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Abstract

Poly-arginine peptide-18 (R18) has recently emerged as a highly effective neuroprotective agent in experimental
stroke models, and is particularly efficacious in protecting cortical neurons against glutamic acid excitotoxicity.
While we have previously demonstrated that R18 can reduce excitotoxicity-induced neuronal calcium influx, other
molecular events associated with R18 neuroprotection are yet to investigated. Therefore, in this study we were
particularly interested in protein expression changes in R18 treated neurons subjected to excitotoxicity.
Proteomic analysis was used to compare protein expression patterns in primary cortical neuronal cultures subjected
to: (i) R18-treatment alone (R18); (ii) glutamic acid excitotoxic injury (Glut); (iii) R18-treatment and glutamic acid
injury (R18 + Glut); (iv) no treatment (Cont). Whole cell lysates were harvested 24 h post-injury and subjected to
quantitative proteomic analysis (iTRAQ), coupled with liquid chromatography-tandem mass spectrometry (LC-MS/
MS) and subsequent bioinformatic analysis of differentially expressed proteins (DEPs).
Relative to control cultures, R18, Glut, and R18 + Glut treatment resulted in the detection of 5, 95 and 14 DEPs
respectively. Compared to Glut alone, R18 + Glut revealed 98 DEPs, including 73 proteins whose expression was also
altered by treatment with Glut and/or R18 alone, as well as 25 other uniquely regulated proteins. R18 treatment
reversed the up- or down-regulation of all 73 Glut-associated DEPs, which included proteins involved in
mitochondrial integrity, ATP generation, mRNA processing and protein translation. Analysis of protein-protein
interactions of the 73 DEPs showed they were primarily associated with mitochondrial respiration, proteasome
activity and protein synthesis, transmembrane trafficking, axonal growth and neuronal differentiation, and
carbohydrate metabolism. Identified protein pathways associated with proteostasis and energy metabolism, and
with pathways involved in neurodegeneration.
Collectively, the findings indicate that R18 neuroprotection following excitotoxicity is associated with preservation
of neuronal protein profiles, and differential protein expression that assists in maintaining mitochondrial function
and energy production, protein homeostasis, and membrane trafficking.
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Introduction
A major pathophysiological mechanism responsible for is-
chaemic stroke injury is excitotoxicity, which is trigged by
the excessive release of the excitatory neurotransmitter
glutamic acid in response to reduced cerebral blood flow
and compromised ATP synthesis. Excitotoxicity initiates a
range of forward-feeding biochemical events known as the
‘ischaemic cascade’, which if not inhibited eventually lead
to neuronal death and cerebral infarction [1]. Further-
more, as glutamic acid is the most prominent excitatory
neurotransmitter in the CNS [2], the detrimental effects of
glutamic acid excitotoxicity also play a role in other acute
brain disorders such as traumatic brain injury and epi-
lepsy, as well as chronic neurodegenerative disorders, such
as Alzheimer’s disease (AD) [3, 4], Huntington’s disease
(HD) [5, 6], Parkinson’s disease (PD) [7, 8], and amyo-
trophic lateral sclerosis (ALS) [9, 10].
Despite ongoing research, neuroprotective therapies

for acute brain injuries and other neurodegenerative dis-
orders are either not available or are extremely limited
with modest efficacy. Recent studies in our laboratory
have identified cationic arginine-rich peptides (CARPs),
which include poly-arginine peptides, as a novel class of
neuroprotective agents. In particular, we have demon-
strated that poly-arginine-18 (R18, 18-mer of arginine) is
neuroprotective in in vitro neuronal excitotoxicity
models and in vivo in rodent models of stroke [11–18],
hypoxic-ischaemic encephalopathy (HIE) [19], and trau-
matic brain injury (TBI) [20, 21].
Given the neuroprotective properties of R18, it is im-

perative that the molecular pathways that underlie its
neuroprotective action are fully elucidated in order to
gauge its therapeutic potential. While we have previously
demonstrated that R18 has the capacity to reduce glu-
tamic acid-induced excitotoxic neuronal death and intra-
cellular calcium influx, and reduce neuronal NMDA
receptor levels [22], CARPs also have cell-penetrating
properties and can target mitochondria [23]. Therefore,
it is likely that R18 and other CARPs have additional
intracellular neuroprotective mechanisms of action. In
addition, it is also important to examine the ability of
R18 to preserve intracellular protein expression and bio-
chemical pathways following a neurodamaging insult. As
such, in this study we performed iTRAQ proteomics
and bioinformatic analysis (Fig. 1) of protein cell lysates
collected from primary cortical neuronal cultures sub-
jected to glutamic acid excitotoxicity with and without
treatment with R18.

Methods
Peptides
Poly-arginine-18 (R18; H-RRRRRRRRRRRRRRRRRR-
OH) was synthesized by Mimotopes (Australia) and
purified to 98% by HPLC. Peptides were prepared as

500 μM stocks in Baxter water (Australia) and stored at
− 20 °C prior to use.

Primary cortical neuronal cultures
Cortical neuronal tissue was extracted from E18
Sprague-Dawley rat embryos, dissociated, resuspended
in Neurobasal/2% B27 supplement (B27) and seeded at
approximately 55,000 cells/well into 96-well plates
(Nunc, Australia), pre-coated with poly-lysine (Sigma-
Aldrich Australia) as previously described [24]. Plates
were maintained at 37 °C in a CO2 incubator (95% air
balance, 98% humidity, 5% CO2) until use on day in vitro
10, when cultures routinely comprise > 97% neurons and
1–3% astrocytes. Approval for the use of E18 Sprague-
Dawley rat embryos for isolation of cortical tissue was
obtained by the University of Western Australia Animal
Ethics Committee (RA/3/100/1432).

Glutamic acid excitotoxicity model and assessment of cell
viability
Cortical neuronal cultures were subjected to glutamic
acid excitotoxicity and R18 treatment as previously
described [22]. R18 treatment consisted of adding the
peptide to culture wells 10 min prior to glutamic acid
(L-glutamic acid; Sigma-Aldrich) exposure by remov-
ing media and adding 50 μL of Minimal Essential
Media (MEM)/2% B27 containing peptide (2 μM). To
induce excitotoxicity, 50 μL of MEM/2% B27 contain-
ing glutamic acid (200 μM; final concentration
100 μM) was added to the culture wells and incubated
at 37 °C in the CO2 incubator for 5 min (note: peptide
concentration reduced to 1 μM during this step). Fol-
lowing the 5-min exposure, media was replaced with
100 μL of MEM/2% B27 and cultures incubated for a
further 24 h at 37 °C in the CO2 incubator. Untreated
controls with or without glutamic acid treatment
underwent the same incubation steps and media
additions.
At 24 h post-injury, cell viability was assessed qualita-

tively by light microscopy, and quantitatively using the
CellTiter 96 Aqueous Cell Proliferation MTS assay (Pro-
mega, Australia), which determines metabolic capacity
of cells through the reduction of the tetrazolium salt
(MTS), forming a brown formazan salt that is measured
spectrophotometrically at 490 nm.

Protein extraction
At 24 h post-injury, cells were lysed with 20 μL/well of
RIPA buffer (mM: 150 NaCl, 5 EDTA, 50 Tris; %: 1.0
NP-40, 0.5 sodium deoxycholate, 0.1 SDS; pH 8.0) con-
taining protease and phosphatase inhibitor cocktail
(Roche Applied Science, Australia). Cell lysates from 8
wells within the same plate were pooled, and this was re-
peated four times with independent neuronal cultures.
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Lysates were clarified by centrifugation at 14,000 g for 5
min at 4 °C, and protein concentration determined via
Bradford’s assay (Bio-Rad). Aliquots (3.5 mg/mL) of each
treatment group were prepared for subsequent iTRAQ
analysis and stored at − 20 °C prior to use.

