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Taiwan red-feathered country chickens (TRFCCs) are one of the main meat resources in Taiwan. Due to the lack of any systematic
breeding programs to improve egg productivity, the egg production rate of this breed has gradually decreased. The prediction by
zone (PreZone) program was developed to select the chickens with low egg productivity so as to improve the egg productivity of
TRFCCs before they reach maturity. Three groups (A, B, and C) of chickens were used in this study. Two approaches were used to
identify chickens with low egg productivity. The first approach used predictions based on a single dataset, and the second approach
used predictions based on the union of two datasets. The levels of four serum proteins, including apolipoprotein A-I, vitellogenin, X
protein (an IGF-I-like protein), and apo VLDL-II, were measured in chickens that were 8, 14, 22, or 24 weeks old. Total egg numbers
were recorded for each individual bird during the egg production period. PreZone analysis was performed using the four serum
protein levels as selection parameters, and the results were compared to those obtained using a first-order multiple linear regression
method with the same parameters. The PreZone program provides another prediction method that can be used to validate datasets
with a low correlation between response and predictors. It can be used to find low and improve egg productivity in TRFCCs by
selecting the best chickens before they reach maturity.

1. Introduction

Egg production is the main economic trait for laying hens.
To improve egg production, systematic breeding programs
for the long-term selection of chickens have been used to
improve egg production for many years in Western countries
[1]. Several selection indices, including body weight, age at
onset of laying, rate of egg production, egg size, inter- and
intraclutches, and hierarchical follicles, have been used to
improve many traits of poultry [2–4]. However, phenotypic
measurements of chicken egg characteristics and production
traits using those related parameters are usually restricted to
mature females. As the chicken genome project nears com-
pletion, the number of genes identified is growing rapidly
[5]. Marker-assisted selection of immature chickens using
quantitative trait loci (QTL), genotyping and gene poly-
morphisms is a potential approach to accelerate the genetic

improvement of these traits in the chicken population [6–
8]. Thus far, these genetic approaches have typically been
restricted to long-term bred populations rather than ran-
domly bred populations.

The traditional notion for marker-assisted selection
within a chicken population is primarily based on pheno-
typic traits that are associated with egg production [9, 10].
These phenotypic measurements of production traits have
typically been restricted to laying hens. Recently, selection
indices incorporating phenotypic and genotypic traits have
been investigated [6]. Several selection approaches, including
phenotype, selection index, and best linear unbiased predic-
tion (BLUP), have been used to estimate breeding values [11,
12]. One computational model of mating strategy in a con-
trolled breeding program provides a novel viable and robust
approach to designing [13]. Thus far, these selection pro-
grams have been restricted to inbreeding or to a closed line.
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Taiwan red-feathered country chickens (TRFCCs) have
become very popular in Taiwan because of their meat per-
formance. TRFCCs originated in north and south Asia and
have been crossed for many years. Owing to the lack of any
systematic breeding program to improve egg productivity,
the breeding cost has been increasing in Taiwan, while the
breeding efficiency has decreased [14]. Based on their strong
tendency for broodiness, an egg production of 120–150 per
hen per year has proposed the limit for reproduction [15].
Nowadays improving egg production has become an impor-
tant issue for stimulating market competitiveness in Taiwan.

To improve egg production, the selection of chickens for
increased egg number or laying rate using proteomic ap-
proaches has become a possible alternative. Huang et al. [16]
investigated serum protein profiles during the development
of chickens and found that the levels of 13 proteins differed
during developmental stages. Kuo et al. [9] analyzed the
expression levels of hypothalamic proteins between high and
low egg-producing strains of chickens and found differences
in expression levels between both groups, revealing that
protein levels may serve as molecular markers to select for egg
productivity. Leszczynski et al. [10] estimated egg production
by evaluating plasma levels of estradiol and progesterone.
Our previous study showed that serum protein levels are
associated with egg production at the peak egg production
stage [17]. The results of these studies imply that protein
levels may serve as valuable parameters to improve egg pro-
duction. How to use such a selection marker to achieve
genetic progress remains to be determined.

The prediction by zone provides an excellent model for
finding the low egg productively and improving egg produc-
tivity by selecting the best chickens before they reach matu-
rity. As the prediction by zone has been patented (Patent
no.: US 7,806,079 B2), our study provides a new model in
addition to traditional approaches to improve egg produc-
tivity.

