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SUMMARY
Early detection of ovarian cancer is crucial for successful treatment, yet most cases are diagnosed at
advanced stages due to a lack of effective screening. Recent advancements in RNA technology from plate-
lets aid in early tumor detection. Here, we proposed our two-step method for assessing the existence of pel-
vic mass either located at ovaries or uterus with more than 99% specificity by utilizing exon-exon junction
features with a sampling invariant normalization technique; then next our model finds the malignancy of de-
tected mass with more than 99% negative predictive value for ovarian cancer to practically assist clinicians’
further investigation via combined features of exon-exon junctions, and hematology parameters. We
diverged from traditional methods by employing intron-spanning reads (ISR) counts rather than gene expres-
sion levels to use splice junctions as features in our models. If integratedwith current screeningmethods, our
algorithm holds promise for identifying ovarian or endometrial cancer in its early stages.
INTRODUCTION

Early detection of localized ovarian cancer holds the potential to

ensure successful treatment for over 90% of affected women.1

However, once the cancer metastasizes, the 5-year survival

rate diminishes by less than 30%.2 Unfortunately, due to the

absence of disease-specific symptoms and effective screening

tools, most cases of ovarian cancer are diagnosed at advanced

stages.

To deal with this issue, the UK collaborative trial of ovarian

cancer screening (UKCTOCS) was initiated to investigate

whether population screening could reducemortality rates asso-

ciated with ovarian cancer.3 Despite observing a decrease in the

incidence of stage III or IV disease in the multimodal screening

(MMS) group, comprised of longitudinal CA-125 and second-

line transvaginal ultrasound scans, this reduction did not trans-

late into a reduction in ovarian and tubal cancer deaths. Thus,

they concluded that population-level general MMS screening

for ovarian cancer cannot be recommended, necessitating the
iScience 28, 112280,
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development of a screening strategy capable of detecting the

disease earlier and in a larger proportion of women. Possible

approach to high-risk women’s ovarian cancer consists of

screening intervals of 3–4 months and risk-reducing surgery, re-

sulting in a significant reduction in the proportion of women diag-

nosed with advanced disease.4,5 However, the extensive sal-

pingo-oophorectomy could induce potential side effects

associated with surgical removal, such as osteoporosis, cardio-

vascular disease, infection, or bleeding.6,7 Therefore, we need to

refine an early ovarian cancer detection method that considers

the mechanisms behind the onset and advancement of ovarian

cancer. This refinement is crucial for accurately distinguishing

healthy individuals and effectively avoiding unnecessary exten-

sive surgical procedures.

While inflammation and aging are speculated to play major

roles in the initial stages of ovarian cancer development, gaps

persist in understanding these mechanisms.8 Chronic inflamma-

tion has long been associated with the development of various

types of cancer, including ovarian cancer.9 Inflammatory
June 20, 2025 ª 2025 The Authors. Published by Elsevier Inc. 1
NC license (http://creativecommons.org/licenses/by-nc/4.0/).
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Figure 1. The flowchart of prediction model development
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Table 2. Read composition of RNA-seq data

Group

Healthy

control

(n = 18) Benign (n = 22) Cancer (n = 46)

exonic/total 0.73 (0.71, 0.75) 0.74 (0.72, 0.75) 0.75 (0.73, 0.76)

ISR/total 0.31 (0.3, 0.32) 0.33 (0.31, 0.34) 0.33 (0.32, 0.34)

intronic/total 0.04 (0.04, 0.06) 0.04 (0.04, 0.05) 0.04 (0.04, 0.05)

intergenic/total 0.02 (0.02, 0.03) 0.02 (0.02, 0.02) 0.02 (0.02, 0.02)

mapped/total 0.91 (0.88, 0.92) 0.91 (0.9, 0.92) 0.91 (0.9, 0.91)

unmapped/total 0.09 (0.08, 0.12) 0.09 (0.08, 0.1) 0.09 (0.09, 0.1)

Exonic: counts of exonic reads, ISR: counts of intron spanning reads, in-

tronic: counts of intronic reads, intergenic: count of intergenic reads,

mapped: count of mapped reads, unmapped: counts of unmapped read.

p value from Wilcoxon test between Healthy control and Cancer is less

than 0.05 after Bonferroni correction. Values represent the median, with

the interquartile range (q25, q75) shown in brackets.
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processes can create a microenvironment conducive to tumor

initiation and progression.10 Ovulation, which occurs regularly

during a woman’s reproductive years, involves repeated trauma

to the ovarian epithelium.11 This process can lead to inflamma-

tion and damage to the ovarian surface epithelium, creating op-

portunities for the initiation of cancerous changes. Thus, for

ovarian cancer, chronic inflammation or repeated ovulation

within the ovarian tissue may promote the accumulation of ge-

netic mutations and the growth of abnormal cells.

Aging often coincides with hormonal changes, particularly a

decline in estrogen levels and alterations in the balance of

other hormones.12 These hormonal changes can impact the

ovarian microenvironment, potentially contributing to inflam-

mation and the development of ovarian cancer.8,13 Also,

chronic inflammation over time in aging can induce DNA dam-

age and impair DNA repair mechanisms within ovarian cells.

Accumulated DNA damage may lead to the accumulation of

mutations that promote malignant transformation. Also, aging

is associated with changes in immune function, including al-

terations in the activity of immune cells and cytokine produc-

tion.14 Dysregulation of the immune system may contribute to

chronic inflammation and impaired immune surveillance, al-

lowing cancerous cells to evade detection and proliferate

unchecked. Overall, the interplay between inflammation and

aging creates a microenvironment within the ovaries that is

conducive to the initiation and progression of ovarian can-

cer10,15; understanding these mechanisms is crucial for devel-

oping effective strategies for early detection, prevention, and

treatment of ovarian cancer. Consequently, there is a pressing

need to appreciate the initial pathophysiological changes

attributed to ‘‘inflamm-aging’’, which cannot be reverted, initi-

ating the disease.8

Platelets emerge as promising biomarkers for assessing ‘‘in-

flamm-aging’’ within epithelial ovarian tissue, given their involve-

ment in the inflammatory cascade and their ability to reflect sys-

temic inflammation.16,17 Furthermore, platelets can interact

directly or indirectly with ovarian tissue via the bloodstream,

thus potentially reflecting local inflammatory processes.
iScience 28, 112280, June 20, 2025 3
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Inflamm-aging, characterized by persistent low-grade inflamma-

tion accompanying aging,18 is implicated in the pathogenesis of

epithelial ovarian cancer, with platelets actively participating in

the inflammatory response by releasing pro-inflammatory

molecules.

Notable alterations in platelet count (PLT), structure, and levels

of inflammatory markers have been observed in patients with

epithelial ovarian cancer and other malignancies, suggesting

their utility as diagnostic, prognostic, and monitoring tools.19–21

Recent advancements in RNA technology from platelets aid in

early tumor detection.22 It is known that RNA from platelets

can accurately detect ovarian cancer.23 However, achieving ac-

curate detection with high specificity is vital for population

screening of diseases with low prevalence, such as ovarian can-

cer. Thus, here we proposed our two-step method for assessing

the existence of gynecological tumors either located at ovaries

or uterus with more than 99% specificity by utilizing exon-exon

junction features with a sampling invariant normalization tech-

nique. Then next our model finds the malignancy of detected tu-

mor with more than 99% negative predictive value to practically

assist clinicians’ further investigation via combined features of

exon-exon junctions and hematology parameters.