Protein sample preparation and iTRAQ labelling
Quantitative 4-plex iTRAQ proteomics analysis was
performed on four independent protein samples for
each treatment. Protein sample preparation and
iTRAQ labeling was as previously described [25].
Briefly, the protein samples were de-salted, reduced,
alkylated, and trypsin-digested according to the
iTRAQ protocol [Sciex]. The resulting peptide sam-
ples were labeled with iTRAQ reagents as follows:
114: Untreated control (Cont); 115: glutamic acid
treated (Glut); 116: R18 treated (R18); 117: R18 and
glutamic acid treated (R18 + Glut). All labeled sam-
ples were combined to make a pooled sample. Pep-
tides were desalted on a Strata-X 33 μM polymeric
reversed phase column (Phenomenex) and dissolved

in a buffer containing 2% acetonitrile 0.1% formic
acid before separation by High pH on an Agilent
1100 HPLC system using a Zorbax C18 column
(2.1 × 150 mm). Peptides were eluted with a linear
gradient of 20 mM ammonium formate, 2% ACN to
20 mM ammonium formate, 90% ACN at 0.2 mL/
min. The 95 fractions were concatenated into 12
fractions and dried down. Each fraction was analyzed
by electrospray ionization mass spectrometry using
the Shimadzu Prominence nano HPLC system [Shi-
madzu] coupled to a 5600 TripleTOF mass spec-
trometer [Sciex]. Samples were loaded onto an
Agilent Zorbax 300SB-C18, 3.5 μm [Agilent Tech-
nologies] and separated with a linear gradient of
water/acetonitrile/0.1% formic acid (v/v). Fourteen
percent of the labeled sample was loaded on the
mass spectrometer.

Proteomic data analysis: qualification and quantitation
Spectral data was qualified using ProteinPilot™ 5.0 soft-
ware [Sciex] against the SwissProt database, utilizing the

Fig. 1 Summary diagram of experimental flow, with the three key processes highlighted by different colours. These broadly include the initial cell
treatment and protein collection (red); protein processing, purification, iTRAQ labelling, and quantification for each sample (blue); and analysis of
bioinformatics data (grey). DEPs = differentially expressed proteins; LC-MS/MS = liquid chromatography-tandem mass spectrometry
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Rattus norvegicus (Rat) taxonomy (Version: April 2017,
7,985 sequences; https://www.uniprot.org/proteomes/
UP000002494). The False Discovery Rate (FDR) was
automatically calculated by the Proteomics System
Performance Evaluation Pipeline (PSPEP) feature in the
ProteinPilot™ software (AB Sciex, Foster, CA, USA;
Version 5.0.1) using the reversed version of the protein
sequences contained in the search database. For quanti-
tative protein analysis, a fold change in protein expres-
sion > ±1.3-fold with a p < 0.05 was considered to be a
‘differentially expressed protein’ (DEP). Protein expres-
sion changes with R18, Glut, and R18 + Glut treatment
were compared to the control (Cont). In addition, pro-
tein changes with Glut treatment were compared with
R18 + Glut treatment using Cont protein expression as
baseline.

Proteomic data analysis: bioinformatics
Gene ontology analysis with the ‘Protein ANalysis
THrough Evolutionary Relationships’ (PANTHER; Ver-
sion 14.0, released 2018-12-03; http://pantherdb.org/)
classification system was utilized to categorize the col-
lective DEPs in the R18, Glut, or R18 + Glut samples,
relative to Cont sample, as well as Glut sample, relative
to the Glut + R18 sample. These proteins were function-
ally categorized according to the domains of ‘biological
processes’, ‘molecular functions’, and ‘cellular compo-
nents’ [26].
Protein-protein interaction networks were identified

using STRING (Version 11.0, released 2017-05-14;
http://www.string-db.org/). STRING is a database of
known and predicted physical and functional protein-
protein interaction, generated through computational
prediction from five key databases: ‘Genomic Context
Predictions’, ‘High-throughput Lab Experiments’, ‘(Con-
served) Co-Expression’, ‘Automated Textmining’, and
‘Previous Knowledge in Databases’. Cytoscape (Ver-
sion 3.7.1) was subsequently utilized to construct and
analyze the protein-protein interaction networks, and
‘Cluster with overlapping Neighbourhood Expansion’
(Cluster ONE; Version 14) was used for network clus-
tering of protein-protein interactions, to identify
densely connected and overlapping protein networks.
Identified DEPs were also imported into the Kyoto

Encyclopedia of Genes and Genomes (KEGG) Pathway
database (http://www.genome.jp/kegg/pathway.html) for
analysis of common biological pathways and diseases as-
sociated with the DEPs.

Statistical analysis
Statistical analysis was conducted with the Prism 8.0
GraphPad statistical software package. Cell viability
data were expressed as mean ± S.E.M. of biological
replicates, and multiple comparisons were conducted

with one-way ANOVA and Bonferroni’s post hoc test
to assess significance, with significance taken as p < 0.05.
For Cytoscape network analysis, network cut-offs of > 3
proteins were utilized, and a one-sided Mann-Whitney U
test was used to identify significant common networks
(p < 0.05).

Results
R18 improves cell viability in uninjured and glutamic
acid-treated neuronal cells
In line with previous studies [12], R18 exhibited potent
neuroprotection against glutamic excitotoxic injury in
cortical neuronal cultures. In addition, as has been previ-
ously reported, cell viability was also significantly in-
creased in neuronal cultures treated with R18 compared
to control cultures (Fig. 2).

Quantitative and qualitative proteomic analysis
iTRAQ proteomic analysis detected 7,528 distinct pep-
tide fragments with > 95% confidence, resulting in the
identification of 800 proteins (minimum of ≥2 matching
peptide hits with > 95% confidence) consisting of a total
of 140 distinct proteins (Table 1 and Additional file 1:
Table S1). When compared to Cont, R18, Glut, and Glut
+ R18 differentially regulated 5, 95 and 14 proteins, re-
spectively (Table 1; see Additional file 2: Table S2 for
Glut + R18 DEPs). When compared to Glut, R18 + Glut
differentially regulated 98 proteins (Table 1 and Add-
itional file 2: Table S2).

Fig. 2 R18 provides potent neuroprotection against glutamic acid
excitotoxicity in primary cortical neurons. Neuronal cultures were
subjected to a 10-min R18 pre-treatment (2 μM) and subsequent 5-
min glutamic acid exposure (Glut; 100 μM). MTS cell viability was
assessed at 24 h post-injury. Cell viability was expressed as mean ±
S.E.M (p < 0.05 relative to *Glut or #Cont)
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Table 1 Differentially expressed proteins identified in neurons treated with: R18 (R18), glutamic acid (Glut), or R18 and glutamic acid
exposure (R18 + Glut)

Gene name SwissProt
Accession
Number

Protein Fold up−/down-regulateda

R18 vs Cont Glut vs Cont R18 + Glut vs Glut

Mitochondrial respiration/function

Acly P16638 ATP-citrate synthase 1.076 −2.399b 1.659

Aco2 Q9ER34 Aconitate hydratase, mitochondrial −1.028 −3.435 4.285

Atp5a1 P15999 ATP synthase subunit alpha, mitochondrial −1.472 1.888 −2.421

Atp5b P10719 ATP synthase subunit beta, mitochondrial −1.117 2.558 −3.342

Atp5h P31399 ATP synthase subunit d, mitochondrial 1.076 2.754b −1.836

Atp5o Q06647 ATP synthase subunit O, mitochondrial 1.406 2.032b −1.644

Cat P04762 Catalase −1.555 1.138 −1.659b

Cox4i1 P10888 Cytochrome c oxidase subunit 4 isoform 1, mitochondrial −1.259 2.070 −2.704

Idh1 P41562 Isocitrate dehydrogenase [NADP] cytoplasmic 1.066 1.459 −1.486

Mdh2 P04636 Malate dehydrogenase, mitochondrial −1.247 2.355 −2.535

Ndufs1 Q66HF1 NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial 1.294 2.443 −5.249

Uqcrc2 P32551 Cytochrome b-c1 complex subunit 2, mitochondrial −1.247 1.888 −2.704

Proteasome & Protein synthesis

Asns P49088 Asparagine synthetase [glutamine-hydrolyzing] 2.089 2.228 2.421b

Cct2 Q5XIM9 T-complex protein 1 subunit beta 1.106 −3.802 3.631

Cct3 Q6P502 T-complex protein 1 subunit gamma −1.158 −4.787 4.207

Cct4 Q7TPB1 T-complex protein 1 subunit delta 1.127 −3.944 3.499

Cct5 Q68FQ0 T-complex protein 1 subunit epsilon 1.096 −2.269 2.291

Psmc1 P62193 26S protease regulatory subunit 4 −1.419 −22.67 18.197

Axonal growth/Neuronal differentiation/Cytoskeletal arrangement

Actr2 Q5M7U6 Actin-related protein 2 −1.355 − 1.271 − 1.459b

Ap2m1 P84092 AP-2 complex subunit mu 1.271 −5.394 6.855

Armc10 B1WBW4 Armadillo repeat-containing protein 10 −1.294 −6.667 2.070

Baiap2 Q6GMN2 Brain-specific angiogenesis inhibitor 1-associated protein 2 −1.331 −90.09 99.083