2. Methods and Materials

2.1. Description of the Problem. As the variables are not
associated with validation variable, E, the prediction of the
unknown dataset using the known dataset using traditional
statistical methods would not be successful. For example, we
are given two sets A and B of multivariate data with nA and
nB objects, respectively, each of which contains the scores for
m variables, x1, x2, . . . , xp, . . . , xm, where 1 ≤ p ≤ m, and
the known dataset has a validation variable E. The values for
objects i = 1, 2, . . . ,nA in the unknown dataset A can then
be denoted by AXi = {Ax1

i ,Ax2
i , . . . ,Axmi }, and the values for

object j = 1, 2, . . . ,nB in the known dataset B can then be
denoted by BXj = {Bx1

i ,Bx2
j , ...,Bx

m
j }. However, the variable

j in the known dataset B is the identity variable. The variables
are not strongly associated with the validation variable E
according to Pearson’s correlation coefficient. The prediction
by zone is used to predict the subset validation variable in
AX using the known dataset BX and E. One example is
to select chickens with low egg productivity in the three
batches of TRFCCs using this algorithm. The levels of four
serum proteins, apolipoprotein A-I, vitellogenin, X protein

(an IGF-I-like protein), and apo VLDL-II for the three
batches of TRFCCs were measured at the indicated ages. The
selection approach, termed zone, was performed at the
indicated time period using serum protein levels as selection
parameters. The selection values were then estimated and
compared to those of the first-order multiple linear regres-
sion method.

2.2. Algorithm. In this section, the PreZone is described. In
the first subsection, we present the preprocessing for obtain-
ing the transferred score table and the transferred rank table
for the unknown dataset and for obtaining the score table
and rank table in the known dataset. Following the sub-
section, the zone table is generated by Algorithms 1 and 2.
In the last subsection, we use the candidate zone to obtain
the predicted variables.

2.2.1. Preprocessing

Algorithm 1. (1) Rank the score variables for the unknown
dataset A, Ax

p
i to obtain the rank variables, As

p
i , where i =

1, . . . ,nA and p = 1, . . . ,m.
(2) Rank the score variables for the known dataset, Bx

p
j to

obtain the rank variables, Bs
p
j , where j = 1, . . . ,nB and p =

1, . . . ,m.
(3) Rank the validation variables, E, and then choose the

lower subset as the validation candidate dataset.
(4) From the validation candidate dataset to order the Ej

to get the order e j = 1, 2, . . . , cnB, then Bx
p
e j and Bs

p
e j , and

these values denote the candidate score and candidate rank,
respectively.

The unknown dataset A was ranked by the score var-
iables, andAs

p
i is the rank variable. The same process that was

just applied to the known dataset B was used. But then the
rank variable was generated, Bs

p
j . Table 1 shows the rank and

score variables for the unknown set A and known set B. For
the known dataset B, according to the validation variable, E,
choose the lower validation objects. We order the Ej values
to obtain the order e j = 1, 2, . . . , cnB, and we generated the
candidate score variables, Bx

p
e j , and candidate rank variables

Bs
p
e j in Table 2.

2.2.2. Zone Algorithm. Given Ax
p
i , As

p
i , Bx

p
e j and Bs

p
e j , where

p = 1, . . . ,m and e j = 1, 2, . . . , cnB, the following algorithm
was used to generate the zone. We used Bc

p
e j and Ac

p
i to

denote the validation candidate dataset zone and the un-
known dataset zone, respectively.

Algorithm 2. (1) In the unknown dataset, the transferred
score Axt

p
i and the transferred rank score Ast

p
i were gener-

ated by the following:

Ast
p
i = As

p
i ×

nB
nA

,

Axt
p
i =

(
Ax

p
i −mean

(
Ax

p
•
))
×

S.D.
(
Bx

p
•
)

S.D.
(
Ax

p
•
)

+ mean
(
Bx

p
•
)
.

(1)
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Table 1: Rank and score variables for unknown set A and known set B. It shows the rank and score variables for the unknown set A and
known set B. The ID column shows the identity object. Each of which contains the scores for m variables, x1, x2, . . . , xp, . . . , xm, where
1 ≤ p ≤ m, and the known dataset has a validation variable E. The score values for objects i = 1, 2, . . . ,nA in the unknown dataset A can
then be denoted by AXi = {Ax1

i ,Ax2
i , . . . ,Axmi }, and the rank values can be denoted by ASi = {As1

i ,As2
i , . . . ,Asmi }. The score values for

object j = 1, 2, . . . ,nB in the known dataset B can then be denoted by BXj = {Bx1
j ,Bx

2
j , . . . ,Bx

m
j }, and the rank values can be denoted by

BSj = {Bs1
j ,Bs

2
j , . . . ,Bs

m
j }.

(a) Unknown set A.

ID x1 s1 x2 s2 · · · xp sp · · · xm sm

i = 1 Ax1
1 As1

1 Ax2
1 As2

1 Ax
p
1 As

p
1 Axm1 Asm1

i = 2 Ax1
2 As1

2 Ax2
2 As2

2 Ax
p
2 As

p
2 Axm2 Asm2

i = i Ax1
i As1

i Ax2
i As2

i Ax
p
i As

p
i Axmi Asmi

...

i = nA Ax1
nA As1

nA Ax2
nA As2

nA Ax
p
nA As

p
nA AxmnA AsmnA

(b) known set B.

