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Preservation Macroscopic 
Entanglement of Optomechanical 
Systems in non-Markovian 
Environment
Jiong Cheng1, Wen-Zhao Zhang1, Ling Zhou1 & Weiping Zhang2,3,4

We investigate dynamics of an optomechanical system under the non-Markovian environment. In 
the weak optomechanical single-photon coupling regime, we provide an analytical approach fully 
taking into account the non-Markovian memory effects. When the cavity-bath coupling strength 
crosses a certain threshold, an oscillating memory state for the classical cavity field is formed. Due 
to the existence of the non-decay optical bound state, a nonequilibrium optomechanical thermal 
entanglement is preserved even without external driving laser. Our results provide a potential usage to 
generate and protect entanglement via non-Markovian environment.

The investigation of decoherence and dissipation process induced by environment is a fundamental issue in quan-
tum physics1–4. Understanding the dynamics of such nonequilibrium open quantum system is a challenge topic 
which provides us the insight into the issue of quantum-classical transitions. Protecting the quantum property 
from decoherence is a key problem in quantum information science, therefore a lot of effort has been devoted to 
develope the methods for isolating systems from their destructive environment. Recently, people recognize that 
properly engineering quantum noise can counteract decoherence and can even be used in robust quantum state 
generation5,6. Meanwhile the features of the non-Markovian quantum process have sparked a great interest in 
both theoretical and experimental studies7–12. Numerous quantitative measures have been proposed to quantify 
non-Markovianity13–17.

As a promising candidate for the exploration of quantum mechanical features at mesoscopic and even macro-
scopic scales and for quantum information procession, cavity optomechanical systems come as a well-developed 
tool and have received a lot of attentions18–22. In the theoretical research of the cavity optomechanical system, 
the environment is often treated as a collective non-interacting harmonic oscillators, and the quantum Langevin 
equations23 are developed to describe the radiation-pressure dynamic backaction phenomena. Significant pro-
gresses have been made in this framework18,24–26. Almost all of these studies are focussing on the scenario of 
memoryless environment. However in many situations for optical microcavity system, the backaction of the 
environment and the memory effect of the bath play a significant role in the decoherence dynamics27,28. Quite 
recently, a nonorthodox decoherence phenomenon of the mechanical resonator is also observed in experiment29, 
which clearly reveals the non-Markovian nature of the dynamics. Therefore, it is necessary to investigate the 
non-Markovian dynamics for the nonlinear cavity optomechanical system so that we can use the memory effects 
to produce and protect coherence within it.

In the following, we investigate the cavity optomechanical dynamics under non-Markovian environment and 
put forward a method to solve the exact Heisenberg-Langevin equations where the non-local time-correlation of 
the environment is included. We find that when the cavity-bath coupling strength crosses a certain threshold, the 
optical bound state is formed, giving rise to the nonequilibrium dynamics of the entanglement. This remarkable 
result indicates the possibility of long-time protection of macroscopic entanglement via structured reservoirs.
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Results
Model.  We consider a generic cavity optomechanical system consisting of a Fabry-Pérot cavity with a movable 
mirror at one side. The cavity has equilibrium length L, while the movable mirror has effective mass m. The cavity 
environment could be a coupled-resonator optical waveguide which possesses strong non-Markovian effects30, 
and the micro-mechanical resonator and its environment could be the device of a high-reflectivity Bragg mirror 
fixed in the centre of a doubly clamped Si3N4 beam in vacuum29. The corresponding Hamiltonian of the system 
can be written as23,24
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Here ωc is the frequency of the cavity mode with bosonic operators â and ˆ†a  satisfying =ˆ ˆ†a a[ , ] 1, while the 
quadratures q̂ and p̂ =ˆ ˆq p i([ , ] ) are associated to the mechanical mode with frequency ωm. The third term 
describes the optomechanical interaction at the single-photon level with coupling coefficient 

ω ω=g L m( / ) /2c m0  . The cavity is driven by an external laser with the center frequency ω0. The environment of 
such system can be described by a collection of independent harmonic oscillators31. The reservoir as well as the 
system-reservoir interaction is then given by
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The first term is the free energy of the cavity reservoir with the continuous frequency ωk as well as the hop-
ping interaction between the cavity and the environment with the coupling strength gk. The second summation 
describes a mirror undergoing Brownian motion with the coupling through the reservoir momentum23,31. Here 
ωl is the reservoir energy of the mechanical mode, and γl stands for the mirror-reservoir coupling.