Basp1 Q05175 Brain acid soluble protein 1 1.343 1.614 −1.270

Cntn1 Q63198 Contactin-1 −1.117 1.977 −1.836

Cttn Q66HL2 Src substrate cortactin 1.117 −5.345b 3.251

Dcx Q9ESI7 Neuronal migration protein doublecortin 1.000 −6.139 6.026

Dnm1 P21575 Dynamin-1 −2.148 −4.093 3.076

Dpysl2 P47942 Dihydropyrimidinase-related protein 2 −1.225 1.723 −1.690

Dync1h1 P38650 Cytoplasmic dynein 1 heavy chain 1 −1.087 −8.873 8.472

Fabp7 P55051 Fatty acid-binding protein, brain −1.028 4.406b −4.207

Fyn Q62844 Tyrosine-protein kinase Fyn 1.117 −2.489 2.754b

Gdi1 P50398 Rab GDP dissociation inhibitor alpha −1.419 1.820 −2.965

Gfap P47819 Glial fibrillary acidic protein 1.4322 1.906b −1.159

Kif21b F1M5N7 Kinesin-like protein KIF21B −1.282 −17.857 16.444

Krt1 Q6IMF3 Keratin, type II cytoskeletal −4.055b −1.236 −6.485

Krt10 Q6IFW6 Keratin, type I cytoskeletal 10 −2.168 −1.722 −16.892b

Map2 P15146 Microtubule-associated protein 2 1.138 −8.628 11.482

Map4 Q5M7W5 Microtubule-associated protein 4 −2.884 −4.488 4.169

Mapt P19332 Microtubule-associated protein tau 1.077 −7.179 7.379
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Table 1 Differentially expressed proteins identified in neurons treated with: R18 (R18), glutamic acid (Glut), or R18 and glutamic acid
exposure (R18 + Glut) (Continued)

Gene name SwissProt
Accession
Number

Protein Fold up−/down-regulateda

R18 vs Cont Glut vs Cont R18 + Glut vs Glut

Myh10 Q9JLT0 Myosin-10 −1.459 −2.466 2.228

Ncam1 P13596 Neural cell adhesion molecule 1 −1.180 2.831 −4.093

Pa2 g4 Q6AYD3 Proliferation-associated protein 2G4 1.202 −2.188 2.489b

Pak3 Q62829 Serine/threonine-protein kinase PAK 3 −2.208 −4.365 5.754b

bPebp1 P31044 Phosphatidylethanolamine-binding protein 1 1.5276 2.780b −2.128

Rala P63322 Ras-related protein Ral-A −1.236 2.704b −1.690

Rtn4 Q9JK11 Reticulon-4 1.107 −2.148 2.679

Tpm4 P09495 Tropomyosin alpha-4 chain −1.097 −2.270 1.738b

Tuba4a Q5XIF6 Tubulin alpha-4A chain 1.086 −2.679b 2.535

Tubb5 P69897 Tubulin beta-5 chain −1.038 −18.018 16.444

Vesicular/Transmembrane trafficking

Actn4 Q9QXQ0 Alpha-actinin-4 −1.294 1.906b −1.381

Actr1a P85515 Alpha-centractin −1.738 −3.565b 2.148

Ap2a2 P18484 AP-2 complex subunit alpha-2 1.159 −2.582 3.698b

Atp1a3 P06687 Sodium/potassium-transporting ATPase subunit alpha-3 −2.128 1.660 −2.355

Cadps Q62717 Calcium-dependent secretion activator 1 −1.486 −11.481 6.194

Camk2a P11275 Calcium/calmodulin-dependent protein kinase type II subunit alpha −1.419 −6.667 6.918

Cask Q62915 Peripheral plasma membrane protein CASK 1.514 1.306 −1.888b

Dpysl5 Q9JHU0 Dihydropyrimidinase-related protein 5 −1.180 1.213 −1.459b

Klc1 P37285 Kinesin light chain 1 1.107 −6.024b 5.058

Nsf Q9QUL6 Vesicle-fusing ATPase −1.117 −5.807 4.656

Prkar2b P12369 cAMP-dependent protein kinase type II-beta regulatory subunit −1.472 −3.105 1.754

Stx1b P61265 Syntaxin-1B 1.225 1.600 −1.419

Stxbp1 P61765 Syntaxin-binding protein 1 −1.107 1.600 −2.466

Syn1 P09951 Synapsin-1 −1.786 −3.597b 3.3113

ER proteostasis/Protein modification

Calr P18418 Calreticulin 1.419 1.871 −1.570

Ddost Q641Y0 Oligosaccharyl transferase 48 kDa subunit −1.500 2.466 −2.938

Erp29 P52555 Endoplasmic reticulum resident protein 29 −1.067 2.168b −3.163

Hsp90aa1 P82995 Heat shock protein HSP 90-alpha 1.038 1.282 −1.446b

Hspa5 P06761 78 kDa glucose-regulated protein 1.038 2.014 −1.542

Hspa8 P63018 Heat shock cognate 71 kDa protein 1.259 −2.208 2.559b

Hspa9 P48721 Stress-70 protein, mitochondrial 1.159 −6.083 8.318

Hspd1 P63039 60 kDa heat shock protein, mitochondrial 1.107 1.486 −1.556

Pdia3 P11598 Protein disulfide-isomerase A3 −1.600 1.614 −1.995

Phb P67779 Prohibitin −1.213 1.644 −2.535

Phb2 Q5XIH7 Prohibitin-2 −1.047 3.837 −2.992

Por P00388 NADPH--cytochrome P450 reductase −1.107 −1.038 1.343b

Tcp1 P28480 T-complex protein 1 subunit alpha −1.472 −3.597b 2.911

Uba1 Q5U300 Ubiquitin-like modifier-activating enzyme 1 −1.107 −5.105 4.406

Glycolysis & Carbohydrate metabolism

Alb P02770 Serum albumin −1.570 1.722 −5.701
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Table 1 Differentially expressed proteins identified in neurons treated with: R18 (R18), glutamic acid (Glut), or R18 and glutamic acid
exposure (R18 + Glut) (Continued)

Gene name SwissProt
Accession
Number

Protein Fold up−/down-regulateda

R18 vs Cont Glut vs Cont R18 + Glut vs Glut

Aldoa P05065 Fructose-bisphosphate aldolase A −1.660 1.629 −2.355

Eno1 P04764 Alpha-enolase 1.107 2.911 −1.706

Gapdh P04797 Glyceraldehyde-3-phosphate dehydrogenase −1.028 −11.700 10.280

Gpi Q6P6V0 Glucose-6-phosphate isomerase −1.318 1.754 −3.435

Hk1 P05708 Hexokinase-1 1.138 2.051b −1.888

Ldha P04642 L-lactate dehydrogenase A chain −1.786 1.028 −1.675b

Pkm P11980 Pyruvate kinase PKM −1.009 1.787 −1.941

Taldo1 Q9EQS0 Transaldolase 1.259 −1.837 2.109

Mitochondrial fatty acid synthesis

Acat1 P17764 Acetyl-CoA acetyltransferase, mitochondrial 1.159 2.377 −1.500

Bdh1 P29147 D-beta-hydroxybutyrate dehydrogenase, mitochondrial −1.213 −5.970 4.246

Fasn P12785 Fatty acid synthase −1.117 −3.311 2.704

Got2 P00507 Aspartate aminotransferase, mitochondrial −1.923 1.213 −2.109b

Ribosome components/RNA trafficking & processing

Aars P50475 Alanine--tRNA ligase, cytoplasmic −1.556 −5.495 4.699

C1qbp O35796 ASF/SF2-associated protein p32 1.213 1.600b −1.888

Ddx1 Q641Y8 ATP-dependent RNA helicase DDX1 −1.148 −11.173 4.286

Eef1a1 P62630 Elongation factor 1-alpha 1 −1.225 −5.444 4.529

Eef2 P05197 Elongation factor 2 −1.202 −4.131 3.048

Eif4a2 Q5RKI1 Eukaryotic initiation factor 4A-II −1.057 −3.945 3.02

Eif5a Q3T1J1 Eukaryotic translation initiation factor 5A-1 1.514 −6.983 9.638

Elavl2 Q8CH84 ELAV-like protein 2 −1.107 −4.405 5.598b

Hnrnpa1 P04256 Heterogeneous nuclear ribonucleoprotein A1 −1.076 −9.911 9.462

Hnrnpa2b1 A7VJC2 Heterogeneous nuclear ribonucleoproteins A2/B1 1.318 −4.325 6.138