ID E x1 s1 x2 s2 · · · xp sp · · · xm sm

j = 1 E1 Bx1
1 Bs1

1 Bx2
1 Bs2

1 Bx
p
1 Bs

p
1 Bxm1 Bsm1

j = 2 E2 Bx1
2 Bs1

2 Bx2
2 Bs2

2 Bx
p
2 Bs

p
2 Bxm2 Bsm2

j = j Ej Bx1
i Bs1

i Bx2
i Bs2

1 Bx
p
i Bs

p
i Bxmi Bsmi

...

j = nB EnB Bx1
nB Bs1

nB Bx2
nB Bs2

nB Bx
p
nB Bs

p
nB BxmnB BsmnB

Table 2: The validation candidate dataset. It shows the validation candidate dataset. The ID′ column is identity objects, but their order is
dependent to the order of the validation variable, order E. We generated the candidate score variables, {Bx1

e j , . . . ,Bx
p
e j , . . . ,Bx

m
e j}, and candi-

date rank variables {Bs1
e j , . . . ,Bs

p
e j , . . . ,Bs

m
e j}.

ID′ Order E x1 s1 x2 s2 · · · xp sp · · · xm sm

e1 Ee1 Bx1
e1 Bs1

e1 Bx2
e1 Bs2

e1 Bx
p
e1 Bs

p
e1 Bxme1 Bsme1

e2 Ee2 Bx1
e2 Bs1

e2 Bx2
e2 Bs2

e2 Bx
p
e2 Bs

p
e2 Bxme2 Bsme2

ej Ee j Bx1
e j Bs1

e j Bx2
e j Bs2

e j Bx
p
e j Bs

p
e j Bxme j Bsme j

...

ecnB EecnB Bx1
ecnB Bs1

ecnB Bx2
ecnB Bs2

ecnB Bx
p
ecnB Bs

p
ecnB BxmecnB BsmecnB

(2) For every P, Bx
p
e j and Bs

p
e j are used to find the zone

from the unknown dataset A.
(2.1) According to the Ast

p
i to generate order of the un-

known set A.
For validation candidate data, first Bx

p
1 and Bs

p
1 are used

to find the first zone in the order of the unknown dataset A.

(2.1.1) Case I: When Ast
p
pi ≤ Bs

p
1 and Ast

p
pi+1 > Bs

p
1 , then

Ac
p
pi = 1. If Axt

p
pi+1 ≤ Bx

p
1 , we keep to add pi, until

Axt
p
(pi+k−1) ≤ Bx

p
1 and Axt

p
(pi+k) ≥ Bx

p
1 , where k is in-

teger number. When the objects are in the [pi, pi+ k]
regions, we defined the zone of the object as {Acppi =
1, . . . ,Ac

p
pi+k = 1}.

(2.1.2) Case II: When Ast
p
pi ≤ Bs

p
1 and Ast

p
pi+1 > Bs

p
1 , then

Ac
p
pi = 1. If Axt

p
pi ≥ Bx

p
1 , we keep to find k′ until

Axt
p
(pi−k′+1) ≥ Bx

p
1 and Axt

p
(pi−k′) ≤ Bx

p
1 where k′ is

integer number. When the objects are in the [pi −
k′, pi + 1] regions, we defined the zone of the object
as {Acppi−k′ = 1, . . . ,Ac

p
pi+1 = 1}.

(2.2) For every e j = 2, . . . , cnB, Bx
p
e j and Bs

p
e j , first to find

the pi′ at Ast
p
pi′ ≤ Bs

p
e j and Ast

p
pi′+1 > Bs

p
e j . These values must

be constrained by one of the following two situations. One
is Axt

p
pi′ ≤ Bx

p
e j and Axt

p

pi′+k′′ ≥ Bx
p
e j and Axt

p
pi′+k′′−1 ≤ Bx

p
e j

or another is Axt
p
pi′ ≥ Bx

p
e j and Axt

p
pi′−k′′′ ≤ Bx

p
e j and

Axt
p
pi′−k′′′+1 ≥ Bx

p
e j where k′′and k′′′ are integers. When ob-

jects are in the following one of the two regions [pi′, pi′+k′′]
or [pi′ − k′′′, pi′ + 1], we defined the {Acppi′ , . . . ,Ac

p
pi′+k′′ } or

{Acppi′−k′′′ , . . . ,Ac
p
pi′+1} as new zone. When the new zone is

overlapping previous zone, the zone is the same as previous
zone. When the objects are between two zones, these objects
generated other zones.
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(3) From Step (2), we can obtain zone for the unknown
dataset A. Hence, every object in the unknown dataset A has
the zone and is denoted as Aci = {Ac1

i ,Ac2
i , . . . ,Ac

p
i , . . . ,

Acmi }.
(4) The each object, e j, in the known candidate dataset

gets Bce j = {Bc1
e j ,Bc

2
e j , . . . ,Bc

p
e j , . . . ,Bc

m
e j}.

If nA /=nB, the rank in the unknown dataset is trans-
formed into a known dataset by the rank transformation
(Table 3(a)). The rule of the transferred rank is Ast

p
i = As

p
i ×

nB/nA. When the numbers of elements in the unknown
dataset and in the known dataset are different, it is impossible
to identify the poultry with the same rank in the two sets,
and thus the ranks for unknown dataset A need to be trans-
formed. The ranks for the posttransformation unknown
dataset A that are close to the ranks for the known dataset
B are selected. The nB/nA is the ratio of the position in the
known dataset. This ratio of the position is also in the un-
known dataset, so that it is As

p
i times this ratio. According to

(1), the unknown dataset generated a rank similar to that of
the known dataset.