RESULTS

We devised a two-stage approach to first anticipate the pres-

ence of pelvic masses and subsequently assess their malig-

nancy using platelet transcriptome and hematology analysis.

Although our primary objective was early ovarian cancer detec-

tion, we included uterinemasses in our study. In clinical practice,

once a pelvic mass is identified, further medical evaluation can

easily differentiate between ovarian and uterine origins. This

approach prevents overfitting in our machine learning model,

as training solely on ovarian tumors could lead to limited gener-

alizability across different types of gynecological masses.

For RNA sequencing analysis, age and cancer stage were

matched when datasets were divided into train and test datasets

3 to 2 (Figure S1). The training and validation datasets included

open-source data (n = 365 and n = 242, respectively, Figure 1),

while our clinical data were utilized for training (n = 47) and

testing (n = 39) for Model 1 and training (n = 46) and testing

(n = 37) forModel 2. The clinical characteristics of the gynecolog-

ical (ovarian or endometrial) cancer cases, benign tumor cases

and healthy controls are presented in Table 1. Despite the age
Figure 2. Analysis of read composition and RNA-seq data

Read composition of RNA sequencing data from Healthy control (HC), benign gyn

are presented as boxplots, where the box represents the interquartile range (IQR)

the box indicates the median. The whiskers extend to data points within 1.5 tim

circular marker (d) represents an individual data point, providing a clear visualizatio

test. p values from Wilcoxon tests: * %0.05, ** %0.01, *** %0.001, ****% 0.0001.

(A) The exonic read counts divided by total number of reads.

(B) The intron spanning read counts divided by total number of reads.

(C) The intronic read counts divided by total number of reads.

(D) The intergenic read counts divided by total number of reads.

(E) The mapped read counts divided by total number of reads.

(F) The unmapped read counts divided by total number of reads.

(G) The expression levels (FPKM) of CD63 gene.

(H) The expression levels (FPKM) of SELP gene.
difference among the three groups, it is important to note that

the risk of gynecological cancer typically rises post-menopause.

Also, often in cancer cohort studies, the cancer patient group’s

age is generally higher than that of the healthy control group.

Therefore, considering age-related disease prevalence, we do

not believe that the performance of our model is influenced

significantly by the differences in age across the groups. While

CA-125 levels appeared to be generally higher in the cancer

group, it’s worth noting that these measurements were partially

obtained from the benign group and did not demonstrate statis-

tical significance.

Following preprocessing of Fastq files obtained from next-

generation sequencing (NGS) analysis, the aligned reads were

annotated utilizing the GRCh38 genomic reference. Upon

comparing the composition of annotated reads, a notable alter-

ation was observed solely in the composition of intron-spanning

reads (ISR) within the cancer group not in that of exonic read, in-

tronic read, intergenic read, mapped read, or unmapped reads

(Tables 2 and S5 and Figure 2). The benign group also has an

altered proportion of ISR levels compared to the control group,

but a smaller sample sizemight be not enough to show statistical

significance. An intron-spanning read is an RNA read that origi-

nates from a single region of a transcript, but it maps to two lo-

cations on the genome indicating the splice junction of two

exons in the transcript. Given that platelets undergo alternative

splicing in response to external disease-related signals,24–26 it

was anticipated that the alteration in ISR levels relative to total

reads would be evident in the cancer group.

The expression levels of PTPRC, a leukocyte marker, re-

mained unchanged in the tumor group, indicating that potential

leukocyte contamination did not confound the observed differ-

ences in RNA profiles between the groups (Table S6). Addition-

ally, expression levels of PF4, SELP, and CD63, which serve as

markers of platelet activation, were assessed. Specifically, the

FPKM (fragment per kilobase of transcript) level of SELP was

significantly elevated in the cancer group compared to both

the healthy control and benign groups. Overall, there was a

discernible increase in CD63 expression levels observed from

the healthy control to the benign and cancer groups, with the

FPKM or TPM (transcripts per million) levels of CD63 in the can-

cer group being statistically higher than those in the healthy con-

trol group, as indicated by a p value of less than 0.05.

Platelet extraction from whole blood samples in EDTA-coated

bottles was conducted, followed by hematology analysis of both
ecological tumor (Benign), and cancer (Gynecological cancer) are shown. Data

from the first quartile (Q1) to the third quartile (Q3), and the horizontal line within

es the IQR, while outliers are shown as diamond-shaped markers (>). Each

n of data distribution. Statistical significancewas assessed using theWilcoxon

iScience 28, 112280, June 20, 2025 5



Table 3. Hematology analysis results of whole blood samples

Group

Healthy control Benign Cancer

WBCa,c (103/uL) 5.9 (4.83, 6.7) n = 42 4.9 (3.7, 6.3) n = 57 5.55 (4.5, 7.95) n = 78

RBCb,c (106/mL) 4.34 (4.18, 4.60) n = 42 3.94 (3.73, 4.31) n = 58 3.86 (3.54, 4.13) n = 78

PLT (103/mL) 249.5 (199, 273.25) n = 42 236.5 (193, 288) n = 58 255 (194.25, 312.25) n = 78

HGBb,c (g/dL) 13 (12.63, 13.67) n = 42 11.7 (10.9, 12.6) n = 58 11.85 (10.5, 12.5) n = 78

HCTb,c (%) 36.55 (35.9, 38.8) n = 42 33.65 (31.55, 35.78) n = 58 32.7 (29.7, 34.7) n = 78

MCV (fL) 85 (83.73, 86.95) n = 42 84.4 (82.2, 87.68) n = 58 85.2 (82.08, 87.18) n = 78

MCH (pg) 30.2 (29.23, 30.75) n = 42 30.05 (28.7, 31.13) n = 58 30.65 (28.95, 31.38) n = 78

MCHC (g/dL) 35.2 (34.7, 35.5) n = 42 35.2 (34.55, 36) n = 58 35.75 (34.73, 36.48) n = 78

LYM%a,b 33.4 (30.1, 40.1) n = 41 31.7 (27.9, 38.4) n = 57 21.75 (13.23, 28.7) n = 78

MXD%a 7 (6.2, 8.3) n = 41 7.3 (5.53, 10.35) n = 54 6.1 (4, 8.4) n = 77

NEUT%a,b 60 (53.2, 64.1) n = 41 61.55 (50.8, 66.05) n = 54 72.2 (63.7, 81.7) n = 77

LYM#a,b,c (103/uL) 1.9 (1.7, 2.2) n = 41 1.5 (1.2, 2.1) n = 57 1.2 (0.9, 1.78) n = 78

MXD# (103/mL) 0.4 (0.3, 0.5) n = 41 0.4 (0.3, 0.5) n = 54 0.3 (0.3, 0.5) n = 77

NEUT#a (103/uL) 3.1 (2.6, 4.3) n = 41 2.7 (1.9, 4.07) n = 54 3.9 (2.6, 5.9) n = 77

