCK2 complex activates actomyosin

contractility selectively at adherens junctions to mediate

the maturation of adherens junctions essential for collec-

tive migration [103]. It is likely that Rho/ROCK activity is

initially required to form adherens junctions through

contraction of actin filaments parallel to the junctions,

but subsequently needs to be reduced to stabilize the

contacts.

Migration across other cells
Cells in vivo frequently migrate between other cells. For

example, during development primordial germ cells mi-

grate between multiple cell types to reach the sites where

gonads will form [104]. Leukocytes constantly migrate

across endothelial cells and epithelial cells to enter and

exit tissues [105,106]. Cancer cells also migrate in and out

of blood vessels during metastasis [107]. Rho GTPases

contribute to transmigration in both cell types. Endothe-

lial Rac1 and RhoG promote the initial interaction be-

tween leukocytes and endothelial cells through adhesion

receptor clustering [108]. On the other hand, strengthen-

ing endothelial cell–cell junctions by inhibiting PI3Ka

and Rac1 reduces transendothelial migration of leuko-

cytes [108,109]. These two distinct roles of Rac1 demon-

strate the importance of timing and localization of Rho

GTPase activation in regulating migratory processes.

Once they have adhered to endothelial cells, leukocytes

extend small protrusions between endothelial cells or

through endothelial cells, which then form lamellipodia

and filopodia under the endothelial cells. T-cell RhoA is

particularly important for transendothelial migration,

probably because it is active at both the front and back

of transmigrating T-cells [24]. In addition, during T-cell

receptor-driven transmigration of T-cells, the GEF Vav

and its downstream target Rac contribute to transen-

dothelial migration [110].

Conclusions and future directions
Cells are remarkably flexible in the ways they migrate,

adapting rapidly to changing cues in their environment to

extend different types of protrusions and change shape.

In some cases they also use transcriptional reprogram-

ming to maintain their ability to move using lamellipo-

dium-driven or bleb-driven migration. Transcriptional

changes could be relevant in vivo for relatively slowly

migrating cancer cells at the edge of tumours, but not

during rapid shape changes such as those that occur

during leukocyte transendothelial migration. The ability

to follow localized Rho GTPase activation in real time in
vivo will increase our understanding of how these dynam-

ic changes in migration are regulated. So far, most studies

on migration have focussed on Rho, Rac and Cdc42

proteins, and we know relatively little about how atypical
www.sciencedirect.com 
Rho family members contribute to migration in
vivo. Animal models investigating how these proteins

signal in vivo will help resolve their roles in migration.
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