Assume that both distributions are normal. The means
and standard deviations of the unknown dataset and the
known dataset are different. The order transferred score was
generated as the following: Axt

p
i = (Ax

p
i − mean(Ax

p
• )) ×

S.D.(Bx
p
• )/S.D.(Ax

p
• ) + mean(Bx

p
• ), where mean(Bx

p
• ) and

S.D.(Bx
p
• ) are mean the score and the standard deviation for

known dataset B, respectively, and mean(Ax
p
• ) and S.D.(Ax

p
• )

for unknown dataset A.
For the same variables, there were identical distributions.

As the mean concentrations of poultry serum proteins for the
two datasets were different, the tendency of the poultry scores
is observed. In this situation, (Ax

p
i −mean(Ax

p
• ))/S.D.(Ax

p
• )

is the Z-score for the unknown dataset. However, the known
set must have the same Z-score. Thus, (1) is generated.

Each variable in the known dataset and in the unknown
dataset has two values. One is the transferred score, and the
other is the transferred rank. The variable was chosen to find
the similar objects in the unknown dataset. Theoretically,
these two values should occur in the same object. However,
they appear in the different objects. According to order
transferred score Axt

p
pi, the order transferred score and the

transferred rank (Table 3(b)) generate one region.
Algorithm 2 at the step (2.1.1) and step (2.1.2) was des-

cribed at Figures 1 and 2, respectively. Figures 1 and 2 show
how to find the first zone (e j = 1) from the order of the
unknown dataset A at Case I and Case II, respectively. The
order transferred score and the transferred rank point to the
different objects, and then these different objects become one
region. According to the score and rank, those two values
of the objects were defined as the upper-bound and lower-
bound; or lower-bound and upper-bound of this region,
respectively. Each object in the unknown dataset has one
region number. If any region overlaps with another, these
overlapping objects have same region number. For example,
in the first zone, a zone of “1” is used to define some of the
objects, as is shown in Figure 3(a). The second zone has two
different cases. The first case occurs where the second zone is
not overlapping the first zone as shown in Figure 3(b). The

Table 3: Order of the unknown dataset A. 3(a) shows that the rank
in the unknown dataset is transformed into a known dataset by the
rank transformation, (1). The transferred ranks are {Ast1

i ,Ast2
i , . . . ,

Astmi }. The score in the unknown dataset is transformed into a
known dataset by the score transformation, Equation (1). The
transferred scores are {Axt1

i ,Axt2
i , . . . ,Axtmi }. 3(b) is order of the

unknown dataset. ID′′ is an identity object but its order is
dependent to the order of the transferred rank.

(a) The transferred unknown dataset A.

ID xtp stp

i = 1 Axt
p
1 Ast

p
1

i = 2 Axt
p
2 Ast

p
2

i = i Axt
p
i Ast

p
i

...
i = nA AxtpnA AstpnA

(b) The order of the unknown dataset A.

ID′′ xtp stp

p1 Axt
p
p1 Ast

p
p1

p2 Axt
p
p2 Ast

p
p2

pi Axt
p
pi Ast

p
pi

...
pnA Axt

p
pnA Ast

p
pnA

gap between these two regions is given a zone of “2”, where
the two separated regions are assigned zones of “1” and “3”.
The second case occurs when the second region overlaps
the first zone as shown in Figure 3(c). In this circumstance,
the two zones are combined to form a single region. The
Algorithm then continues to find all the zone until e j = cnB.

We used the score and the rank of objects that are in the
candidate dataset to obtain the zone. These zones use the
rank order to obtain the order zones. Thus, the object in the
candidate dataset has the Bce j . Every object in the unknown

dataset had its zone, Aci = {Ac1
i ,Ac2

i , . . . ,Ac
p
i , . . . ,Acmi }.

2.2.3. Identifying Predicted Variables from the Zone. Each p is
generated one number by Algorithm 1 or Algorithm 2, and
every object includes m zones. The following algorithm used
the zone to generate the predicted variables. PreZone chooses
the same or more than number of validation candidates (cnB)
as the number of predicted variables.

Algorithm 3. (1) Calculate the equation: Mej,i =
∑m

p=1 |Acpi −
Bc

p
e j|, where e j = 1, 2, . . . , cnB and i = 1, 2, . . . ,nA.

(2) Choose the predicted variables.
(2.1) If Mej,i = 0 is calculated for a value of e j, then the

object i is a predicted variable. If the total number of pre-
dicted variables is less than the number of validation candi-
dates (cnB), the process will proceed to the next step (2.2).