RDW-SD (fL) 41.4 (40.2, 43.4) n = 41 41.5 (40, 43.6) n = 57 40.55 (38.82, 42.6) n = 78

RDW-CV (%) 12.6 (12.1, 13.1) n = 41 12.75 (12.23, 13.48) n = 58 12.4 (11.8, 12.9) n = 78

PDWc (fL) 11.2 (10.4, 12.4) n = 41 12.2 (11.3, 13.3) n = 57 11.5 (10.5, 13) n = 77

MPVa,c (fL) 9.45 (9, 10.1) n = 42 10.2 (9.6, 10.6) n = 57 9.6 (9.1, 10.3) n = 77

P-LCRa,c (%) 21.6 (17, 24.9) n = 41 26.6 (21.4, 29.2) n = 57 22.2 (17.8, 27) n = 77

PCT (%) 0.24 (0.2, 0.26) n = 41 0.23 (0.2, 0.29) n = 57 0.25 (0.19, 0.32) n = 77

ResearchWa,c (103/mL) 5.89 (4.80, 6.74) n = 41 4.62 (3.64, 6.29) n = 57 5.55 (4.46, 7.95) n = 78

ResearchSa,b,c (103/mL) 1.91 (1.70, 2.21) n = 41 1.52 (1.19, 2.12) n = 57 1.21 (0.92, 1.74) n = 78

ResearchM (103/mL) 0.37 (0.33, 0.46) n = 41 0.38 (0.31, 0.49) n = 54 0.35 (0.25, 0.51) n = 77

ResearchLa,c (103/mL) 3.4 (2.65, 4.33) n = 41 2.68 (1.86, 3.83) n = 54 3.92 (2.63, 5.91) n = 77

The table displays each hematological parameter’s median, 25%, and 75% quantiles. WBC: white blood cells, RBC: red blood cells, PLT: platelets,

HGB: hemoglobin, HCT: the percentage of red blood cells in blood, MCV: Mean corpuscular volume, the average size of red blood cells, MCH: mean

corpuscular hemoglobin, the average amount of hemoglobin within red blood cells, MCHC: mean corpuscular hemoglobin concentration, the average

concentration of hemoglobin within red blood cells, LYM%: relative amounts of lymphocytes in WBC, MXD%: relative amounts of monocytes, eosin-

ophils, and basophils in WBC. NEUT%: relative amounts of neutrophils in WBC, LYM: lymphocytes, MXD: monocytes, eosinophils, and basophils,

NEUT: neutrophils, RDW-SD: the width of red cells size distribution histogram, RDW-CV: coefficient of variation of mean corpuscular volume,

PDW: platelet distribution width, MPV: mean platelet volume, P-LCR: platelet larger cell ratio, the percentage of platelets that exceed the normal value

of platelet volume of 12 fL in the total platelet count, PCT: plateletcrit, the volume occupied by platelets in the blood, ResearchW: number of cells

between LD (lower detection line) and UD (upper detection line), ResearchS: number of cells between LD (lower detection line) and T1 (trough 1

line), ResearchM: number of cells between T1 (trough 1 line) and T2 (trough 2 line), ResearchS: number of cells between T2 (trough 2 line) andUD (upper

detection line).

Values represent the median, with the interquartile range (q25, q75) shown in brackets.
ap values from Wilcoxon test between Benign and Cancer are less than 0.05 after Bonferroni correction.
bp values from Wilcoxon test between Healthy control and Cancer are less than 0.05 after Bonferroni correction.
cp values from Wilcoxon test between Healthy control and Benign are less than 0.05 after Bonferroni correction.
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whole blood and platelet-rich plasma. Comparative analysis

across three groups—healthy controls, benign, and cancer

groups—revealed statistically significant variances in multiple

hematological parameters. Notably, the healthy control group

exhibited distinct disparities from the benign and cancer groups.

Tables 3 and 4 (Figure 3) encapsulate the pivotal findings.

Due to the exclusive focus on hematology analysis for certain

samples, the sample size for this analysis exceeds that of RNA

sequencing. A reduction in white blood cell (WBC) and red blood

cell (RBC) counts was observed in the cancer group. Themedian

WBC count for the healthy control group was 5.93 103/mL, con-

trastingwith 4.93 103/mL for the benign group and 5.553 103/mL
6 iScience 28, 112280, June 20, 2025
for the cancer group. These discrepancies suggest potential al-

terations in immune status. Similarly, the median RBC count for

the healthy control groupwas 4.343 106/mL, whereas the benign

and cancer groups displayed counts of 3.94 3 106/mL and

3.863 106/mL, respectively, indicating disruptions in erythropoi-

esis within the pathological groups.

Furthermore, reductions in hemoglobin (HGB) and hematocrit

levels were observed in both the benign and cancer groups,

while mean corpuscular volume , mean corpuscular hemoglobin

(MCH), and MCH concentration (MCHC) remained unchanged.

The distribution of red blood cells remained unaffected by path-

ological conditions, although there were notable shifts in the



Table 4. Hematology analysis results of platelet-rich plasma samples

Group

Healthy control Benign Cancer

PLT (103/mL) 407 (356.25, 476.5) n = 42 360 (242, 472.25) n = 58 373 (282, 456) n = 77

PDWa (fL) 10.8 (10.1, 11.7) n = 41 11.35 (10.6, 12.17) n = 58 10.6 (9.9, 11.6) n = 77

MPVa,b (fL) 9 (8.6, 9.58) n = 42 9.45 (8.9, 9.9) n = 58 8.9 (8.3, 9.4) n = 77

P-LCRa,b (%) 17.7 (14.9, 21.7) n = 41 20.85 (16.65, 24.63) n = 58 17.2 (13.8, 21.2) n = 77

PCTc (%) 0.37 (0.33, 0.44) n = 41 0.36 (0.25, 0.44) n = 58 0.33 (0.25, 0.42) n = 77

PLT: platelets, PDW: platelet distribution width, MPV: mean platelet volume, P-LCR: platelet larger cell ratio, the percentage of platelets that exceed

the normal value of platelet volume of 12 fL in the total platelet count, PCT: plateletcrit, the volume occupied by platelets in the blood, ResearchW:

number of cells between LD (lower detection line) and UD (upper detection line).

Values represent the median, with the interquartile range (q25, q75) shown in brackets.
ap values from Wilcoxon test between Benign and Cancer are less than 0.05 after Bonferroni correction.
bp values from Wilcoxon test between Healthy control and Benign are less than 0.05 after Bonferroni correction.
cp values from Wilcoxon test between Healthy control and Cancer are less than 0.05 after Bonferroni correction.
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proportions of various WBC types. Specifically, lymphocyte per-

centage (LYM%) andmixed cell percentage (MXD%) decreased,

while neutrophil percentage (NEUT%) increased significantly.

The decline in lymphocyte count was observed progressively

from the healthy control to the benign and cancer groups.

It is noteworthy that the difference in neutrophil count between

the cancer and benign groups was statistically significant,

whereas such distinctions were not evident in the other groups.