Dynamics of the system.  To achieve a comprehensive understanding of the decoherence dynamics, one 
has to rely on precise model calculations. To this end, by making use of the reference frame rotating at the laser 
frequency, we can obtain the Heisenberg-Langevin equations
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where Δc =  ωc −  ω0 is the cavity detuning, Δk =  ωk −  ω0 is the detuning of the k-th mode of the environment, and 
ω ω γ∆ = + ∑m m l l l

2 is the reservoir-induced potential energy shift. The non-Markovian effect is fully mani-
fested in Eqs. (3), where the non-local time correlation functions of the environments = ∑ − ∆⁎f t g g e( )c k k k

i tk  and 
ω γ ω= ∑f t t( ) sinm l l l l

2 2  are included. By introducing the spectral density J(ω) of the reservoirs, one can rewrite 
the time correlation functions as ∫ ω= ω
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. The terms contain-

ing reservoir operators q̂ (0)l , p̂ (0)l  and â (0)k  are usually regarded as the noise-input of the system, which depend 
on the initial states of the reservoirs.

The integro-differential Heisenberg-Langevin equations Eqs. (3) are intrinsically nonlinear. Up to now, most 
experimental realizations of cavity optomechanics are still in the single-photon weak coupling limit20,32–34, i.e., 

 ω− −g10 / 10m
5

0
3. When the intracavity photon number 

â 1, we can apply the so-called linearization 
method24,35, which means the relevant quantum operators can be expanded about their respective mean values: 

δ= +ˆ ˆ ˆO O O, where ≡ˆ ˆ ˆ ˆ ˆ†O a a q p( , , , )T. The superscript T represents the transpose operation. Then Eqs.(3) can 
be decomposed into two parts. The first is the classical part that describing the classical phase space orbits of the 
first moments of operators
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where, for simplicity, we have assumed = = =ˆ ˆ ˆq p a(0) (0) (0) 0l l k . In the single-photon weakly coupling 
regime, the coupling strength g0 is the smallest parameter in Eqs.(4). We therefore perform the regular perturba-
tion expansion in ascending powers of the rescaled dimensionless variable g0/ωm (for computational convenience 
one may set ωm =  1, and the other rescaled parameters are in units of ωm). By substituting the expressions with 
rescaled g0 (i.e., α α= ∑ =

∞ gn
n

n0 0  and = ∑ =
∞q g qn

n
n0 0 ) into the averaged Langevin equations (4), one can give a 

formal solution up to the first order for the classical part in the framework of modified Laplace transformation36
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m m  are the real and imaginary part of the Laplace trans-
form of the self-energy correction respectively, and the Green’s functions α0 and q0 obey the Dyson equations (18) 
with the initial conditions α =(0) 10 , =q (0) 00  and =q (0) 10

36. Base on Eq. (5), we can see that the non-vanishing 
intracavity field α0(∞ ) may induce an equilibrium position q1(∞ ) for the oscillator. This leads to the effective 
cavity detuning ∆ = ∆ − ∞˜ g q ( )c 0

2
1 , which also alters the asymptotic dynamics of the cavity field. Accordingly, 

the interplay between the non-Markovian and nonlinear effects can be described more precisely in this way. 
Within the parameter space of our consideration, ∆ ≈ ∆˜

c, the validity of the power series assumption is guaran-
teed by the numerical simulations (see the Supplemental Material).

For general bosonic environments, the spectral density should be a Poisson-type distribution function37. We 
consider that the spectrum is of the form ω πη ω= ω
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coupling constant between the system and the environment, and ω
a is a high-frequency cutoff2,37. The parameter 

sa classifies the environment as sub-Ohmic (0 <  sa <  1), Ohmic (sa =  1), and super-Ohmic (sa >  1). Using the 
modified Laplace transformation, one can give an analytical solution for the nonequilibrium Green’s function
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and the pole ωr is located at the real z axis. This term corresponds to ‘localized mode’36,38, which means that the 
cavity field oscillates with frequency ωr and does not decay. It is seem that the photons are ‘trapped’ in the cavity 
due to the backf low of the non-Markovian environment and do not dif fuse.  It  is  a term  
that determines the asymptotic dynamics of the optical field. Physically, this is equivalent to generate a bound  
state of the joint cavity-reservoir system38, which can be also determined by solving the energy eigenstates  
of the total Hamiltonian39, and such bound state is actually a stationary state with a vanishing decay rate  
during time evolution. The second term corresponds to nonexponential decays. In the long time limit, the  
bound state as well as the driving laser give rise to the non-vanishing intracavity photon numbers with 
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. On the other hand, for the mechanical mode, however, due to 