(2.2) If Mej,i /= 0 for any value of e j but Mej,i = 1 is cal-
culated for a value of e j, then the object i is the predicted
variable. If the total number of predicted variables is less than
cnB, the process will proceed to the next step (2.3).
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pi− k +1

P1

p2

pi− k

pi

pi + 1

pi + k − 1

pi + k

Axt
p
p1

Axt
p
p2

Axt
p
pi−k

Axt
p
pi−k+1

Axt
p
pi

Axt
p
pi+1

Axt
p
pi+k−1

Axt
p
pi+k

Ast
p
p1

Ast
p
p2

Ast
p
pi−k

Ast
p
pi−k+1

Ast
p
pi

Ast
p
pi+1

Ast
p
pi+k−1

Ast
p
pi+k

Axt
p
(pi+k−1) < Bx

p
1 and Axt

p
(pi+k) ≥ Bx

p
1

Ast
p
pi ≤ Bs

p
1 and Ast

p
pi+1 > Bs

p
1

· · · · · · · · ·

· · · · · · · · ·

· · ·· · · · · ·

xtp stp Acp

1

1

1

1

1

Figure 1: Find the first zone (e j = 1) from the order of the unknown dataset A at Case I. According to the score and rank, those two values
of the objects were defined as the upper-bound and lower-bound of this region, respectively. A zone of “1” is used to define some of the
objects that are between pi and pi + k. Therefore, we defined the zone of the object as {Acppi = 1, Ac

p
pi+1 = 1, . . . ,Ac

p
pi+k = 1}.

pi− k +1

P1

p2

pi− k

pi

pi + 1

pi + k − 1

pi + k

Axt
p
p1

Axt
p
p2

Axt
p
pi−k

Axt
p
pi−k+1

Axt
p
pi

Axt
p
pi+1

Axt
p
pi+k−1

Axt
p
pi+k

Ast
p
p1

Ast
p
p2

Ast
p
pi−k

Ast
p
pi−k+1

Ast
p
pi

Ast
p
pi+1

Ast
p
pi+k−1

Ast
p
pi+k

Ast
p
pi ≤ Bs

p
1 and Ast

p
pi+1 > Bs

p
1

· · · · · · · · ·

· · ·

· · ·

· · · · · ·

· · ·· · · · · ·

xtp stp Acp

1

1

1

1

1

ID

Axt
p
(pi−k+1) > Bx

p
1 and Axt

p
(pi−k) ≤ Bx

p
1

Figure 2: Find the first zone (e j = 1) from the order of the unknown dataset A at Case II. According to the score and rank, those two values
of the objects were defined as the lower-bound and upper-bound of this region, respectively. A zone of “1” is used to define some of the
objects that are between pi− k′ and pi + 1. Therefore, we defined the zone of the object as {Acppi−k′ = 1, Ac

p
pi−k′+1 = 1, . . . ,Ac

p
pi+1 = 1}.

(2.3) For a given value of e j, the variables are sorted by
the value obtained by Mej,i in ascending order. From these a
total of cnB variables are selected. But there are same values
obtained by Mej,i. This provides a set with a size of W
elements. These elements are those variables with the small-
est value of Mej,i. We can then identify what values of i exist
in the set we have created. We then calculate the average value
of Mej,i for all values of i we have found in the set. If the i does
not found in the set, the average value of Mej,i is any one big
number. We then search every set we create for a given value
of e j and count how many times i appears. This provides us

two values for each i that has been encountered. We then
choose the smallest top third of the average Mej,i and define
that as the filter (F1) and then choose for a given value of
e j the top third with the largest count of i and define this
as a filter (F2). If for a given object both filters F1 and F2
are applied and afterward Mej,i = 2 then the object i is the
predicted variable. If the total number of predicted variables
is less than cnB, the process will proceed to the next step
(2.4).

(2.4) If Mej,i = 2 and the object has either filter F1 or F2
applied, then object i is the predicted variable. If the total
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{Acppi = 1, . . . ,Ac
p
pi+k = 1}

First zone was defined at some objects.

(a)

{Acppi = 1, . . . ,Ac
p
pi+k = 1}

. . .{Acppi+k+1 = 2, ,Ac
p
pi−1 = 2}

{Acppi = 3, . . . ,Ac
p
pi+k = 3}

The second zone was not overlap the first zone.

(b)

{Acppi = 1, . . . ,Ac
p
pi+k = 1, . . . ,Ac

p
pi+k = 1}

The second zone was overlap the first zone.

(c)

Figure 3: Generation of the zone. 3(a) shows a zone of “1” is used to define some of the objects. The second zone has two different cases. 3(b)
shows the first case occurs where the second zone is not overlapping the first zone. The gap between these two regions is given a zone of “2”,
where the two separated regions are assigned zones of “1” and “3”. 3(c) shows that the second case occurs when the second region overlaps
the first zone.

number of predicted variables is less than cnB, the process
will proceed to the next step (2.5).

(2.5) We now choose the smallest top quarter of the
averageMej,i and define that as the filter (F3) and then choose
for a given value of e j the top quarter with the largest count
of i and define this as a filter (F4). If the object has the F3 and
F4, then the object i is the predicted variable.