Parameters such as ResearchW, ResearchS, ResearchM, and

ResearchL, provided by Sysmex and indicative ofWBCconstitu-

tion, also exhibited significant disparities between the benign

and cancer groups. The parameters ResearchW, ResearchS,

ResearchM, and ResearchL, provided by the Sysmex hematolo-

gy analyzer, are indicative of different WBC subpopulations.

Specifically, ResearchW reflects the overall proportion of

WBCs, ResearchS corresponds to small-sizedWBC subpopula-

tionsmainly lymphocytes, ResearchM represents medium-sized

WBC subpopulations mainly mixed cells, and ResearchL relates

to large-sized WBC subpopulations, mainly neutrophils. These

parameters are proprietary outputs from the Sysmex analyzer

and are utilized to provide a detailed assessment of WBC distri-

bution and characteristics. In platelet-rich plasma analysis,

although there were slight variations, no significant differences

were observed in the PLT between the groups. Platelet distribu-

tion width (PDW), which reflects the variation in platelet size,

mean platelet volume , indicating the average size of platelets,

platelet-large cell ratio (P-LCR), a measure of the proportion of

large platelets, and plateletcrit (PCT), which represents the vol-

ume fraction of platelets in the blood, were slightly lower in the

cancer group compared to the benign group.

We also measured the blood markers utilized for diagnosing

cancer (Table 5). In advanced-stage patients, elevated CA-125

levels were observed; however, no significant disparity in CA-

125 levels was noted between benign and cancerous cases.

In our analysis, the mean CA-125 level was 281.496 (SD =

590.096) in the cancer group (n = 67) and 39.533 (SD =

37.168) in the benign group (n = 27). Although the mean CA-

125 level was higher in the cancer group, the substantial vari-

ability in CA-125 levels, particularly in the cancer group,

contributed to the lack of significant difference between the
two groups. Conversely, hematological parameters such as

systemic immune-inflammation index (SII), prognostic nutri-

tional index (PNI), and PLT to LYM ratio exhibited notable

variances between benign and cancer groups. Consequently,

we further devised a model utilizing these hematological pa-

rameters to distinguish between benign and cancerous condi-

tions as flowing paragraphs.

We performed Pearson’s correlation analysis to identify

potential associations or confounders among the molecular

features described in the manuscript and the hematological

measurements. The results of this analysis are presented as a

heatmap (Figure S2), which highlights correlations across a

range of features. Notably, several molecular features demon-

strated associations with hematological parameters, indicating

potential relationships between these variables. For example,

we observed relatively high levels of association between whole

blood WBC and whole blood NEUT#, as well as between whole

blood LYM# and PNI, suggesting potential relevance of these

correlations in the observed data patterns.

Additionally, we addressed potential age-related biases by

randomly sampling half of the individuals in their 20s from the

HC group and applying propensity score matching based on

age to the benign and cancer groups. Statistical analyses

confirmed no significant age differences between the matched

groups (HC vs. Benign, p = 0.64; HC vs. Cancer, p = 0.13),

ensuring that age is not a confounding factor in our analysis.

The analysis results from age matched samples are provided

in Tables S7–S9.

Given that ISR read counts in platelet transcriptome effectively

capture the pathophysiological traits in cancer patients, we

devised a machine learning model utilizing ISR counts from

platelet RNA sequencing data to detect gynecological tumors.

Prior to constructing the tumor prediction model, we undertook

an investigation into normalization methods to identify the most

suitable approach for platelet transcriptome data. Owing to the

characteristics of platelet transcriptome and the scarcity of alter-

native splicing, numerous undetectable variants are recorded as

0, resulting in an extremely skewed dataset with a zero-inflated

distribution. Methods such as rank-based methodology or vari-

ance stabilizing transformation aim to mitigate the variance of
iScience 28, 112280, June 20, 2025 7
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zero-inflated data initially processed with log2CPM, but theymay

obscure the effects of markers. In contrast, the binning FMH

methodology preserves the quantitative attributes of the data

preprocessed with log2CPM, facilitating the identification of

marker effects (Figure S3A). Furthermore, to prevent overfitting,

we adopted an analysis approach that restricts feature selection

to a minimal set at the statistical level (Figure S3B).

Thus, we selected 198 features using the binning FMH and

developed the bootstrapped ensemble Model 1 to differentiate

between gynecological tumor and non-tumor groups. The area

under the curve (AUC) of our tumor prediction model for the

training, validation, and test datasets were 0.965 (95% CI:

0.937, 0.981), 0.930 (95% CI: 0.886, 0.958), and 0.978 (95%

CI: 0.874, 0.997), respectively (Figures 4 and S4 and

Table S10). Particularly, noteworthy is the pre-defined cut-off

value for the test dataset based on the validation set, yielding

an accuracy, sensitivity, specificity, and balanced accuracy

(the average of sensitivity and specificity) of 0.974, 0.967, 1,

and 0.983, respectively. Additionally, we generated RNA

sequencingdata separately across 9distinct batches (FigureS1),

rather than as a single dataset. The high specificity achieved us-

ing the pre-defined cut-off value is attributed to a discrimination

algorithmwe developed, which leverages bootstrapping and en-

sembles public data combined with noise to mitigate overfitting

of self-produced data and enhance model performance.

Notably, without incorporating public data, the error rate esca-

lates by 5-fold (see Figure S4).

Following the development of Model 1 for predicting gyneco-

logical tumors, we proceeded to devise Model 2 for predicting

the malignancy of tumors identified by Model 1. In this phase,

our primary focus was on enhancing the sensitivity of Model

2 to minimize the likelihood of overlooking cancer patients in

our malignancy assessments. To achieve this objective, we

expanded the scope of our model by incorporating 31 hemato-

logical parameters alongside the 9 combinatorial features
Figure 3. Hematology analysis results and CA-125 level

Hematological parameters and CA-125 levels in Healthy control (HC), Benign g

shown. p values from Wilcoxon tests: * %0.05, ** %0.01, *** %0.001, **** %0.00

(A) The red blood cell counts in whole blood (106/uL).

(B) The hemoglobin levels in whole blood (g/dL).

(C) The hematocrits in whole blood (%).

(D) The white blood cell count in whole blood (103/uL).

(E) The lymphocyte counts in whole blood (103/uL).

(F) The lymphocyte percentage among white blood cells in whole blood (%).

(G) The neutrophil counts in whole blood (103/uL).

(H) The mixed cell counts in whole blood (103/uL).

(I) The neutrophil percentage among white blood cells in whole blood (%).

(J) The mixed cell percentage among white blood cells in whole blood (%).

(K) The ResearchW in whole blood (103/uL).

(L) The ResearchS in whole blood (103/uL).

(M) The ResearchM in whole blood (103/uL).

(N) The ResearchW in PRP (103/uL).

(O) The platelet to lymphocyte ratio in whole blood.

(P) The CA-125 levels in whole blood.

(Q) The PNI levels in whole blood.