the discontinuity of the self-energy correction at the real z axis, q0(∞ ) =  0. We find that the corresponding 
mechanical bound state can be formed only if some sharp cutoff appear in the spectral density (see section 
‘Methods’ for details). Considering the feasibility, the single photon coupling g0 (key parameter) is set close to that 
of recently performed optomechanical experiments35. Figure 1(a) is the density plot of the maximum value of |α0| 
in the long-time limit. It maps out the regions in parameter space where localized bound state occurs. As a result, 
a threshold characterizing the transition from weak to strong non-Markovian regions can be defined, and it is 
marked by the green-dashed line, which satisfying ωc +  Kc(− ω0) =  0. In the weakly non-Markovian region 
0 <  ηc <  0.01, as shown in the inset of Fig. 1(a), the red-detuned laser gives rise to a strong stationary amplitude 
values, which is determined by 

ω −∆ −

iE

J K( ) (0)i
c c c2 0

. Figure 1(b,c) show the dynamic evolution of |α0| and q0, where 

the first order solutions are shown in the insets. In Fig. 1(b) the optical bound state is formed when ηc is above the 
threshold, while for Fig. 1(c), the coordinate average value of the oscillator is no longer zero, which reveals that 
radiation pressure push the oscillator to a new equilibrium position. The evolution in the phase space is shown in 
Fig. 1(d,e). The limit cycles that characterize the properties of the steady state depends on the initial states, which 
indicates the non-Markovian property and reflects the memory effect. The initial information of the system is 
maintained.

We now turn to the quantum fluctuation of operators that describes the actual quantum dynamics, which are 
deduced as
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subjected to the initial conditions = I(0)  and =ˆ (0) 0 . The 4 ×  4 matrix
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describes the linearized optomechanical coupling with non-local time-dependent classical variables, where 
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noise term23,24 that depends on the initial states of the environments. It is easy to obtain the quadrature operator 
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second moments of the quadratures
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The first term is the projection of the quadratures on the system’s Hilbert space. The second term characterizes 
the magnitudes of the input-noise that satisfies the non-local time correlation relations23. The last two terms 
describe the effect of initial system-reservoir correlations, which had been identified as an important factor in the 
decoherence dynamics40,41. For the sake of simplicity, here we assume as usual the system and the reservoirs are 
initially uncorrelated, and the reservoirs are in thermal states. Then the noise vector ξ̂ t( ) obeys the non-Markovian 
self-correlation ξ ξ ′ = − ′ ⊕ − ′ˆ ˆt t G t t G t t( ) ( ) ( ) ( )c m , where Gc and Gm are 2 ×  2 matrix

τ
τ

τ
τ τ=




 −






=








.



G
g

g
G g( )

0 ( )
( ) 0

, ( )
0 0
0 ( ) (12)

c
c

c
m

m

0 50 100 150 200
0

0.25

0.5

g0 1

0 0.02 0.04

0 50 100 150 200
0

5

10
g0q1

0 50 100 150 mt

c

0 120
0 130

100 0 Re
120

60

0

60

Im d

7 8 9 q
1

0.5

0.5

0

p e

Figure 1.  Classical dynamics in an optomechanical system, in units of ωm. (a) is the density plot of 
α ∞( )max0 , in which we show the region in the parameter space of coupling ηc and frequency cutoff ωc, where 
significant bound state exist with E =  10ωm and Δc =  2 ωm. Plot (b–e) show the dynamical evolution of the 
classical variables, where g0 =  6 ×  10−4ωm, ηm =  0.03, ωm =  11ωm and E =  0. The other parameters are ηc =  0.05, 
sc =  3, sm =  1, ω

c  =  11ωc =  1100ωm, α(0) =  120, p(0) =  0, and we keep α=
ω

q(0) (0)
g 2
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0 .
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The thermal correlation functions are defined as ∫τ ω= ω
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, where β =  1/kBT, kB is the Boltzmann constant and T is the initial 
temperature of the reservoir.