Mej,i represents the difference between the unknown
objects and the validation candidate dataset. When Mej,i = 0,
i is the predicted variable. If the number of the predicted
variable is less than cnB, then we will use Mej,i = 1 from
step (2.2). According to Mej,i for every e j we choose a set of
W objects; however for each object chosen there are different
values ofe j. For each object and based on the sets we generate
a series of four filters F1 to F4. The four filter conditions are
defined in steps (2.3) to (2.5).

2.3. Materials

2.3.1. Animal Housing and Measurement of Serum Protein
Concentrations. The animal housing conditions and the
methods for measuring serum protein markers were de-
scribed by Liou et al. [17]. Briefly, three batches of TRFCCs,
batchA (nA = 76), batch B (nB = 77), and batch C (nC = 60)
were included in this study. Table 4 is the basic statistics anal-
ysis of serum protein concentrations for A, B, and C data-
sets. The average egg numbers for A, B, and C datasets were
94.57, 103.91, and 85.1, respectively. There were three data-
sets taken from three batches of birds. The birds in each
batch were raised in different seasons and in different years.
Total egg numbers were recorded individually and daily from
25 wks to 48 wks of age. Sera were collected from chickens at
14 and 24 weeks of age from batches A and B. In batch C,
the sera were not collected at the same time as batch A and B.
Sera for batch C were collected from chickens at 8, 14, and 22
weeks of age. The variables, measured at 8 wks and 14 wks of

age, were the serum protein concentrations of apolipoprotein
A-I, apo VLDL-II and the X protein; the concentration of
vitellogenin was also included at other time stages. Previous
reports showed that these proteins participate in egg for-
mation [12, 18]. Vitellogenin and apo A-I are major com-
ponents of yolk [19, 20]. Apo VLDL-II, a lipoprotein lipase
inhibitor, plays an important role in VLDL transportation
from the liver to the oocyte through the plasma [21]. X
protein, an IGF-I-like protein, is associated with egg produc-
tion [17]. Total egg number per chicken was served as the
validation variable.

Tables 5, 6, and 7 are Pearson’s correlation coefficient for
A, B, and C datasets between all serum proteins, respectively.
These tables show a low correlation between the number of
eggs and all of the serum proteins. There is also a low correla-
tion between each of the serum proteins, except in dataset A
when the chickens were 24 weeks old.

2.3.2. Ethics Statement. Full details of the study were ap-
proved by Animal Technology Institute Taiwan. All animal
work had been conducted according to relevant national
and international guidelines. Since the studied chickens were
housing in private farm (Jin-Tai Livestock Co., LTD) in
Taiwan between 2002 and 2003, the approval ID was not
required during the study time period. The private farm is
located at Yunlin in Southern Taiwan, and they gave approval
for this study.

3. Results

There were three datasets (Table 4) taken from three batches
of birds that were raised in the different seasons and years.
There were 76 and 77 chickens in the A and B datasets,
and the sampling time stages were 14 wks and 24 wks. The
C dataset included data for 60 chickens; the sera were not
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Table 4: A basic statistical analysis for the serum protein concentrations for the A, B, and C dataset.

Dataset Week old
Number
of objects

Number of
missing objects

Apo A-I X protein Apo VLDL-II Vitellogenin

X σ X σ X σ X σ

A
14 71 5 1.726 0.347 0.245 0.203 0.043 0.080 — —

24 76 0 2.710 1.684 0.720 0.470 0.200 0.190 0.813 0.906

B
14 76 1 2.641 0.732 0.594 0.293 0.035 0.049 — —

24 77 0 2.219 1.083 1.292 0.410 0.374 0.300 1.036 0.786

C
8 60 0 2.752 0.894 0.169 0.087 0.026 0.033 — —

14 60 0 2.156 0.311 0.416 0.216 0.024 0.031 — —

22 60 0 2.631 0.854 0.871 0.490 0.316 0.342 0.494 0.482

X : mean; σ : standard deviation.

Table 5: The Pearson’s correlation coefficient of A dataset is between serum protein concentrations apolipoprotein A-I, apo VLDL-II, X
protein and Vitellogenin.

A 14 weeks A 24 weeks

Apo A-I VLDL-II X Apo A-I VLDL-II X vite

A 14 weeks
VLDL-II −0.101

X −0.139 0.216

egg 0.156 −0.154 −0.162

A 24 weeks

VLDL-II −0.481

X −0.551 0.545

vite −0.520 0.732 0.604

egg 0.198 0.195 0.126 0.240

Apo A-I: apolipoprotein A-I; VLDL-II: apo VLDL-II; X: X protein; vite: vitellogenin.

collected at the same time as batches A and B. Sera for batch
C were collected from chickens at 8, 14, and 22 weeks of
age. The variables, measured at 8 wks and 14 wks of age, were
the serum protein concentrations of apolipoprotein A-I, apo
VLDL-II and the X protein; the concentration of vitellogenin
was also included at other time stages. The average egg num-
bers for A, B, and C datasets were 94.57, 103.91, and 85.1,
respectively.