Hnrnpa3 Q6URK4 Heterogeneous nuclear ribonucleoprotein A3 1.191 −3.311 4.920

Hnrnpd Q9JJ54 Heterogeneous nuclear ribonucleoprotein D0 1.202 −5.495 6.252

Hnrnpk P61980 Heterogeneous nuclear ribonucleoprotein K −1.057 −8.091 8.872

Hnrnpl F1LQ48 Heterogeneous nuclear ribonucleoprotein L −1.028 −2.729 4.207b

Khsrp Q99PF5 Far upstream element-binding protein 2 1.556 −3.908 8.017b

Matr3 P43244 Matrin-3 −1.500 −3.373b 3.945

Rpl7 P05426 60S ribosomal protein L7 1.225 −2.109 2.188b

Rpl13 P41123 60S ribosomal protein L13 −1.057 −2.377 2.754b

Rplp0 P19945 60S acidic ribosomal protein P0 1.486b −1.191 −1.076

Rps24 P62850 40S ribosomal protein S24 1.854 −5.754 14.06b

Rps27 Q71TY3 40S ribosomal protein S27 −1.102 −18.18b 5.058

Yars Q4KM49 Tyrosine--tRNA ligase, cytoplasmic −1.225 −4.656 3.342

Calcium transport and signalling

Vdac1 Q9Z2L0 Voltage-dependent anion-selective channel protein 1 −1.419 2.466 −2.938

Cacna2d1 P54290 Voltage-dependent calcium channel subunit alpha-2/delta-1 1.306 4.207 −4.018

Gnao1 P59215 Guanine nucleotide-binding protein G(o) subunit alpha −1.148 −5.152 3.802

Letm1 Q5XIN6 LETM1 and EF-hand domain-containing protein 1, mitochondrial −3.020 1.459b −1.236

Nudt3 Q566C7 Diphosphoinositol polyphosphate phosphohydrolase 1 1.459b 1.282 1.117
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Proteins regulated by R18 treatment alone (R18 vs Cont)
Of the five DEPs identified in the R18 sample, three
were uniquely regulated (Table 1). Two of these proteins
were upregulated: 60S acidic ribosomal protein P0
(Rplp0; 1.49) and Diphosphoinositol polyphosphate
phosphohydrolase 1 (Nudt3; 1.46), and one was down-
regulated: keratin, type II cytoskeletal (Krt1; − 4.05).

Proteins regulated by glutamic acid injury alone (glut vs Cont)
Of the 95 DEPs identified in the Glut sample, 21 were
uniquely regulated (Table 1). The greatest magnitude
fold-change in a down-regulated protein was observed
for brain-specific angiogenesis inhibitor 1-associated
protein 2 (Baiap2; − 90.09), while the greatest fold-
change in an up-regulated protein was for fatty acid-
binding protein, brain (Fabp7; 4.41).

Proteins regulated by R18 plus glutamic acid injury (R18 +
Glut vs Cont)
Of the 14 DEPs identified in the R18 + Glut sample none
were uniquely regulated (Additional file 2: Table S2).
The greatest magnitude fold-change in an up-regulated
protein was observed for UV excision repair protein
RAD23 homolog B (Rad23b; 3.251), while the greatest
fold-change in a down-regulated protein was for Keratin,
type I cytoskeletal 10 (Krt10; − 33.333).

Proteins regulated by R18 plus glutamic acid injury vs
glutamic acid injury alone (R18 + Glut vs glut)
Of the 98 DEPs identified after R18 + Glut treatment
(R18 + Glut vs Glut), 73 of the proteins were also regu-
lated by R18 and/or Glut treatments alone, and 25 were
uniquely regulated (Table 1; uniquely regulated proteins
indicated by *). In addition, R18 treatment reversed the
up- or down-regulation of all 73 DEPs (Table 1, Fig. 3).
Of the 25 uniquely regulated proteins, the greatest mag-
nitude fold-change in protein expression observed was
with Brain-specific angiogenesis inhibitor 1-associated
protein 2 (Baiap2; − 99.08).

Functional categorization of differentially regulated
proteins (DEPs)
For further functional characterization of DEPs we fo-
cused on protein changes in the R18 and R18 + Glut
treatments groups as we were most interested in the ef-
fects of R18 on proteins regulated in uninjured and in-
jured neurons. PANTHER Gene Ontology analysis was
utilized to categorize the DEPs regulated by R18 alone (5
proteins; R18 vs Cont), and the DEPs regulated by
R18 + Glut treatment (73 proteins; R18 + Glut vs Glut)
according to ‘cellular component’ (Fig. 4a and d) ‘bio-
logical process’ (Fig. 4b and e), and ‘molecular function’
(Fig. 4c and f) (Full data provided in Additional file 3:
Table S3).
The 5 DEPs regulated by R18 treatment included pro-

teins located in the nucleus and ribosomes which
catalyze purine nucleotide catabolic activity (e.g. Nudt3),
and modulate rRNA binding (e.g. Rplp0). Other proteins
regulated by R18 are involved in intracellular ion traf-
ficking (e.g. Atp1a3) and cytoskeletal structure (e.g.
Krt1) (Table 1).
The 73 DEPs regulated by R18 + Glut treatment in-

cluded proteins involved in mitochondrial respiration
and function (e.g. Aco2 and Atp5a1), proteasomal regu-
lation and protein synthesis (e.g. Psmc1 and Cct3), pro-
teostasis/protein modification in the endoplasmic
reticulum (e.g. Hspa9 and Uba1), and RNA trafficking/
processing (e.g. Eif5a and Hnrnpa1), as well as cytoskel-
etal rearrangement and axonal growth (e.g. Map2 and
Dcx) and vesicular/membrane trafficking (e.g. Atp1a3
and Camk2a). Significant changes of key neuronal pro-
teins are summarized in the schematic detailed in Fig. 5
(full data available in Additional file 2: Table S2 and
Additional file 3: Table S3).

Protein-protein interaction network analysis of DEPs
regulated by R18 in uninjured and glutamic acid injured
neurons
STRING analysis was used to identify potential protein-
protein interactions across the 5 DEPs regulated by R18

Table 1 Differentially expressed proteins identified in neurons treated with: R18 (R18), glutamic acid (Glut), or R18 and glutamic acid
exposure (R18 + Glut) (Continued)

Gene name SwissProt
Accession
Number

Protein Fold up−/down-regulateda

R18 vs Cont Glut vs Cont R18 + Glut vs Glut

Ywhaq P68255 14–3-3 protein theta −1.087 1.355 −1.615

Miscellaneous

Ak1 P39069 Adenylate kinase isoenzyme 1 (Cellular energy homeostasis) 1.009 −2.938 4.325

Atic O35567 Bifunctional purine biosynthesis protein PURH (Purine biosynthesis) 1.038 1.923 −2.630b

Dnm1l O35303 Dynamin-1-like protein (Mitochondrial fission) −1.820 −7.519b 5.297

Hist1h4b P62804 Histone H4 (Transcription regulation) 1.754 −3.802 7.516b

a Statistically significant values (p < 0.05) for fold up−/down-regulation ≥1.3-fold are highlighted in bold. b 25 uniquely DEPs in R18 and Glut treatment versus
Cont, or R18 + Glut treatment versus Glut
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treatment, and the 73 DEPs regulated by Glut and
R18 + Glut. No significant protein-protein interactions
were identified for the 5 DEPs regulated by R18 treat-
ment (R18 vs Cont) (Fig. 6a). Two hundred and
twenty-two nodes representing direct and indirect
protein-protein interactions were identified for the 73
DEPs regulated by R18 + Glut treatment (R18 + Glut
vs Glut) (Fig. 6b).

ClusterONE network analysis of the 222 nodes re-
vealed that the protein-protein interactions could be
grouped into eight clusters representing distinct bio-
logical functional entities (Fig. 7; boxed proteins). The
clusters were classified as ‘Mitochondrial respiration’
(55 nodes), ‘Proteasome and Protein synthesis’ (43
nodes), ‘Axonal growth & neuronal differentiation’ (11
nodes), ‘Transmembrane trafficking’ (10 nodes), ‘Endo-
plasmic reticulum proteostasis’ (8 nodes), ‘Glycolysis
and carbohydrate metabolism’ (7 nodes), ‘RNA traf-
ficking and processing’ (4 nodes), and ‘Mitochondrial
fatty acid synthesis’ (4 nodes) (Full data provided in
Additional file 4: Table S4).

