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Abstract: The use of alternative cementitious binders is necessary for producing sustainable concrete.
Herein, we study the effect of using alternative cementitious binders in ultra-high-performance
concrete (UPHC) by calculating the phase assemblages of UHPC in which Portland cement is
replaced with calcium aluminate cement, calcium sulfoaluminate cement, metakaolin or blast furnace
slag. The calculation result shows that replacing Portland cement with calcium aluminate cement or
calcium sulfoaluminate cement reduces the volume of C-S-H but increases the overall solid volume
due to the formation of other phases, such as strätlingite or ettringite. The modeling result predicts
that using calcium aluminate cement or calcium sulfoaluminate cement may require more water than
it would for plain UHPC, while a similar or lower amount of water is needed for chemical reactions
when using blast furnace slag or metakaolin.

Keywords: UHPC; thermodynamic modeling; phase assemblage; alternative cementitious binders;
supplementary cementitious materials

1. Introduction

Ultra-high-performance concrete (UHPC) is considered one of the most promising con-
struction materials in terms of performance. It is typically produced at low water-to-binder
(w/b) ratios (0.15–0.25) and exhibits outstanding mechanical properties (compressive and
tensile strengths exceeding 120 and 5 MPa after 28 days of curing) [1,2]. Due to the use of
low w/b ratios, UHPC generally possesses extremely low porosity and excellent resistance
to various chemical degradations. UHPC has been a topic of numerous studies which
focused on various aspects of UHPC, such as its fresh and hardened state properties [3–7],
effects of mix designs [8–11] and its performance at a structural level [12–15]. Due to the
fact that the mixture proportioning and production methods of UHPC became mostly stan-
dardized in many countries, Portland cement (PC) is used as a cementitious binder along
with silica fume in most cases. This is particularly important in recent years, where the
high CO2 footprint of PC has been a global concern and the demand for more sustainable
cementitious binders is dramatically increasing.

Some attempts have been made to investigate the effect of using alternative cements or
supplementary cementitious materials in the replacement of PC in UHPC. Song et al. [16]
studied the effect of calcium sulfoaluminate cement (CSA) addition on the microstructure
of UHPC, and showed that CSA tends to reduce the autogenous shrinkage of UHPC,
concluding that a 5–15% addition is optimal. It is also reported that a denser matrix is
formed when CSA is added to UHPC [16]. The use of calcium aluminate cement (CAC) as a
cementitious binder in UHPC was intensively investigated by Lee et al. [17], who reported
that CSA-based UHPC is capable of withstanding heat exposure and is free from spalling,
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whereas typical UHPC is expected to completely lose its form at an exposure temperature
~400 ◦C.

The effect of blast furnace slag (BFS) incorporation in UHPC can vary depending on
the curing age. The incorporation of BFS in UHPC is generally known to decrease the
compressive strength at early age (1–3 days) by 18–39% [18], while the strength can be
higher in the BFS-containing UHPC in comparison with the plain one after 28 days [19,20].
The effect of BFS on the properties of UHPC can also vary depending on its replacement
ratios. A study by Abdulkareem et al. [21] suggests that incorporation of BFS accelerates
the hydration and refines the pore structure, while a high content of BFS may reduce the
compressive strength by decreasing the amount of C-S-H in UHPC. The use of metakaolin
(MK) in UHPC has been found to improve the early-age strength while decreasing the
later-age strength [22]. The loss in the strength when MK is used to replace PC can be 11.8%
relative to the strength of the control sample after 28 days of curing [22]. On the other hand,
the use of very fine MK (so-called nano MK) is reported to increase the strength by 7.9%
at the sample age of 28 days at a dosage as low as 1% [23]. Materials obtained from other
sources can also be used to make UHPC (i.e., demolition waste [24], mine tailings [11],
cement kiln dust, rice husk ash [25]) and achieve performance comparable to the ordinary
system.

Despite an increasing number of studies having investigated the mechanical prop-
erties of UHPC incorporating cementitious binders other than PC, their microstructural
information, which dictates the evolution of their properties, and performance is rarely
available in the literature. Therefore, this study conducts thermodynamic simulations to
predict the phase assemblages of UHPC in which PC is replaced with other cementitious
binders, including CAC, CSA, MK or BFS.