There were two approaches used in this study. The first
approach used the B dataset as a known set to select the low
egg productivity, about cnB = 9 (�77 × 0.1� = 8 and the
eighth egg order and ninth egg order are the same egg num-
ber), of birds in the A dataset. The second approach used
union sets of the A and B datasets to select the low egg pro-
ductivity of birds in the C dataset. Because the sampling time
stages of the A and B datasets were different from that of the
C dataset, we used A and B data at 14 wks to predict the C
data at 8 wks and 14 wks. Because the intersection of sets
A and B has the small predicted variables, there is another
point of view that can be considered for the union of sets A
and B. We also predicted the C data at 22 wks and 24 wks
using 24 wks of data. In each approach, we used continuous
selection methods. Continuous selection over time was
defined as chickens were taken away at this time stage; then
these chickens were not counted in the next time stage.

When we collect three datasets, we try to choose the low
egg productivity chicken and to improve the egg pro-
ductivity. We use the first-order multiple linear regression

model (Table 8) to predict the egg productivity chickens. For
example, if we want the data form set A at 14 wks to predict
the data from set B at 14 weeks, we use the first equation and
the x1, x2, x3 from dataset B to predict the egg umber. The egg
productivity of the two datasets was generated, performed
using the first-order multiple linear regression models, and
the predicted expected variables were chosen by taking the
same number of the PreZone predicted expected variables.

We use the first-order multiple linear regression models
for predicting the low egg productivity in chickens, but this
model cannot be used to improve egg productivity. As shown
in Table 8, all the P-values are higher than 0.05 except for
A dataset at 24 weeks. Therefore, we create a new PreZone
method to predict egg productivity. Table 9 shows the chosen
values for batch A of TRFCCs calculated using the first-order
multiple regression and PreZone method. Egg improvement
as measured by both methods was higher in the mature stage
(24 wks) than in the premature stage (14 wks) by chosen at
continuous time stage. The PreZone could improve egg pro-
ductivity by 2.8% for chickens that are 14 weeks old, and by
5% at 24 weeks old. The average egg numbers for A datasets
were 97.172 and 99.235 at 14 weeks and 24 weeks by choosing
low egg productivity. However, the regression method could
only improve egg productivity by −0.2% and 3.6% at 14
weeks and 24 weeks, respectively. For chickens that are 24
weeks old, 68% of chickens that were chosen produced less
than the average number of eggs using the prediction by
zone method, while 61% of chickens produced less than
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Table 6: The Pearson’s correlation coefficient of B dataset is between serum protein concentrations apolipoprotein A-I, apo VLDL-II, X
protein and Vitellogenin.

B 14 weeks B 24 weeks

Apo A-I VLDL-II X Apo A-I VLDL-II X Vite

B 14 weeks
VLDL-II −0.040

X −0.248 0.207

egg 0.198 0.135 0.04

B 24 weeks

VLDL-II −0.268

X 0.103 0.247

vite 0.242 −0.282 0.088

egg 0.071 0.145 0.053 0.029

Apo A-I: apolipoprotein A-I; VLDL-II: apo VLDL-II; X: X protein; vite: vitellogenin.

Table 7: The Pearson’s correlation coefficient of C dataset is between serum protein concentrations apolipoprotein A-I, apo VLDL-II, X
protein and Vitellogenin.

C 8 weeks C 14 weeks C 22 weeks

Apo A-I VLDL-II X Apo A-I VLDL-II X Apo A-I VLDL-II X Vite

C 8 weeks
VLDL-II 0.231

X 0.089 0.100

egg −0.206 −0.167 −0.011

C 14 weeks
VLDL-II −0.040

X −0.248 0.207

egg 0.198 0.135 0.040

C 22 weeks

VLDL-II −0.268

X 0.103 0.247

vite 0.242 −0.282 0.088

egg 0.071 0.145 0.053 0.029

Apo A-I: apolipoprotein A-I; VLDL-II: apo VLDL-II; X: X protein; vite: vitellogenin.

Table 8: First-order multiple linear regression model.

Dataset
Week
old

Regression equationa P-value

A 14 egg = 87.1 + 6.69x1 − 25.2x2 − 15.1x3 0.195

A 24 egg = 66 + 5.87x1 + 13.4x2 + 5.95x3 + 6.97x4 0.001

B 14 egg = 87.2 + 4.82x1 + 54x2 + 4.98x3 0.293

B 24 egg = 93.4+2.10x1 +13.4x2−0.58x3 +1.5x4 0.603
a
the x1, x2, x3, and x4 are serum protein concentrations. x1 is the apolipo-

protein A-I, x2 is the VLDL-II, x3 is the X protein. X4 is the vitellogenin.

the average number of eggs using the regression method. The
average egg numbers for A datasets were 94.375 and 97.9375
at 14 weeks and 24 weeks by choosing low egg productivity.

