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A commentary on

Enoxacin elevates microRNA levels in
rat frontal cortex and prevents learned
helplessness
by Smalheiser NR, Zhang H, Dwivedi
Y. Front Psychiatry (2014) 5:6. doi:
10.3389/fpsyt.2014.00006

Complex molecular networks often pose
significant challenges for separating causes
from effects, especially when using in vivo
models to conduct experiments. Tackling
such a challenge requires at least three (and
usually more) critical tools: a means to
reliably manipulate individual molecular
factors, a measurable reporter with valid
connections to the cell/tissue/organism
behavior of interest, and an experimen-
tal system that allows repeated measure-
ments over time. Smalheiser, Zhang, and
Dwivedi describe a rat model that may
provide these tools for studying mol-
ecular mechanisms of major depressive
disorder (MDD).

Major depressive disorder encompasses
a wide range of neurological symptoms,
perhaps reflecting the wide variety of
cellular and molecular alterations which
have been reported in multiple brain
regions (1). Smalheiser et al. have observed
reduced microRNA expression levels in
the prefrontal cortex of depressed sui-
cide subjects (2, 3), but learned helpless-
ness induced in a rat model of MDD was
accompanied by muted responses in spe-
cific microRNAs compared to significantly
reduced expression in rats that did not
develop learned helplessness (4). As potent
down-regulators of messenger RNA abun-
dance and translation, microRNAs target a

majority of genes in the human genome
and thus represent a global, and poten-
tially druggable (5, 6), regulatory mecha-
nism capable of affecting most molecular
networks. But do alterations in microRNA
expression precede and potentially cause
depression severe enough to result in sui-
cide, comprise part of the response to some
other triggering pathology, or represent
both cause and effect depending on which
microRNA is involved (7)?

Two factors that most influence
microRNA expression levels are tran-
scription regulation and RNA processing.
microRNAs are short portions of sequence
cleaved from longer precursor transcripts.
Stabilization of the Dicer complex, the
enzyme responsible for transcript cleav-
age to produce mature microRNAs, will
result in higher levels of microRNA as
long as unprocessed precursor transcripts
are available. This effect can be achieved
by supplying enoxacin, a fluoroquinolone
that binds to a member of the Dicer com-
plex and increases overall microRNA levels
in cultured cells (8). Fluoroquinolones are
an interesting family of small molecules
that exhibit a number of bioactive prop-
erties; enoxacin not only interacts with
TAR RNA-binding protein 2 (TARBP2)
to promote Dicer activity but also alters
V-ATPase binding to actin (9), JNK signal-
ing (10), and cytochrome P450 activities
(11–13), as well as inhibiting prokaryotic
DNA gyrases (14).

Smalheiser et al. hypothesized that
boosting microRNA abundances, or at least
preventing their reduction, may disrupt
the onset of learned helplessness in the
rat MDD model, but it was not previ-
ously known whether enoxacin would be

available to or active in the brain. Their
current work demonstrates that 1 week of
enoxacin exposure indeed does raise the
levels of four neuronal reporter microR-
NAs in rat frontal cortex compared to
unexposed controls. In parallel experi-
ments, inescapable shock induced learned
helplessness in 6 of 10 untreated rats,
but only of 5 of 34 rats pretreated with
enoxacin developed learned helplessness.
These findings establish an experimental
system that can now be used for a vari-
ety of follow-up studies using the three
key tools – enoxacin to manipulate brain
microRNA, learned helplessness as the
reporter measurement, and permutations
of timing and dosage to investigate time
courses of causes and effects. A potentially
useful addition would be assays of blood
microRNA as a surrogate for brain expres-
sion levels, allowing repeated testing of ani-
mals without sacrificing to collect brain
tissue; circulating microRNAs are becom-
ing a well-established class of biomarkers
for several pathologies including traumatic
brain injury (15). Important topics to be
addressed include the efficacy of enoxacin
treatment after the onset of learned help-
lessness, and brain RNA and protein pro-
filing to catalog the affected microRNAs,
genes, and anatomical regions. As with
any model system several caveats must
be considered, such as whether the anti-
depressive effect is due to enoxacin inter-
action with some other protein rather than
stabilization of Dicer, and how well this
rat model represents human MDD at brain
biochemical up through behavioral levels.

As a bacterial DNA gyrase inhibitor,
enoxacin has been successfully used world-
wide as a second-generation quinolone
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antibiotic with low occurrence of adverse
effects, although a perception of higher
toxicity compared to related compounds
has limited its use in the United States.
Perhaps fortelling the cortical microRNA
result, enoxacin has been associated with
central nervous system effects including
insomnia, photosensitivity, and convul-
sions (when combined with NSAIDs) (16,
17). Interest in enoxacin has been renewed
by cancer microRNA profiling, which
revealed wide-scale reductions in expres-
sion, including the loss of many tumor-
suppressor microRNAs. Barring somatic
mutation of TARBP2 that would prevent
its binding, enoxacin can alleviate sup-
pressed microRNA production and restore
molecular controls that normally prevent
tumorigenesis or send neoplastic cells into
cell cycle arrest or apoptosis (6, 8, 18, 19).
Reduced microRNA production is associ-
ated with amyotrophic lateral sclerosis and
other neurodegeneration (7, 20–24), and
enoxacin is therefore under consideration
as a treatment for motor neuron diseases
(25). Another potential therapeutic appli-
cation (likely not involving microRNA)
is inhibition of osteoclast development
and activity, which could prevent damag-
ing bone resorption in periodontal dis-
ease and around orthopedic implants that
lose stability with wear (9, 10, 26, 27).
Would MDD patients, who may need a
much longer course of enoxacin exposure
than is typical for antibiotic indications,
experience relief of depression and pro-
tection against cancer at the expense of
excessive bone deposition and an altered
microbiome? At a minimum, enoxacin
provides a well-tolerated tool for in vivo
investigation of how microRNA process-
ing affects brain phenotypes (28), and a
starting point for identifying specific ther-
apeutic targets that could be treated with
synthetic microRNAs or their antisense
inhibitors (29–31).
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