2. Materials and Methods

The mix proportion of UHPC used in this work is shown in Table 1. The water-to-
cement and water-to-binder ratios of the modeled UHPC were 0.2 and 0.16, respectively.
The cement denotes PC, which was gradually replaced by either CAC, CSA, MK or BFS in
the simulation. The compositions (Table 2) and reaction degrees of the binders reported in
previous studies were used (PC [26], CAC [27], CSA [26], MK [28] and BFS [29]). The phase
assemblages of UHPC mixtures incorporating PC, CAC, CSA, MK or BFS were predicted
using GEM-Selektor v3.7 [30,31] and Cemdata18 [32].

Table 1. Mix proportion of UHPC.

Materials Cement Silica Fume Silica Powder Water

Mass Ratio 1.00 0.25 0.25 0.20

Table 2. Oxide compositions (mass-%) of raw materials obtained from other studies.

Oxides PC [26] CAC [27] CSA [26] MK [28] BFS [29]

CaO 60.7 36.6 41.8 41.6
SiO2 20.6 4.1 8.5 52.0 36.6

Al2O3 5.0 40.3 30.4 43.8 12.2
Fe2O3 3.4 16.3 2.1 0.3 0.9
SO3 2.4 0.3 12.0 0.1 0.6

Na2O 0.2 0.1 0.3 0.2
K2O 1.0 0.3 0.1 0.3
MgO 0.1 2.2 7.1
SrO 0.1 0.1
TiO2 1.8 1.5 1.5
P2O5 0.2 0.2

MnO 0.1
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3. Results
3.1. CAC-Containing UHPC

The predicted phase assemblage of UHPC containing CAC is shown in Figure 1. The
phases which were predicted as stable in neat UHPC are C-S-H, ettringite, Fe-hydrogarnet
and calcite. It is noted that portlandite was found to be unstable in all mixtures. Replacing
PC with CAC in UHPC of up to 10% by mass resulted in the formation of more ettringite
and Fe-hydrogarnet but reduced the amount of C-S-H and the overall volume of solid
phases. The modeling result suggested that the overall volume of solid phases would
increase when the replacement ratio is above 10%, due to the formation of strätlingite.
The formation of strätlingite and the increase in the solid volume continued up to a 42%
replacement ratio, where formation of Al(OH)3 begins; the increase in the solid volume
continues, but at a much lower rate, due to the gradual formation of Al(OH)3 and the
reduced strätlingite formation.
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Figure 1. Predicted phase assemblage of UHPC containing CAC.

3.2. CSA-Containing UHPC

The predicted phase assemblage of UHPC containing CSA is shown in Figure 2. The
phases which are predictedas stable in the CSA-containing UHPC were similar in the case
of the CAC-containing mixture, while their volumes varied. In general, the volume of
ettringite was higher, and accordingly the volume of C-S-H was predicted to be lower in the
CSA-containing UHPC. The formation of strätlingite and Al(OH)3 in the CSA-containing
UHPC was observed at similar replacement ratios that resulted in formation of those phases
in the CAC-containing UHPC. The overall solid volume sharply increased at a 10% CSA
replacement ratio, which coincides with the formation of strätlingite, similar to the CAC-
containing UHPC. The increase in the solid volume continued even after the formation
of Al(OH)3 started in the CSA-containing UHPC, unlike the case of the CAC-containing
UHPC, which can be associated with the continued formation of ettringite.
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Figure 2. Predicted phase assemblage of UHPC containing CSA.

3.3. MK-Containing UHPC

The predicted phase assemblage of UHPC containing MK is shown in Figure 3. Re-
placing PC with MK in UHPC initially decreased the amount of C-S-H that forms in the
mixture. Unlike those containing CSA or CAC, ettringite was found stable up to 25%
replacement. In addition, the amount of Fe-hydrogarnet gradually decreased as less PC
was used. The formation of Al(OH)3 and amorphous silica was initiated at 17% and 31%
replacement ratios, respectively. The formation of amorphous silica in MK-containing
UHPC indicates that the proportion of SiO2 in the mixture can be excessive; thus, replacing
MK beyond this ratio (31%) may not be beneficial. The modeling result suggested that
gypsum may precipitate at the replacement ratio of 25–90%.
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Figure 3. Predicted phase assemblage of UHPC containing MK.