Preservation of entanglement.  To bring quantum effects to the macroscopic level, one important way is 
the creation of entanglement between the optical mode and the mechanical mode. If the initial state of the system 
is Gaussian, then Eq. (7) will preserve the Gaussian character. The entanglement can therefore be quantified via 
the logarithmic negativity42 defined as  = − −E smax [0, ln (2 )], where s− is the smallest symplectic eigenvalues 
of the partially transposed covariance matrix V T A. The non-Markovian effect generally lead to the nonequilibrium 
dynamics, therefore, we explore the optomechanical entanglement in transient regime. In order to show clearly 
the evolutionary path of the entanglement, we use the so-called pseudoentanglement measure43 defined as 
= − −E sln(2 )p , so that the logarithmic negativity of entanglement measure  =E Emax [0, ]p . For simplicity, 

we assume the bath of the cavity initially in vacuum and the cavity initially in coherent state with α(0) =  120. The 
results are plotted in Fig. 2, in which β ω= . × − −2 5 10m m

2 1 (the corresponding thermal excitation number are 
≈n 40)m . In order to show clearly the phenomenon of entanglement preservation by non-Markovianity, we shut 

the classical pumping field all the time by setting E =  0. We see in Fig. 2 that the shape of the Ohmic spectrum 
characterized by sm, has negligible impact on the initial stage of evolution (see the insets). This is because the time 
scale of the mechanical oscillator as well as its bath is much larger than that of the bath of the cavity, which means 
the non-Markovian memory effects induced by the bath of the oscillator can be ignored completely when 
t d1/ , where d is the bandwidth of the oscillator’s bath. For the short-time and long-time scale, sm slightly affect 

the amplitude and evolution period of the entanglement. The non-Markovian environments affect the entangle-
ment through the bath spectrum as well as the specific type of system-reservoir interaction, which is clearly 
embodied in the correction functions fc(t) and fm(t), the form of which directly determines the entanglement 
dynamics. The Ohmic spectrum of the photon bath plays a decisive role for the time evolution of the entangle-
ment, as it allows the existence of optical bound state. If the environmental spectral density is not a finite band, 
then the optical bound state is unable to form36, and the memory effect is not strong enough to compensate the 
loss of photons. Consequently the entanglement will be destroyed completely. However for the phonon bath, the 
Ohmic spectrum is unable to form a bound state between the mechanical mode and the environment unless some 
band gaps appear in the spectrum (see section ‘Methods’ for details). Therefore the resonator may only present 
weak non-Markovian effect, and it plays a indecisive role for the entanglement (it has limited influence on the 
evolution period and the value of entanglement). By changing the cutoff frequency of the phonon spectrum, we 
verified that the cutoff frequency do not play a major role in the entanglement dynamics, which also manifests the 
weak non-Markovian effects of the resonator. In addition, although the sudden death and rebirth of entanglement 

Figure 2.  Time evolution of pseudoentanglement Ep in Ohmic environment. In (a,b), we keep sm =  1, while 
in (c,d), sm =  3. The other parameters are the same as Fig. 1(b) except for ηm =  0.8 and ω

m  =  5ωm. The dynamical 
evolution of entanglement are shown in three regions, the initial stage of evolution ωmt <  5 ×  10−3 shown in the 
insets of (a,c), the short-time scale ωmt <  50 corresponding to (a,c), the long-time scale ωmt around 1040 for 
(b,d). The regions Ep <  0 correspond to nonphysical results.



www.nature.com/scientificreports/

6Scientific Reports | 6:23678 | DOI: 10.1038/srep23678

is also observed, it differ with the case of Markovian environment44 where the photons would rapidly dissipate to 
the memoryless environment. Here, due to the present of the bound state, the entanglement can be produced and 
can be preserved in non-Markovian environment after long time even without external drive. This provides a way 
to decoherence control of optomechanical systems, in which, a controllable quantum environment indeed have 
the ability to protect the quantum correlation of the internal system.