Similar results are shown in Table 10. Obviously, the
selection of C datasets by taking the union sets of A and B
data could largely improve egg productivity using the Pre-
Zone on 8 wks and 14 wks of birds. The PreZone could im-
prove egg productivity by 5.6% at 8 weeks old and by 8.6%
at 14 weeks old. However, the regression method could only
improve egg productivity by −3.5% and −3.4% at 8 weeks
and 14 weeks, respectively. Selection of data C using union
sets of A and B at three continuous time stages could improve

egg productivity by 9.5%. Because the intersection of sets A
and B has the small predicted variables, there is another point
of view that can be considered for the union of sets A and
B. The average egg numbers for C datasets were 89.9, 92.4,
and 93.2 at 8 weeks, 14 weeks, and 22 weeks by choosing low
egg productivity. In contrast, the selection of chickens using
the regression method shows negative improvement of egg
productivity during these stages. For chickens that are 22
weeks old, 68% of chosen chickens are producing less than
the average number of eggs by the prediction by zone
method. Using the regression method to improve egg pro-
ductivity by −1.6%, 57% of chosen chickens, which are 22
weeks old, produced less than the average number of eggs.
The average egg numbers for C datasets were 82.1, 82.2, and
83.7 at 8 weeks, 14 weeks and 22 weeks by choosing low
egg productivity. These results imply that the accuracy of the
selection of low egg productivity using the PreZone method
is higher than the regression method used in the premature
stage of birds.

4. Discussion

In the present study, we used a PreZone to improve the egg
production in TRFCCs. Four serum proteins, vitellogenin,
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Table 9: Selection of low egg productivity in batch A of birds by regression and PreZone method.

Weeks old

Regression PreZone

Average
egg no.

No. of selected
birds

Number of
selected birds

under average egg
no. (percentage)

Egg
improvementb

Average
egg no.

No. of selected
birds

No. of selected
birds under

average egg no.
(percentage)

Egg
improvement

Approacha

14 94.375 12 3 (3/12 = 25%) −0.2% 97.172 12 9 (9/12 = 75%) 2.8%
24 97.9375 28 17 (17/28 = 61%) 3.6% 99.235 25 17 (17/25 = 68%) 5%

a
Selection approach at continuous two-time stages.

bAverage egg number after birds selected divided by original average egg number (94.57). For example, (94.375 − 94.57)/94.57 = −0.2% and (97.172 −
94.57)/94.57 = 2.8%.

Table 10: Selection of low egg productivity in batch C of birds using union set of batches A and B.

Weeks old

Regression PreZone

Average
egg no.

No. of selected
birds

No. of selected
birds under

average egg no.

Egg
improvementb

Average
egg no.

No. of selected
birds

No. of selected
birds under

average egg no.

Egg
improvement

Union set
Approacha

8 82.1 17 9 (9/17 = 53%) −3.5% 89.9 19 15 (15/19 = 79%) 5.6%
14 82.2 29 17 (17/29 = 59%) −3.4% 92.4 31 22 (22/31 = 71%) 8.6%
22 83.7 37 21 (21/37 = 57%) −1.6% 93.2 37 25 (25/37 = 68%) 9.5%

a
Selection approach at continuous three time stages.

bAverage egg number after birds selected divided by original average egg number (85.1). For example, (82.1− 85.1)/85.1 = −3.5% and (89.9 − 85.1)/85.1 =
5.6%.

apolipoprotein A-I, X protein (an IGF-I-like protein), and
apo VLDL-II, were used as chosen parameters for egg pro-
duction in three batches of TRFCCs. The PreZone empha-
sises the individual variance among a population. Even
though the zones associated with the low egg productivity
of birds appeared irregularly in the two batches of birds, we
could still find regularity of these zones in both populations
based on score and rank transformations. Interestingly, at 8
and 14 wks of age, these serum proteins participate in body
growth and development instead of egg formation. More-
over, no correlation was found between the levels of those
serum proteins and egg numbers (Table 5 to Table 7). The
regular tendency of those zones associated with low egg
productivity in three batches of birds (8 and 14 wks) suggests
that the individual variance might be programmed earlier,
and a hen’s potential for egg production seems to correspond
to the levels of serum proteins. Although the expression of
these proteins is regulated by upstream gene elements, gene
polymorphisms that lead to differences in egg production
and its association with the levels of serum proteins remain
unclear.

The egg production rate has improved from 5% and 9.5%
after two continuous (Table 9) and three (Table 10) stages
(union set). Interestingly, the rate of egg production was also
increased 5.6% or 8.6% or 9.5% by early-stage (8 to 22 wks)
chosen. At this stage we only use three datasets, and the two
of these datasets are used to predict the third dataset. If more
datasets could be collected and combined then the accuracy
could be improved. In Taiwan, TRFCCs enter the market

around 14 wks old. The economic benefits will be evaluated
in the future by zone method at those time stages.

In conclusion, in this paper we present the PreZone
algorithm. The purpose of PreZone is to select chickens that
produce low egg yield, based on serum protein levels as selec-
tion indices. Furthermore, if response and predictors have a
low correlation, then PreZone provides an alternative pre-
diction methodology.
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