KEGG pathway analysis of 73 shared proteins
KEGG pathway analysis to determine the biological
pathways and diseases associated with 222 protein-
protein interactions identified pathways pertaining to
proteostasis (‘Proteasome’; 34 of 46 proteins), energy
metabolism (‘Oxidative phosphorylation’; 52 of 130
proteins), and neurotransmission (‘Synaptic vesicle
cycle’; 14 of 60 proteins), and ‘Retrograde endocanna-
binoid signaling’; 34 of 144 proteins) (Fig. 8; full data
in Additional file 5: Table S5). In addition, KEGG
analysis revealed that the protein-protein interactions
were associated with the neurodegenerative disorders
Parkinson’s disease (PD; 52 of 134 proteins), Alzhei-
mer’s disease (AD; 47 of 164 proteins), and Hunting-
ton’s disease (HD; 50 of 181 proteins).

Discussion
In recent years, CARPs have emerged as a novel class of
potential neuroprotective therapeutics for a broad range
of acute brain injuries and chronic neurodegenerative
disorders. These CARPs include short-chained poly-
arginine peptides [11, 13, 27], SS-peptides [28, 29],
APOE-derived peptides [27, 30], and TAT-fused pep-
tides, including TAT-NR2B9c (NA-1) and JNK1-TAT
[11, 31]. Such CARPs have been shown to exert their
neuroprotective action through a variety of targets,
which include structural and functional preservation of
mitochondria [32], reduced ROS generation [33], inhib-
ition of protein aggregation [34], modulation of
glutamate or calcium ion receptors (excitotoxicity/cal-
cium influx) [35], and activation of pro-survival signaling
[36, 37]. Given the diverse biochemical and cellular ef-
fects CARPs can exert on cells, it is likely that other
cytoprotective processes are also involved, which have
yet to be fully elucidated. To this end, the present study
is the first to employ an iTRAQ proteomics approach to
gain insight into protein expression changes after poly-
arginine-18 (R18) treatment of uninjured neuronal cul-
tures and neuronal cultures subjected to glutamic acid
excitotoxic injury.

Fig. 3 Heatmap of differentially expressed proteins (DEPs) regulated
by R18 vs Cont, Glut vs Cont, or R18 + Glut vs Glut. Protein
expression changes are shown as log(2) of fold-change
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The effects of R18 treatment on uninjured neurons
Proteomics analysis of neuronal cultures 24-h after a
10-min exposure to R18 identified 5 DEPs. The small
number of detected protein expression changes was
surprising given that CARPs can induce a variety of
biological effects on cells [38]. However, it is likely

that the small number of proteins detected was in
part due to the 24-h post-R18 treatment time point
used to analyze protein expression changes, as major-
ity of the protein changes elicited by R18 treatment
may potentially occur within the first few hours, and
as such, may no longer have been detectable or did

A

B

C

D

E

F

Fig. 4 PANTHER gene-ontology functional categorization of DEPs regulated by R18 in healthy neurons (vs Cont; blue), and R18 + Glut in injured
neurons (vs Glut; red). The top five categories are displayed across the functional categories of (a, b) Molecular Function (c, d) Biological Process,
and (e, f) Cellular Component
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not fit the requirements for classification of a DEP
(e.g. ± > 1.3 fold change) by 24 h.
The proteins that were identified as being affected

by R18 were largely associated with protein synthesis
and transmembrane protein and cationic ion trans-
port, and did not significantly map onto KEGG path-
ways, suggesting that the R18 peptide does not exert
long-term biological effects in uninjured neurons.
This is in line with the proposed notion that neuro-
protective agents should preferentially interact with
and/or modulate cellular targets activated following

pathological events to minimize the chance of off-
target side effects. Such protective agents are
deemed ‘pathologically-activated’ therapeutics, which
are thought to have a particularly useful application
in neurological disorders, as brain tissue is especially
susceptible to drug-induced disruptions and un-
wanted drug side-effects [38, 39]. However, to pro-
vide a more comprehensive assessment of the
biological effects of R18 on uninjured neurons, fu-
ture studies should examine protein expression at
earlier time points.

Fig. 5 Schematic representation of representative shared neuronal proteins regulated by glutamic acid excitotoxicity (Glut) and R18 + Glut, based
on location and function. Comprehensive protein changes are detailed in Table 1
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R18 treatment reduces glutamic acid-induced changes in
protein expression
An important finding of this study was the ability of
R18 treatment to reverse the majority (74.5%; 73 of
98) of the protein changes induced by glutamic acid
excitotoxicity, and thereby preserve the protein ex-
pression profiles of cortical neurons post-insult (Table
1; Additional file 4: Table S4). Further analysis re-
vealed that these protein changes underpin key cellu-
lar functions, such as mitochondrial respiration and
energy production, proteostasis, neuronal transmem-
brane trafficking, and RNA processing, which are

dysregulated by excitotoxicity. Moreover, KEGG ana-
lysis of protein-protein interactions indicated predom-
inant involvement of pathways pertaining to the
proteasome and oxidative phosphorylation, which also
represent two central biological processes underpin-
ning aspects of neurodegenerative pathophysiology.
This likely contributed to the identification of
enriched protein-protein interactions pertaining to
Parkinson’s disease, Alzheimer’s disease and Hunting-
ton’s disease.
Severe and/or prolonged disruptions in the ubiquitin-

proteasome system have been implicated in both acute

A

B

Fig. 6 Enriched STRING PPI network analysis of DEPs regulated by a. R18 treatment in healthy neurons (vs Cont), and b. DEPs commonly regulated by
Glut and R18 + Glut (vs Glut), demonstrating molecular actions of direct and indirect protein-protein interactions between significantly regulated
proteins. STRING parameters were set to high confidence (0.700), with only query proteins shown

MacDougall et al. Molecular Brain           (2019) 12:66 Page 12 of 16



(ischaemic stroke, TBI) and chronic (AD, PD, motor
neuron disease) neurological disorders [39, 40]. Pre-
vious studies have shown that CARPs exhibit pro-
teasomal modulatory activity and could potentially
conserve protein expression profiles through inhib-
ition of injury-induced proteasomal protein
degradation. For example, the arginine-rich PR-11
(H-RRRPRPPYLPRPRPPPFFPPRLPPRIPPGFPPRFPPR
FP-OH; net charge + 11) and PR-39 (H-RRRPRPPY
LPR-OH; net charge + 5) peptides attenuate inflam-
mation induced by ischaemia-reperfusion injury
through inhibition of proteasomal degradation of
IκBα; a NFκB inhibitory protein [41, 42]. Taken to-
gether, it appears CARPs can influence the function
of the proteasome, and thereby exert neuroprotec-
tive benefits during times of cellular stress.
Proteomic analysis also revealed that R18 preserved

protein expression profiles pertaining to mitochondrial
bioenergetics and structural integrity. Mitochondria are
central mediators of intracellular calcium signaling
events during excitotoxicity, and as such, are considered
the “judge, jury, and executioner” of the cell [31, 43].

During excitotoxic injury, mitochondria act as a buffer
for toxic intracellular calcium accumulation, however
excessive mitochondrial calcium uptake can disrupt their
structural and functional integrity, resulting in the re-
lease of pro-death signaling proteins from the mitochon-
drial inter-membrane space [44, 45]. Therefore, the
ability of R18 treatment to attenuate excitotoxicity-
induced protein changes underlying loss of mitochon-
drial integrity, provides evidence that the peptide helps
preserve the function of the organelle in times of cellular
stress. In line with the ability of CARPs to maintain
mitochondrial function and energy generation, in this
and previous studies R18 was demonstrated to increase
MTS metabolism in uninjured neurons and in neurons
after exposure to glutamic acid [14].
Bioinformatic analysis of the DEPs identified in the

present study largely focused on the 73 proteins up- or
down-regulated by glutamic acid excitotoxic injury.
However, it is important to note that 25 other DEPs
were also identified to be uniquely regulated by com-
bined R18 + Glut treatment, which may represent add-
itional proteins influenced by R18 and associated with

Fig. 7 Cytoscape ClusterONE analysis of enriched STRING protein-protein interaction network of shared DEPs regulated by both Glut and R18 + Glut.
Cytoscape ClusterONE analysis was used to group protein clusters based on their involvement in ‘Mitochondrial respiration’, ‘Axonal growth and
neuronal differentiation’, ‘Transmembrane trafficking’, ‘Endoplasmic reticulum proteostasis’, ‘Glycolysis and carbohydrate metabolism’, ‘Mitochondrial
fatty acid synthesis’, or ‘RNA trafficking and processing’. Clusters represent statistical significance cut-offs of p < 0.05, and empty nodes represent
proteins that do not share statistically significant functions with other proteins
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neuroprotection. Alternatively, these proteins could re-
flect non-specific changes in protein expression unre-
lated to neuroprotection.