(R) The SII levels in whole blood. Data are presented as boxplots following the

terquartile range (IQR) from the first quartile (Q1) to the third quartile (Q3), with th

1.5 times the IQR, while outliers are shown as diamond-shaped markers (>). E

visualization of data distribution.
(12 junctions) in ISR derived from RNA-sequencing data. The

AUC for our ovarian cancer prediction model in the training and

test datasets are 0.987 (95% CI: 0.845, 0.999) and 0.925 (95%

CI: 0.793, 0.976), respectively (Figure 4). Notably, for Model 2,

we achieved an accuracy, sensitivity, specificity, and balanced

accuracy of 0.861 (95% CI: 0.713, 0.939), 0.909 (95% CI:

0.722, 0.975), 0.786 (95% CI: 0.524, 0.924), and 0.847 (95% CI:

0.713, 0.939), respectively (Table S11). Notably, only for ovarian

cancer sensitivity, Model 2 achieved Sensitivity 1.0.

We evaluated the predictive performance of CA-125, both

independently and in combination with our derivedmodel (Model

2). Since the HC group lacks CA-125 values, both CA-125 and

Model 2were trained using onlymalignant and non-malignant tu-

mors to ensure an accurate comparison of the performance. The

CA-125 performance was assessed using logistic regression

with a 5-fold cross-validation approach. For CA-125, the AUC

in the training set was 0.581 (95% CI: 0.374–0.763), and in the

test set, the AUC was 0.583 (95% CI: 0.401–0.745). This sug-

gests that while CA-125 has moderate discriminative ability on

its own, the performance is not optimal. Combining Model 2

with CA-125, trained on the same dataset, and showed signifi-

cantly better performance. The AUC in the training set was

1.000 (95% CI: 0.845–1.000), and in the test set, it was 0.917

(95% CI: 0.758–0.975). To explore the potential benefit of

combining CA-125 with Model 2, we employed a soft voting

method, giving equal weight to the predicted probabilities of

both models. This combined approach yielded improved perfor-

mance metrics, indicating that the combination of CA-125 and

Model 2 offers a more robust predictive tool compared to CA-

125 alone. These findings underscore the importance of incorpo-

ratingModel 2 in clinical settings to enhance the predictive accu-

racy when used alongside CA-125.

To appreciate the characteristics of selected 198 features

(95 genes) in the Model1, we performed various functional anal-

ysis, including differential network analysis, ingenuity pathway
ynecological tumor (Benign), and Cancer (Gynecological cancer) groups are

01.

same conventions as described in Figure 2, where the box represents the in-

e central line indicating the median. The whiskers extend to data points within

ach circular marker (d) represents an individual data point, providing a clear
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Table 5. Cancer-related blood makers

Group

Healthy control Benign Cancer

CA-125 (units/mL) 22 (15, 54.25) n = 27 26 (13.1, 201.8) n = 67

SIIa,b 442.75 (300.88, 530.77) n = 41 424.08 (292.87, 597.52) n = 54 816 (521.33, 1517.08) n = 77

PNIa 11.75 (10.2, 13.33) n = 48 10.2 (8.7, 12.25) n = 75

PLT to LYM ratioa,b,c 136.47 (97.27,150.53) n = 41 155 (107.41, 200.91) n = 57 215.9 (152.4, 292.38) n = 78

PDW to PLT ratio 0.05 (0.039, 0.056) n = 41 0.05 (0.04, 0.07) n = 57 0.04 (0.04, 0.06) n = 77

PLT to Albumin ratio 53.72 (43.81, 63.41) n = 49 58.81 (47.13, 70.1) n = 75

RDW to PLT ratio 0.17 (0.15, 0.21) n = 41 0.18 (0.14, 0.22) n = 57 0.16 (0.13, 0.21) n = 78

MPV to PLT ratio 0.039 (0.033, 0.048) n = 42 0.04 (0.03, 0.05) n = 57 0.04 (0.03, 0.05) n = 77

Systemic immune-inflammation index (SII) is calculated by (N3P)/L (N, P and L represent neutrophil counts, platelet counts and lymphocyte counts,

respectively, 103/mL). Prognostic nutritional index (PNI) is calculated by 10 3 serum albumin (g/dL) + 0.005 3 total lymphocyte count (per uL).

Values represent the median, with the interquartile range [q25, q75] shown in brackets.
ap values from Wilcoxon test between Benign and Cancer are less than 0.05 after Bonferroni correction.
bp values from Wilcoxon test between Healthy control and Cancer are less than 0.05 after Bonferroni correction.
cp values from Wilcoxon test between Healthy control and Benign are less than 0.05 after Bonferroni correction.
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analysis (IPA) analysis, and gene regulatory network (GRN) anal-

ysis. IPA was employed to ascertain the canonical pathways

linked with 198 junction markers (comprising 95 genes) between

the cancer and noncancer cohorts (Figure 5). The determination

of canonical pathways was based on their respective p values.

Among the pathways associated with the 198 junction markers

(involving 95 genes) within the IPA reference dataset, 9 datasets,

which are mainly related to transcription and translation, were

found to be downregulated while 6 datasets, which are mainly

related to immune response, were upregulated (Figure S5).

We also conducted GRN analysis to elucidate potential

signaling mechanisms involved in gynecological cancer. Here,

we constructed the GRN network using 95 genes from our 198

junction markers and retained the top 100 edges from cancer

group. In order to concentrate on the mechanisms of oncogen-

esis, we separated the sample into cancer and non-cancer

groups. In the cancer group, UBQLN1 and E2F1 emerged as a

significant hub gene and a transcription factor, respectively,

within the GRN networks (Figure S6).

DISCUSSION

Here, we described a two-step method that will practically aid

physicians in their subsequent medical follow-up after using

our algorithm. Although previous diagnosis guidelines for ovarian

cancer could not exclusively find patients with ovarian cancer or

tumors in their reproductive organs, our model uses a combina-

tion of exon-exon junction, transcriptome totality, and hemato-

logical data to determine the malignancy of the identified tumor

with a negative predictive value of greater than 99% for ovarian

cancer. Because usually these two types of cancers are easily

differentiated and proximal, the metastasis between these two

cancers is feasible. Thus, we developed an algorithm to predict

ovarian or endometrial cancers together. Notably, we observed

significant alterations in ISR in cancer samples, suggesting po-

tential pathophysiological mechanisms related to quantitative

regulation in splicing of platelet RNA. Hematological analysis

also revealed significant differences between pathological and
10 iScience 28, 112280, June 20, 2025
healthy groups. Notably, functional analyses identified key

genes and pathways associated with gynecological cancer,

highlighting the potential of platelet transcriptome analysis in

advancing precision oncology.

Notably, we diverged from traditional methods by employing

ISRcounts rather than gene expression levels in ourmodel devel-

opment to use splice junctions as features in our models.

Conventionally, gene expression levels in platelets have been

quantified using ISR alone, excluding other subtype reads from

sequencing files to prevent contamination from leukocyte

DNA.27 However, ourmethodology introduces a novel dimension

by focusing on quantitative changes in ISR counts, enabling us to

pinpoint specific splicing alterations with precision. Our findings,

exemplified in Figure S7, demonstrate instances where disease-

associated statistically significant quantitative alterations in ISR

were detected (p value from Wilcoxon test <1.00e-10), whereas

corresponding changes at the gene level were not observed

(p value fromWilcoxon test >0.5). This underscores theenhanced

sensitivity and specificity of our approach in capturing subtlemo-

lecular signatures indicative of cancer, potentially revolutionizing

diagnostic paradigms in oncology.