The predicted volume change in the MK-containing UHPC was relatively lower than
what was expected for the CSA- and CAC-containing UHPC. The overall solid volume was
predicted to gradually decrease up to ~25% replacement and start increasing beyond this
replacement level.
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3.4. BFS-Containing UHPC

The predicted phase assemblage of UHPC containing BFS is shown in Figure 4. It is
noticed that replacing PC with BFS brought the fewest changes in the phase assemblage
in comparison with the other mixture combinations. Replacing PC with BFS in UHPC
resulted in a marginal decrease in the volume of C-S-H and a more notable decrease in
ettringite.
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Figure 4. Predicted phase assemblage of UHPC containing BFS.

There were a number of Mg-bearing phases observed in the simulation. Brucite and
Mg-LDH were predicted to form as transient phases, which are stable at 1–25% and 23–62%
replacement ratios, respectively. These Mg-bearing phases were expected to convert into
M-S-H at higher replacement ratios. Strätlingite was found stable at 59–84% replacement
and expected to destabilize to Al(OH)3 and M-S-H at higher replacement levels.

The predicted volume change throughout all replacement ratios was the lowest of the
prediction results presented in this work. This may be associated with the phase assemblage
in the BFS-containing UHPC, which remains almost unchanged upon replacement of PC.

4. Discussion

The thermodynamic modeling results imply that the porosity evolution would vary
dramatically according to the cementitious binders that were used to replace PC and their
dosages (Figure 5). The prediction results suggest that when the dosage of CAC and CSA
is greater than 24 and 12%, respectively, the mixtures are expected to have lower porosity
compared to the UHPC solely consisting of PC. Replacing PC with CSA is expected to have
the lowest porosity among all simulated mixtures and can induce expansion problems
when the replacement ratio exceeds 35%, according to the simulation.

The water demand of the mixtures is simulated in Figure 6 as a function of replace-
ment ratios. Note that the predicted water demand is the amount of water needed for
chemical reactions during hydration as predicted by thermodynamic calculations; thus, it is
not related to the amount of water needed to ensure homogeneous mixing. The obtained
results showed some correlations with the predicted porosity, suggesting that higher water
demand leads to generating lower porosity in the matrix. It is advisable that more water
is added to the mixtures incorporating CAC or CSA in replacement of PC, because these
binders are predicted to consume more water; otherwise, they are known to cause expan-
sion at later ages due to the hydration of anhydrous clinkers at hardened states [26,33,34].
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It is important that the results reported in this work should be cross-checked with
the test results before being implemented in practice. The experimental tests for UHPC
consisting of alternative cementitious binders will therefore be conducted in forthcoming
studies.

5. Conclusions

This study investigated the effect of using alternative cementitious binders in UHPC
by adopting thermodynamic calculations. Replacing PC in UHPC with CAC, CSA, MK
or BFS is expected to result in significant variations in the phase assemblages. The main
outcomes of this study can be summarized as follows.

(1) Strätlingite is predicted as a predominant phase in both CAC- and CSA-containing
UHPC. Ettringite would increasingly form as PC is replaced with CSA.

(2) The volume of C-S-H is expected to notably decrease when replacing PC with MK,
while this was not the case with BFS-containing UHPC. C-S-H remained as a predom-
inant phase in BFS-containing UHPC throughout all replacement ratios.
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(3) The predicted water demand per binder mass suggests that more water is needed for
chemical reactions when using CSA and CAC, while a similar or lower amount of
water is needed when using BFS and MK as a replacement of PC.

(4) It is expected that use of CSA or CAC would lead to decreasing the porosity in UHPC,
while using BFS or MK may increase the porosity in comparison with that solely
consisting of PC.
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