Limitations and future directions
The proteomics methodology used in this study does
not provide insight into other forms of protein modifica-
tion, such as post-translational changes (e.g. phosphoryl-
ation, acetylation, and glycosylation), which may
influence protein functions important for neuroprotec-
tion. In addition, only a 24-h timepoint was examined
and therefore it would also be of interest to examine
protein expression changes, as well as post-translational
modifications at earlier timepoints after R18 treatment.
Further studies are also required to confirm if the DEPs
and the biochemical and disease pathways influenced by
R18 treatment after glutamic acid excitotoxicity in vitro
are also affected by the peptide in animal models of
acute brain injury (e.g. stroke, TBI) and chronic neuro-
degenerative disorders (AD, PD).

Conclusion
This exploratory study has demonstrated for the first
time that the poly-arginine peptide R18 exerts significant
effects in attenuating the protein expression changes

associated with neuronal excitotoxicity in vitro, while in-
ducing minimal changes in uninjured neurons. Collect-
ively, our findings indicate that the neuroprotective
effects of R18 following excitotoxicity are associated pre-
dominantly with preservation of neuronal proteostasis,
together with positive effects on mitochondrial and pro-
teasomal function. The findings of this study provide
further evidence supporting the role of poly-arginine
peptides as a potential neuroprotective therapeutic for
both acute and chronic neurodegenerative disorders.
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Additional file 1: Table S1. Summary of LC-MS/MS spectral data analysis.
Summary of LC-MS/MS spectral data analysis with ProteinPilot™ 5.0 Software
[Sciex] using the SwissProt database (Version April 2017; 7,985 sequences)
against Rattus norvegicus (Rat) taxonomy, using the reversed version of the
protein sequences contained in the search database. FDR was automatically
calculated with the Proteomics System Performance Evaluation Pipeline
(PSPEP) feature in the ProteinPilot™ software. (DOCX 17 kb)

Additional file 2: Table S2. Full iTRAQ proteomics data. Full iTRAQ
proteomics data showing relative fold changes in protein expression and
corresponding p-values. (DOCX 54 kb)

Additional file 3: Table S3. PANTHER gene-ontology functional
categorization. PANTHER gene-ontology functional categorization of DEPs
significantly regulated by R18 treatment alone (R18 vs Cont), glutamic
acid exposure (Glut vs Cont), and R18 pre-treatment with glutamic acid

Fig. 8 Enriched KEGG pathway analysis of shared DEPs common to both Glut and R18 + Glut (vs Glut), demonstrating the top 20 pathways.
Shown above is the percentage of proteins mapped to the respective significantly regulated pathways, with the fraction of regulated proteins
mapping onto the total number of proteins in each pathway provided in white. The top 5 pathways are outlined in red

MacDougall et al. Molecular Brain           (2019) 12:66 Page 14 of 16

https://doi.org/10.1186/s13041-019-0486-8
https://doi.org/10.1186/s13041-019-0486-8
https://doi.org/10.1186/s13041-019-0486-8


exposure (R18 + Glut vs Glut). Note: proteins may have multiple functions,
and as such, the total number of proteins in each category may be
greater than the sum of DEPs across each treatment group. (DOCX 49 kb)

Additional file 4: Table S4. Cytoscape quantitative analysis. Cytoscape
quantitative analysis of STRING data cluster strength for 73 shared DEPs
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pathway analysis. Quantitative data and full gene list of KEGG pathway
analysis of 73 shared DEPs across Glut and R18 + Glut treatment groups,
with details provided on term ID, overserved gene count vs. background
gene count, and FDR. (DOCX 17 kb)

Abbreviations
AD: Alzheimer’s disease; ALS: Amyotrophic lateral sclerosis; Cont: ‘No
treatment’ group; DEP: Differentially expressed proteins; Glut: ‘Glutamic acid
excitotoxic injury’ treatment group; HD: Huntington’s disease; LC-MS/
MS: Liquid chromatography-tandem mass spectrometry; PD: Parkinson’s
disease; R18 + Glut: ‘R18-treatment and glutamic acid injury’ treatment group;
R18: Poly-arginine-18 peptide

Acknowledgements
iTRAQ proteomic labelling and analysis was conducted with the help of
Proteomics International Laboratories LTD, Australia.

Authors’ contributions
Sample preparation, testing, and collection conducted by GM. iTRAQ protein
labelling and LC-MS/MS analysed by Proteomics International Australia Pty
Ltd. Bioinformatics analysed and interpreted by GM. RA, FM, and BM were
major contributors to the manuscript. Minor edits were provided by NK. All
authors read and approved the final manuscript.

Funding
This study was funded in part by a University Postgraduate Award (UPA)
from the University of Notre Dame, Australia. Funding support was also
provided by Mr. Torsten Ketelsen and the Perron Institute Fundraising
Committee.

Availability of data and materials
All data generated or analysed during this study are included in this
published article (and its Suppl. information files).

Ethics approval and consent to participate
Approval for the use of E18 Sprague-Dawley rat embryos for isolation of
cortical tissue was obtained by the University of Western Australia Animal
Ethics Committee (RA/3/100/1432).

Consent for publication
Not applicable.

Competing interests
B.P. Meloni and N.W. Knuckey are named inventors of several patent
applications (Provisional Patents: 2013904197; 30/ 10/2013 and 2014902319;
17/6/2014 and PCT/ AU2014/050326; 30/10/2104) regarding the use of
arginine-rich peptides as neuroprotective agents. The other authors declare
they have no conflict of interest.

Author details
1Centre for Neuromuscular and Neurological Disorders, The University of
Western Australia, Nedlands, Australia. 2Department of Neurosurgery, Sir
Charles Gairdner Hospital, QEII Medical Centre, Nedlands, Western Australia,
Australia. 3Perron Institute for Neurological and Translational Sciences, QEII
Medical Centre, Ground Floor, RR Block, 8 Verdun St, Nedlands, Western
Australia 6009, Australia. 4School of Heath Sciences and Institute for Health
Research, The University Notre Dame, Fremantle, Western Australia, Australia.

Received: 6 June 2019 Accepted: 1 July 2019

References
1. Xing C, Arai K, Lo EH, Hommel M. Pathophysiologic cascades in ischemic

stroke. Int J Stroke. 2012. https://doi.org/10.1111/j.1747-4949.2012.00839.x.
2. Platt SR. The role of glutamate in central nervous system health and disease

- a review. Vet J. 2007. https://doi.org/10.1016/j.tvjl.2005.11.007.
3. Talantova M, Sanz-Blasco S, Zhang X, Xia P, Akhtar MW, Okamoto S -i, et al.

Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor
activation, and synaptic loss. Proc Natl Acad Sci. 2013. https://doi.org/10.1
073/pnas.1306832110.

4. De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, et al.
Aβ oligomers induce neuronal oxidative stress through an N-methyl-D-
aspartate receptor-dependent mechanism that is blocked by the Alzheimer
drug memantine. J Biol Chem. 2007. https://doi.org/10.1074/jbc.M607483200.

5. Zeron MM, Hansson O, Chen N, Wellington CL, Leavitt BR, Brundin P, et al.
Increased sensitivity to N-methyl-D-aspartate receptor-mediated
excitotoxicity in a mouse model of Huntington’s disease. Neuron. 2002.
https://doi.org/10.1016/S0896-6273(02)00615-3.

6. Shehadeh J, Fernandes HB, Zeron Mullins MM, Graham RK, Leavitt BR,
Hayden MR, et al. Striatal neuronal apoptosis is preferentially enhanced by
NMDA receptor activation in YAC transgenic mouse model of Huntington
disease. Neurobiol Dis. 2006. https://doi.org/10.1016/j.nbd.2005.08.001.

7. Helton TD, Otsuka T, Lee M-C, Mu Y, Ehlers MD. Pruning and loss of
excitatory synapses by the parkin ubiquitin ligase. Proc Natl Acad Sci. 2008.
https://doi.org/10.1073/pnas.0802280105.