In Model 2, pairwise differences were examined in

RNA expression from tumor-educated platelets (TEPs) to

construct a diagnostic model for ovarian cancer. The identified

gene pairs—MAX-DAPP1, MAX-MTPN, MTPN-PTGS1, KIF2A-

TSPAN33, TSPAN33-MTPN, and ACTN1-MTPN—demon-

strated significant differences in expression patterns between

ovarian cancer patients and controls. These differences reflect

altered platelet RNA profiles influenced by systemic cancer-

associated processes rather than direct molecular interactions

or causative relationships. In cancer, tumor-derived signals are

known to reprogram platelets through mechanisms such as

RNA transfer, selective RNA packaging, and alternative splicing.

These processes collectively alter platelet RNA profiles, which

can then serve as a valuable source of biomarkers for cancer

detection. For example, MTPN (myotrophin), implicated in cyto-

skeletal dynamics, appears in several key gene pairs, potentially

reflecting tumor-induced changes in platelet structure and



Figure 4. The performance results of prediction models

(A and B) Model 1 for gynecological tumor detection: (A) ROC curves of training, validation, and test datasets.

(B) Probability output is illustrated in a plot. Gray colored region is the region between the highest value of healthy from training set and the lowest value of tumor

from training set. Blue line is cut-off value decided based on validation dataset.

(C and D) Model 2 for malignancy of tumor prediction: (C) ROC curves of training, and test datasets (D) Probability output is illustrated in a plot. Blue line is cut-off

value decided based on training dataset.
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function.28 Similarly, the consistent involvement of KIF2A (kine-

sin family member 2A), paired with TSPAN33 (tetraspanin 33),

may indicate modifications in platelet intracellular transport

mechanisms in response to tumor signals.29,30

In our investigation, distinctive alterations in platelet charac-

teristics, along with broader changes in hematology parameters,

were observed in cancer patients. While our study primarily

focused on developing a classification model, it is conceivable

that similar approaches could be extrapolated to other cancer

types in the future. The identification of specific platelet tran-

scriptome changes associated with cancer underscores the po-

tential of our methodology to serve as a versatile tool for cancer

diagnosis across various malignancies. Moving forward,

exploring these possibilities could lead to the development of

comprehensive diagnostic strategies with widespread applica-

bility in oncology. Such advancements hold promise for
enhancing early detection and personalized management ap-

proaches for cancer patients.

Surgery is the mainstay in the management of gynecologic

malignancies. Especially for ovarian cancer, open surgery,

rather than minimally invasive surgery, is the current standard.

Herein, our newly developed model with high diagnostic perfor-

mance or sensitivity may aid both physicians and patients in

determining the surgical approach: open surgery or minimally

invasive surgery. For example, if a woman is expected to

have ovarian cancer rather than benign ovarian tumors, she

might avoid minimally invasive surgery, which might result in tu-

mor leakage or spillage and intraperitoneal dissemination.

Instead, physicians and patients might choose laparotomy for

such high-risk women. These findings underscore the transfor-

mative potential of platelet transcriptome analysis in advancing

precision oncology.
iScience 28, 112280, June 20, 2025 11



Figure 5. The functional analysis of genes in prediction models

Graphical summary showing themost significant transcription factors and regulators affected by 198 junction (95 genes) markers. The orange color goes with the

direction of activation while the blue is the inhibition state.
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Limitations of the study
Our findings suggest that the platelet transcriptome can serve as

an early biomarker for cancer. However, this study has certain

limitations. Notably, it does not provide direct evidence demon-

strating that platelets influence the etiology of cancer progres-

sion. For example, inflammation and menopause are significant

risk factors for ovarian cancer and are linked to changes in

platelet physiology. While these factors imply a potential

connection between platelets and the etiology of ovarian cancer,

our research did not include experimental evidence to substan-

tiate this association. Additionally, our machine learning model

was constructed using a limited dataset. Our hematology ana-

lyses, though revealing certain trends, may not provide specific

markers uniquely associated with the presence of ovarian can-

cer. As such, their broader applicability in a screening setting

is limited, and further research is needed to identify more can-

cer-specific hematologic markers. Consequently, it may not

accurately identify subtype-specific features necessary to distin-

guish particular types of cancer within the population. This

limitation could also be influenced by variations in ethnicities or

hereditary factors.
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Szumczyk, S., qojkowska, A., Ró _za�nski, R., _Zaczek, A.J., Jassem, J.,

W€urdinger, T., and Stokowy, T. (2021). imPlatelet classifier: image-con-

verted RNA biomarker profiles enable blood-based cancer diagnostics.

Mol. Oncol. 15, 2688–2701. https://doi.org/10.1002/1878-0261.13014.
14 iScience 28, 112280, June 20, 2025
32. Best, M.G., Sol, N., In ’t Veld, S.G.J.G., Vancura, A., Muller, M., Niemeijer,

A.L.N., Fejes, A.V., Tjon Kon Fat, L.A., Huis In ‘t Veld, A.E., Leurs, C., et al.

(2017). Swarm Intelligence-Enhanced Detection of Non-Small-Cell Lung

Cancer Using Tumor-Educated Platelets. Cancer Cell 32, 238–252.e9.

https://doi.org/10.1016/j.ccell.2017.07.004.

33. Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible

trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.

https://doi.org/10.1093/bioinformatics/btu170.

34. Kim, D., Paggi, J.M., Park, C., Bennett, C., and Salzberg, S.L. (2019).

Graph-based genome alignment and genotyping with HISAT2 and

HISAT-genotype. Nat. Biotechnol. 37, 907–915. https://doi.org/10.1038/

s41587-019-0201-4.

35. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth,

G., Abecasis, G., and Durbin, R.; 1000 Genome Project Data Processing

Subgroup (2009). The Sequence Alignment/Map format and SAMtools.

Bioinformatics 25, 2078–2079. https://doi.org/10.1093/bioinformatics/

btp352.

36. Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.-C., Mendell, J.T.,

and Salzberg, S.L. (2015). StringTie enables improved reconstruction of

a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295.

https://doi.org/10.1038/nbt.3122.

37. Tu, J.J., Ou-Yang, L., Zhu, Y., Yan, H., Qin, H., and Zhang, X.F. (2021). Dif-

ferential network analysis by simultaneously considering changes in gene

interactions and gene expression. Bioinformatics 37, 4414–4423. https://

doi.org/10.1093/bioinformatics/btab502.

38. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,

O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Sci-

kit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12,

2825–2830.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

blood platelet samples This study see Tables S2 and S3

Chemicals, peptides, and recombinant proteins

RNAlaterTM stabilization solution Thermo Fisher cat. no. AM7020

Critical commercial assays

mirVana miRNA Isolation Kit Thermo Fisher cat. no. AM1560, AM1561

SMART-Seq� v4 Ultra� Low Input RNA Kit for Sequencing Takara Bio cat. no. 634897

High Sensitivity DNA kit and reagents, Bioanalyzer 2100 Agilent Technologies cat. no. 5067-4626

TruSeq Nano DNA Library Prep Kit Illumina cat. no. 20015964

Deposited data

Raw RNA-seq data (Pastuszak et al., 2021)31 GEO: GSE158508

Raw RNA-seq data (Best et al., 2017)32 GEO: GSE89843

Raw RNA-seq data (GJG et al., 2022)22 GEO: GSE183635

Raw RNA-seq data This study GEO: GSE278917

Software and algorithms

Trimmomatic (version 0.39) (Bolger et al., 2014)33 http://www.usadellab.org/cms/?page=trimmomatic

HISAT2 (version 2.1.0) (Kim et al., 2019)34 https://daehwankimlab.github.io/hisat2/

Samtools (version 1.9) (Li et al., 2009)35 http://samtools.sourceforge.net

stringtie (version 2.1.7) (Pertea et al., 2015)36 https://github.com/gpertea/stringtie

chNet (version 4.3.2) (Tu et al., 2021)37 https://github.com/Zhangxf-ccnu/chNet

Python (version 3.8.13) Python3 https://www.python.org/doc/

scikit-learn (version 1.1.1) (Pedregosa et al., 2011)38 https://github.com/scikit-learn/scikit-learn

Other

BD Vacutainer� Blood Collection Tubes (10 mL) BD cat. no. 367863
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Clinical specimens
Blood samples were procured from participants who were prospectively enrolled in the study, including those diagnosed with gyne-

cological cancer (n=85), benign tumors (n=66), and healthy women (n=44), at Seoul National University Hospital (SNUH) and Boaz

Medical Center at Handong Global University between August 2022 and February 2023. Samples were excluded from patients under

medication or failing to meet quality control criteria (Table S1). As a result, 46 samples from gynecological cancer patients, 22 sam-

ples from benign tumor patients, and 18 samples from healthy women were included in the final analysis.

Participants were categorized into three groups based on selection criteria. The gynecological cancer group consisted of individ-

uals diagnosed with ovarian, or uterine cancer, confirmed through clinical assessment and histopathological examination. The

benign tumor group included individuals diagnosed with non-malignant gynecological tumors, whowere also evaluated through clin-

ical assessment and histopathological confirmation to ensure accurate diagnosis. In contrast, the healthy control group comprised

women who had no history of gynecological diseases or ovarian-related symptoms. This group was primarily recruited from Boaz

Medical Center at Handong Global University, and their eligibility was determined based on self-reported medical history and routine

health check-up records. We retrieved 1 cm3-sized cubes of fresh-frozen cancer tissues, cut from viable portions of the primary

ovarian cancer tissues at the time of surgery under gross examination and frozen section procedures by pathologists for each patient,

from Seoul National University Hospital Human Biobank. One expert gynecologic pathologist (Cheol Lee) reviewed our study pop-

ulation according to the World Health Organization Classification of Tumors, 5th edition.39 The study was approved by the Ethics

Committee of SNUH, Seoul, Korea (No. 2206-148-1335) and Handong Global University, Pohang, Korea (No. 2022-HGUA025). Writ-

ten informed consent was obtained from the guardians of all the patients. Themetadata of the dataset is shown in Table S2 (Model1 –

tumor prediction) & S3 (Model2 – malignancy prediction).
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Ethics approval and consent to participate
We strictly followed all guidelines from the Ethics Committee of Seoul National University Hospital, Republic of Korea, and compli-

ance with the Declaration of Helsinki has been paramount. The study received approval from the Institutional Review Boards (No.

H-1807-037-956), ensuring patient anonymity and excluding personally identifiable information.

METHOD DETAILS

Hematology analysis and platelet RNA extraction
Blood samples were collected using 10-mL EDTA-coated purple-capped BD Vacutainers (BD). Following collection, samples were

processed in accordance with standard protocols for platelet isolation, which involved a two-step centrifugation procedure at 4�C
within 48 hours of collection, as per established procedures.27 Simultaneously, hematology parameters of whole blood cells and

platelet-rich plasma were measured using XP-300-Hematology-Analyzer (Sysmex Corporation). To prevent RNA degradation, the

extracted platelets were subsequently stored in RNAlater (Thermo Scientific, Waltham, MA, USA) at 4�C overnight, and then frozen

at -80�C. RNA extraction from stored platelet samples was performed approximately every two months using the miRVana RNA

isolation kit (Thermo Scientific, Waltham, MA, USA).

RNA-sequencing
For the assessment of total RNA quality, Bioanalyzer analysis utilizing BioAnalyzer 2100 (Agilent, Santa Clara, CA, USA) was per-

formed. High-quality platelet RNA was identified based on a RNA Integrity Number (RIN) exceeding 6 and/or the presence of distinct

ribosomal peaks. A total of 500 picograms of platelet RNAwere used for cDNA synthesis and amplification. The SMART-Seq v4 Ultra

Low Input RNA Kit (Takara Bio, Mountain View, CA, USA) was employed for the cDNA synthesis and amplification process. The qual-

ity assessment of the cDNAwas conducted using the DNAHigh Sensitivity chip on the Agilent Bioanalyzer 2100. The amplified cDNA

samples underwent shearing via sonication by Covaris Inc. and were subsequently labeled with index barcodes suitable for Illumina

sequencing using the Truseq Nano DNA Sample Prep Kit platform (Illumina, San Diego, CA, USA). The libraries were amplified with 8

cycles and purified with AMPure XP beads. The concentration and size of final library were determined with the TapeStation 4200

(Agilent, Santa Clara, CA, USA) instrument and High Sensitivity D1000 screen tape. High-quality samples exhibiting distinct product

sizes within the range of 500-600 base pairs were equimolarly pooled. The pooled samples were then sequenced on the Illumina

NovaSeq6000 platform (Illumina, San Diego, CA, USA) with 150 bp paired-end.

Opensource dataset
To obtain gene expression values from the opensource dataset,22,27,31,32 we downloaded RNA-seq data provided in fastq format and

corresponding patient information from Gene Expression Omnibus (GEO). We downloaded public platelet transcriptome data of gy-

necological cancer (n=186) including ovarian cancer, benign tumor (n=30), and healthy counterparts (n=391) fromGEO: GSE158508,

GSE89843, GSE183635. Additionally, after removing male samples and patients at the fourth stage cancer to avoid capturing noisy

signal derived from advanced metastatic cancer, samples from gynecological cancer (n=151), benign tumors (n=30), and healthy

women (n=218) were included in the feature selection and model development for our research. The metadata of the dataset is

described in Table S4.

Preprocessing of RNA-seq data
The sameNGSworkflowwas utilized to process the Opensource and our own clinical RNA-seq datasets. In this study, we processed

the Fastq files using Trimmomatic (version 0.39) to clip sequence adapters and trim reads based on quality metrics. Subsequently,

we aligned the sequencing reads to the humanGRCh38 genome reference using HISAT2 (version 2.1.0). The resulting SAM files were

converted to BAM format and filtered to retain only primary alignments using Samtools (version 1.9). The BAM files containing only

primary alignments were then used to count reads meeting the following criteria at each junction: 1. Reads spanning from 150 bases

upstream to 150 bases downstream of the junction, 2. Reads with N-containing cigar strings indicative of splicing events, and 3.