8. Zádori D, Klivényi P, Plangár I, Toldi J, Vécsei L. Endogenous
neuroprotection in chronic neurodegenerative disorders: with particular
regard to the kynurenines. J Cell Mol Med. 2011. https://doi.org/10.1111/j.15
82-4934.2010.01237.x.

9. Carriedo SG, Yin HZ, Weiss JH. Motor neurons are selectively vulnerable to
AMPA/kainate receptor-mediated injury in vitro. J Neurosci. 1996. https://
doi.org/10.1523/jneurosci.2021-10.2010.

10. Van Damme P, Van den Bosch L, Van Houtte E, Callewaert G, Robberecht W.
GluR2-dependent properties of AMPA receptors determine the selective
vulnerability of motor neurons to excitotoxicity. J Neurophysiol. 2002.
https://doi.org/10.1152/jn.00163.2002.

11. Meloni BP, Craig AJ, Milech N, Hopkins RM, Watt PM, Knuckey NW. The
neuroprotective efficacy of cell-penetrating peptides TAT, penetratin, Arg-9,
and Pep-1 in glutamic acid, kainic acid, and in vitro ischemia injury models
using primary cortical neuronal cultures. Cell Mol Neurobiol. 2014. https://
doi.org/10.1007/s10571-013-9999-3.

12. Meloni BP, Brookes LM, Clark VW, Cross JL, Edwards AB, Anderton RS, et al.
Poly-arginine and arginine-rich peptides are neuroprotective in stroke models.
J Cereb Blood Flow Metab. 2015. https://doi.org/10.1038/jcbfm.2015.11.

13. Meloni BP, Milani D, Cross JL, Clark VW, Edwards AB, Anderton RS, et al.
Assessment of the neuroprotective effects of arginine-rich protamine
peptides, poly-arginine peptides (R12-cyclic, R22) and arginine–tryptophan-
containing peptides following in vitro excitotoxicity and/or permanent
middle cerebral artery occlusion in rats. NeuroMolecular Med. 2017. https://
doi.org/10.1007/s12017-017-8441-2.

14. Milani D, Bakeberg MC, Cross JL, Clark VW, Anderton RS, Blacker DJ, et al.
Comparison of neuroprotective efficacy of poly-arginine R18 and R18D (D-
enantiomer) peptides following permanent middle cerebral artery occlusion
in the Wistar rat and in vitro toxicity studies. PLoS One. 2018. https://doi.
org/10.1371/journal.pone.0193884.

15. Milani D, Cross JL, Anderton RS, Blacker DJ, Knuckey NW, Meloni BP.
Neuroprotective efficacy of poly-arginine R18 and NA-1 (TAT-NR2B9c)
peptides following transient middle cerebral artery occlusion in the rat.
Neurosci Res. 2017. https://doi.org/10.1016/j.neures.2016.09.002.

16. Milani D, Cross JL, Anderton RS, Blacker DJ, Knuckey NW, Meloni BP. Delayed 2-
h post-stroke administration of R18 and NA-1 (TAT-NR2B9c) peptides after
permanent and/or transient middle cerebral artery occlusion in the rat. Brain
Res Bull. 2017. https://doi.org/10.1016/j.brainresbull.2017.09.012.

17. Milani D, Clark VW, Cross JL, Anderton RS, Knuckey NW, Meloni BP.
Poly-arginine peptides reduce infarct volume in a permanent middle
cerebral artery rat stroke model. BMC Neurosci. 2016. https://doi.org/1
0.1186/s12868-016-0253-z.

18. Milani D, Knuckey NW, Anderton RS, Cross JL, Meloni BP. The R18 polyarginine
peptide is more effective than the TAT-NR2B9c (NA-1) peptide when

MacDougall et al. Molecular Brain           (2019) 12:66 Page 15 of 16

https://doi.org/10.1186/s13041-019-0486-8
https://doi.org/10.1186/s13041-019-0486-8
https://doi.org/10.1111/j.1747-4949.2012.00839.x
https://doi.org/10.1016/j.tvjl.2005.11.007
https://doi.org/10.1073/pnas.1306832110
https://doi.org/10.1073/pnas.1306832110
https://doi.org/10.1074/jbc.M607483200
https://doi.org/10.1016/S0896-6273(02)00615-3
https://doi.org/10.1016/j.nbd.2005.08.001
https://doi.org/10.1073/pnas.0802280105
https://doi.org/10.1111/j.1582-4934.2010.01237.x
https://doi.org/10.1111/j.1582-4934.2010.01237.x
https://doi.org/10.1523/jneurosci.2021-10.2010
https://doi.org/10.1523/jneurosci.2021-10.2010
https://doi.org/10.1152/jn.00163.2002
https://doi.org/10.1007/s10571-013-9999-3
https://doi.org/10.1007/s10571-013-9999-3
https://doi.org/10.1038/jcbfm.2015.11
https://doi.org/10.1007/s12017-017-8441-2
https://doi.org/10.1007/s12017-017-8441-2
https://doi.org/10.1371/journal.pone.0193884
https://doi.org/10.1371/journal.pone.0193884
https://doi.org/10.1016/j.neures.2016.09.002
https://doi.org/10.1016/j.brainresbull.2017.09.012
https://doi.org/10.1186/s12868-016-0253-z
https://doi.org/10.1186/s12868-016-0253-z


administered 60 minutes after permanent middle cerebral artery occlusion in
the rat. Stroke Res Treat. 2016. https://doi.org/10.1155/2016/2372710.

19. Edwards AB, Cross JL, Anderton RS, Knuckey NW, Meloni BP. Poly-arginine
R18 and R18D (D-enantiomer) peptides reduce infarct volume and
improves behavioural outcomes following perinatal hypoxic-ischaemic
encephalopathy in the P7 rat. Mol Brain. 2018. https://doi.org/10.1186/s13
041-018-0352-0.

20. Chiu LS, Anderton RS, Cross JL, Clark VW, Edwards AB, Knuckey NW, et
al. Assessment of R18, COG1410, and APP96-110 in excitotoxicity and
traumatic brain injury. Transl Neurosci. 2017. https://doi.org/10.1515/
tnsci-2017-0021.

21. Chiu LS, Anderton RS, Cross JL, Clark VW, Knuckey NW, Meloni BP. Poly-
arginine peptide R18D reduces neuroinflammation and functional deficits
following traumatic brain injury in the long-Evans rat. Int J Pept Res Ther.
2019. https://doi.org/10.1007/s10989-018-09799-8.

22. MacDougall G, Anderton RS, Edwards AB, Knuckey NW, Meloni BP. The
neuroprotective peptide poly-arginine-12 (R12) reduces cell surface levels of
NMDA NR2B receptor subunit in cortical neurons; investigation into the
involvement of endocytic mechanisms. J Mol Neurosci. 2017. https://doi.
org/10.1007/s12031-016-0861-1.

23. Szeto HH. Mitochondria-targeted cytoprotective peptides for ischemia–
reperfusion injury. Antioxid Redox Signal. 2007. https://doi.org/10.1089/
ars.2007.1892.

24. Meloni BP, Majda BT, Knuckey NW. Establishment of neuronal in vitro
models of ischemia in 96-well microtiter strip-plates that result in acute,
progressive and delayed neuronal death. Neuroscience. 2001. https://doi.
org/10.1016/S0306-4522(01)00396-7.

25. Casey T, Solomon PS, Bringans S, Tan KC, Oliver RP, Lipscombe R.
Quantitative proteomic analysis of G-protein signalling in Stagonospora
nodorum using isobaric tags for relative and absolute quantification.
Proteomics. 2010. https://doi.org/10.1002/pmic.200900474.

26. Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD. PANTHER
version 10: expanded protein families and functions, and analysis tools.
Nucleic Acids Res. 2016. https://doi.org/10.1093/nar/gkv1194.

27. Meloni BP, Milani D, Edwards AB, Anderton RS, O’Hare Doig RL,
Fitzgerald M, et al. Neuroprotective peptides fused to arginine-rich cell
penetrating peptides: neuroprotective mechanism likely mediated by
peptide endocytic properties. Pharmacol Ther. 2015. https://doi.org/10.1
016/j.pharmthera.2015.06.002.

28. Zhao K, Zhao GM, Wu D, Soong Y, Birk AV, Schiller PW, et al. Cell-permeable
peptide antioxidants targeted to inner mitochondrial membrane inhibit
mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol
Chem. 2004. https://doi.org/10.1074/jbc.M402999200.

29. Szeto HH, Liu S, Soong Y, Wu D, Darrah SF, Cheng F-Y, et al. Mitochondria-
targeted peptide accelerates ATP recovery and reduces ischemic kidney
injury. J Am Soc Nephrol. 2011. https://doi.org/10.1681/ASN.2010080808.

30. Aono M, Bennett ER, Kim KS, Lynch JR, Myers J, Pearlstein RD, et al.
Protective effect of apolipoprotein E-mimetic peptides on -methyl-D-
aspartate excitotoxicity in primary rat neuronal-glial cell cultures.
Neuroscience. 2003. https://doi.org/10.1016/S0306-4522(02)00709-1.

31. MacDougall G, Anderton RS, Mastaglia FL, Knuckey NW, Meloni BP.
Mitochondria and neuroprotection in stroke: cationic arginine-rich peptides
(CARPs) as a novel class of mitochondria-targeted neuroprotective
therapeutics. Neurobiol Dis. 2019. https://doi.org/10.1016/j.nbd.2018.09.010.

32. Birk AV, Liu S, Soong Y, Mills W, Singh P, Warren JD, et al. The
mitochondrial-targeted compound SS-31 re-energizes ischemic
mitochondria by interacting with cardiolipin. J Am Soc Nephrol. 2013.
https://doi.org/10.1681/ASN.2012121216.

33. Petri S, Kiaei M, Damiano M, Hiller A, Wille E, Manfredi G, et al. Cell-
permeable peptide antioxidants as a novel therapeutic approach in a
mouse model of amyotrophic lateral sclerosis. J Neurochem. 2006. https://
doi.org/10.1111/j.1471-4159.2006.04018.x.

34. Gibson TJ, Murphy RM. Design of peptidyl compounds that affect β-amyloid
aggregation: importance of surface tension and context. Biochemistry. 2005.
https://doi.org/10.1021/bi050225s.

35. Fan J, Cowan CM, Zhang LYJ, Hayden MR, Raymond LA. Interaction of
postsynaptic density protein-95 with NMDA receptors influences excitotoxicity
in the yeast artificial chromosome mouse model of huntington’s disease. J
Neurosci. 2009. https://doi.org/10.1523/JNEUROSCI.2491-09.2009.

36. Cook DR, Gleichman AJ, Cross SA, Doshi S, Ho W, Jordan-Sciutto KL, et al.
NMDA receptor modulation by the neuropeptide apelin: implications for

excitotoxic injury. J Neurochem. 2011. https://doi.org/10.1111/j.1471-4159.2
011.07383.x.

37. O’Donnell LA, Agrawal A, Sabnekar P, Dichter MA, Lynch DR, Kolson DL.
Apelin, an endogenous neuronal peptide, protects hippocampal neurons
against excitotoxic injury. J Neurochem. 2007. https://doi.org/10.1111/j.14
71-4159.2007.04645.x.

38. Brugnano J, Ward BC, Panitch A. Cell penetrating peptides can exert
biological activity: a review. Biomol Concepts. 2010. https://doi.org/1
0.1515/bmc.2010.016.

39. Ross CA, Poirier MA. Protein aggregation and neurodegenerative disease.
Nat Med. 2004. https://doi.org/10.1038/nm1066.

40. Ciechanover A, Brundin P. The ubiquitin proteasome system in
neurodegenerative diseases: sometimes the chicken, sometimes the egg.
Neuron. 2003. https://doi.org/10.1016/S0896-6273(03)00606-8.

41. Bao J, Sato K, Li M, Gao Y, Abid R, Aird W, et al. PR-39 and PR-11 peptides
inhibit ischemia-reperfusion injury by blocking proteasome-mediated I
kappa B alpha degradation. Am J Physiol Heart Circ Physiol. 2001. https://
doi.org/10.1152/ajpheart.2001.281.6.H2612.

42. Anbanandam A, Albarado DC, Tirziu DC, Simons M, Veeraraghavan S.
Molecular basis for proline- and arginine-rich peptide inhibition of
proteasome. J Mol Biol. 2008. https://doi.org/10.1016/j.jmb.2008.09.021.

43. Yang JL, Mukda S, Der CS. Diverse roles of mitochondria in ischemic stroke.
Redox Biol. 2018. https://doi.org/10.1016/j.redox.2018.03.002.

44. Stout AK, Raphael HM, Kanterewicz BI, Klann E, Reynolds IJ. Glutamate-
induced neuron death requires mitochondrial calcium uptake. Nat Neurosci.
1998. https://doi.org/10.1038/1577.

45. Castilho RF, Ward MW, Nicholls DG. Oxidative stress, mitochondrial function,
and acute glutamate excitotoxicity in cultured cerebellar granule cells. J
Neurochem. 1999. https://doi.org/10.1046/j.1471-4159.1999.721394.x.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

MacDougall et al. Molecular Brain           (2019) 12:66 Page 16 of 16

https://doi.org/10.1155/2016/2372710
https://doi.org/10.1186/s13041-018-0352-0
https://doi.org/10.1186/s13041-018-0352-0
https://doi.org/10.1515/tnsci-2017-0021
https://doi.org/10.1515/tnsci-2017-0021
https://doi.org/10.1007/s10989-018-09799-8
https://doi.org/10.1007/s12031-016-0861-1
https://doi.org/10.1007/s12031-016-0861-1
https://doi.org/10.1089/ars.2007.1892
https://doi.org/10.1089/ars.2007.1892
https://doi.org/10.1016/S0306-4522(01)00396-7
https://doi.org/10.1016/S0306-4522(01)00396-7
https://doi.org/10.1002/pmic.200900474
https://doi.org/10.1093/nar/gkv1194
https://doi.org/10.1016/j.pharmthera.2015.06.002
https://doi.org/10.1016/j.pharmthera.2015.06.002
https://doi.org/10.1074/jbc.M402999200
https://doi.org/10.1681/ASN.2010080808
https://doi.org/10.1016/S0306-4522(02)00709-1
https://doi.org/10.1016/j.nbd.2018.09.010
https://doi.org/10.1681/ASN.2012121216
https://doi.org/10.1111/j.1471-4159.2006.04018.x
https://doi.org/10.1111/j.1471-4159.2006.04018.x
https://doi.org/10.1021/bi050225s
https://doi.org/10.1523/JNEUROSCI.2491-09.2009
https://doi.org/10.1111/j.1471-4159.2011.07383.x
https://doi.org/10.1111/j.1471-4159.2011.07383.x
https://doi.org/10.1111/j.1471-4159.2007.04645.x
https://doi.org/10.1111/j.1471-4159.2007.04645.x
https://doi.org/10.1515/bmc.2010.016
https://doi.org/10.1515/bmc.2010.016
https://doi.org/10.1038/nm1066
https://doi.org/10.1016/S0896-6273(03)00606-8
https://doi.org/10.1152/ajpheart.2001.281.6.H2612
https://doi.org/10.1152/ajpheart.2001.281.6.H2612
https://doi.org/10.1016/j.jmb.2008.09.021
https://doi.org/10.1016/j.redox.2018.03.002
https://doi.org/10.1038/1577
https://doi.org/10.1046/j.1471-4159.1999.721394.x

	Abstract
	Introduction
	Methods
	Peptides
	Primary cortical neuronal cultures
	Glutamic acid excitotoxicity model and assessment of cell viability
	Protein extraction
	Protein sample preparation and iTRAQ labelling
	Proteomic data analysis: qualification and quantitation
	Proteomic data analysis: bioinformatics
	Statistical analysis

	Results
	R18 improves cell viability in uninjured and glutamic acid-treated neuronal cells
	Quantitative and qualitative proteomic analysis
	Proteins regulated by R18 treatment alone (R18 vs Cont)
	Proteins regulated by glutamic acid injury alone (glut vs Cont)
	Proteins regulated by R18 plus glutamic acid injury (R18 + Glut vs Cont)
	Proteins regulated by R18 plus glutamic acid injury vs glutamic acid injury alone (R18 + Glut vs glut)

	Functional categorization of differentially regulated proteins (DEPs)
	Protein-protein interaction network analysis of DEPs regulated by R18 in uninjured and glutamic acid injured neurons
	KEGG pathway analysis of 73 shared proteins

	Discussion
	The effects of R18 treatment on uninjured neurons
	R18 treatment reduces glutamic acid-induced changes in protein expression
	Limitations and future directions

	Conclusion
	Additional files
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