Reads whose spliced regions match the position of the junction. We obtained count values for 2,855,955 junctions in Opensource

and our own clinical RNA-seq datasets. Expression levels (Fragments Per Kilobase per Million mapped fragments: FPKM and Tran-

scripts Per kilobase Million: TPM) of four genes (PTPRC, PF4, SELP, and CD63) were automatically calculated by using stringtie

(2.1.7) in our preprocessing pipeline. PTPRC is a leukocyte marker to measure the possible contamination in the experiment, and

PF4, SELP, and CD63 are markers for platelet activation.

Developing machine learning-based gynecological tumor diagnosis model
In this study, a machine learning-based model was developed for diagnosing gynecological tumors. The training and validation data-

sets consisted of opensource data (n=365 and n=242, respectively), while our own clinical data was used for training (n=54) and

testing (n=53). Two normalization methods were employed, including the in-house developed batch-invariant normalization known

as Binning FMH. This method selected relevant variables by excluding junctions with a count of 0 and those associated with the Y

chromosome. Unique values from the selected junctions in both the opensource and clinical RNA-seq datasets were used to estab-

lish the 100th percentile interval. Each section was assigned a rank value based on the corresponding junction value.
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To develop themodel, Counts PerMillion (CPM) values, obtained by dividing the value of each junction by the sumof all junctions in

the sample and multiplying by 106 were utilized on a log2 scale. The resulting CPM values were then transformed into the log2 scale

using the formula log2 (CPM + 1). Variable selection and model development were conducted using the public training set (n=243),

public validation set (n=156), and in-house clinical training set (n=47). Through the Binning FMH normalization on the training set,

junction variables showing significant differences between the tumor group and the non-tumor group were selected using the

Mann-Whitney U test (|log2FC| > 1, FDR < 0.05). Ultimately, 198 junctions with the concordant direction of changes from both public

and clinical data were chosen.

The SVM model with the bootstrap method was employed for model development, with 100 rounds of bootstrapping performed.

Each bootstrapped set randomly selected 94 public training samples and 47 internal clinical training samples for model learning. A

total of 39 combinations of ’kernel’, ’C’, and ’gamma’ hyperparameters were used in each set. The optimal hyperparameter combi-

nation was determined by performing verification bootstrapping 100 times, with 94 public validation samples randomly selected and

47 internal clinical training samples in each bootstrapped verification set. The combination with the highest average AUC from 100

bootstrap validation sets was selected as the optimal hyperparameter combination. Forward selection was then applied to choose

the best model combination with the highest validation AUC from the 100 models learned using the optimal hyperparameter com-

bination. The final value for clinical test data was obtained by averaging the probability values from the 13 selected models. Perfor-

mance evaluation of the clinical test data was conducted using a predefined cutoff that ensured a specificity of 0.99 in the clinical

training data.

Developing machine learning-based malignancy prediction model
Themethodology employed to discriminate betweenmalignant and non-malignant tumors involves an ensemble of two models. The

first model utilizes platelet RNA sequencing data, while the second model relies on hematology measurements.

In the first model using platelet RNA sequencing data, analysis was performed on ovarian cancer (OC, n=18), endometrial cancer

(EC, n=26), benign patients (n=21), and healthy control samples (HC, n=18). Other cancer types, symptomatic control samples, and

male samples were excluded from the study. The entire dataset was divided into training (n=29), validation (n=17), and test (n=37)

sets. In the first step, highly expressed junctions were selected. The expression training data from our own clinical dataset was trans-

formed into log2CPM values, and highly expressed junctions were identified by selecting those with expression levels higher than a

reference gene (PTP4A2). Only OC, EC, and benign patient data were used in this step, resulting in a total of 604 junctions being

selected. In the second step, the selected 604 junctions were paired in combinations of two to generate marker combinations, re-

sulting in 182,106 marker pairs. For each pair, the two marker values, x and y, were compared, with a value of 1 assigned if x was

greater than y, and 0 otherwise. Markers with a variance of 0 were excluded, leaving 114,425 markers after this step. In the third

step, univariate logistic regression analysis was performed to assess the performance of individual markers and filter for stable per-

formance. Markers with an AUC value R 0.7 in both the training and validation datasets were selected, yielding 1,038 markers. To

ensure marker stability, random noise was added to the data in the form of a normal distribution, N(0, std), and the analysis was

repeated 10 times. Markers with an AUC R 0.6 in both the training and validation datasets across all repetitions were retained, re-

sulting in 276 markers. In the fourth step, Fisher’s Exact Test was applied to the 276 selected markers, extracting those with a

p-value < 0.01. Markers related to platelet activation genes were excluded, leaving 36 markers. From these, only junctions involving

genes that appeared at least twice were retained, resulting in 27markers in total (29 junctions in 10 genes). In the fifth step, themodel

was trained using a Random Forest algorithm. Hyperparameter tuning and training were performed using 5-fold cross-validation

(CV). The predicted probabilities from all folds were averaged to calculate the final predicted probabilities.

In the second model using hematology measurements, model training for distinguishing between malignant and non-malignant

tumors was conducted using our clinical training set (n=68; OC 9, EC 17, Benign 24, HC 18) and evaluated on our clinical validation

set (n=45) and test set (n=48). Among the 31 hematology variables, 26 are univariable, and 5 are combination variables. Model devel-

opment employed GridSearch with 5-fold Cross Validation using RandomForestClassifier. The predicted probabilities from all folds

were averaged to obtain the final predicted values.

The final predictionwasmade by combining the prediction probabilities of bothmodels through soft voting.Weights were assigned

based on AUCmaximization from the clinical validation set. The final prediction probability was calculated by multiplying the predic-

tion probabilities of the two models by their respective weights and then adding them together. A cutoff value of 0.5 was applied to

evaluate the clinical test data.

Functional analysis
Differential network analysis of the 198 junction markers (95 genes) was conducted using chNet (v. 4.3.2).37 For gene ontology anal-

ysis, either significantly over- or under-expressed were analyzed using the Ingenuity Pathway Analysis (IPA) core pathway analysis

(Qiagen Ingenuity Systems). For Gene Regulatory Network (GRN) analysis, we utilized PANDA to build a gene regulatory network

comprising 198 junction markers representing 94 genes.40 From this network, we extracted the top 100 edge weights to highlight

key connections within each of the 47 cancer groups and 40 noncancer groups analyzed in our study.
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QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were conducted in Python (v. 3.8.13). Continuous data was compared using aMann-Whitney U test, applied to

analyze read composition, hematological parameters, and blood markers utilized for cancer diagnosis. A p-value of <0.05 was

considered statistically significant. Junction markers were selected using the same statistical test, with statistical significance deter-

mined by a false discovery rate value of <0.05. The performance of model was evaluated usingmetrics of accuracy, sensitivity, spec-

ificity, balanced accuracy, and area under the curve (AUC) of receiver operating characteristics curves, calculated with Python library

scikit-learn (v. 1.1.1). The Wilson method was applied to calculate 95% confidence intervals of all AUC values.
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