We finally discuss how to detect the generated optomechanical entanglement. Although we show the evolu-
tion of the dynamics, it still might be difficult for detection of the temporal entanglement. Fortunately, we can 
obtain a larger entanglement for long time, for example, ωmt around 1040 than short time ωmt <  50, which means 
that we can detect the entanglement at long time evolution. For measurement the logarithmic negativity, one can 
detect all independent entries of the covariance matrix which may be achievable by utilizing the Q-switching 
technology45. If the Q-switch is off, the composite system (i.e., the cavity and it’s environment) is closed, and the 
system has no output. When the Q-switch is on, the measurement can be performed by homodyning the cavity 
output. The duration of the Q-switched pulse should be short enough, so that it has a negligible effect on the 
system. The mechanical mode can be detected by employing the method put forward by Vitali et al.18, where an 
assistant fixed mirror and the mechanical oscillator form an additional ‘probe’ cavity mode. If this additional cav-
ity is driven by a much weaker intracavity field so that its back-action on the mechanical mode can be neglected. 
In addition, the interaction between the additional cavity and it’s bath is also weak enough, so it can be well 
treated in the Markovian region. By adjusting parameters, the probe mode adiabatically follows the dynamics of 
the mechanical mode, therefore the output field gives a direct measurement of the mechanical mode. Finally the 
covariance matrix can be determined by changing the phases of the corresponding local oscillator and measuring 
the correlations between the two cavity outputs. Then one can numerically extract the logarithmic negativity.

Conclusion
In conclusion, we have put forward a scheme to preserve the entanglement of optomechanical system in 
non-Markovian environment. An analytical approach for describing non-Markovian memory effects that impact 
on the decoherence dynamics of an optomechanical system is presented. The exact Heisenberg-Langevin equa-
tions are derived, and the perturbation solution is given in the weak single-photon coupling regime. Employing 
the analytical solution, we have shown that, the system dynamics change dramatically when the cavity-bath cou-
pling strength crosses a certain threshold, which corresponds to dissipationless non-Markovian dynamics. The 
interplay between non-Markovian and nonlinear effects can be also explained though the perturbative method. 
As a quantum device which may subjected to dissipative and decoherence effects, however, our results show that 
the surroundings of such physical setting can protect the quantum entanglement, rather than destroy it even in 
the long-time scales. Our research provides a new approach to explore non-Markovian dynamics for the cavity 
optomechanical systems.

Methods
Derivation of the Heisenberg equations.  Now we present a detailed derivation of the Heisenberg equa-
tions Eq. (3) given in the main text. With the total Hamiltonian = +ˆH H HS EI, we can solve the dynamics of the 
optomechanical system and the reservoir in the Heisenberg representation. The system and the reservoir opera-
tors obey the equations of motion

∑

∑
ω ω ω γ

ω ω γ γ ω

= − ∆ + + − = − ∆ −

= = −

= − + + − = − .

 

 

 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

⁎

†

a i a ig aq E i g a a i a ig a

q p q p q

p q g a a p q p q

, ,

, ,

( ),
(13)

c
k

k k k k k k

m l l l l l

m
l

l l l l l l l

0

0

Solving Eq. (13) for â t( )k , q̂ t( )l  and p̂ t( )l

∫

∫

∫

τ τ

ω ω ω γ τ τ ω τ

ω ω ω γ τ τ ω τ

= −

= + − −

= − + − .

τ− ∆ − ∆ −ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

⁎a t a e ig d a e

q t q t p t d q t

p t p t q t d q t

( ) (0) ( ) ,

( ) (0) cos (0) sin ( )cos ( ),

( ) (0) cos (0) sin ( )sin ( ) (14)

k k
i t

k

t i t

l l l l l l l
t

l

l l l l l l l
t

l

0

( )

0

0

k k

Substituting Eq. (14) into Eq. (13), we therefore obtain the integro-differential Heisenberg equations.

The classical phase space orbits.  In order to understand the classical dynamics that describes an optom-
echanical system embedded in memory environments, we apply a perturbative solution for Eq. (4). In realis-
tic physical settings, the single-photon coupling strength is extremely weak, thus the perturbation expansion 
approach is a good approximation. The corresponding variables in the zeroth-order is given by

∫

∫

α α τ τ α τ

ω ω τ τ τ

= − ∆ − − +

= − ∆ + −



̈

i d f t E

q q d f t q

( ) ( ) ,

( ) ( ), (15)

c
t

c

m m m
t

m

0 0
0

0

0 0 0 0

and the first-order reads
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∫

∫

α α τ τ α τ α

ω ω τ τ τ ω α

= − ∆ − − +

= − ∆ + − + .



̈

i d f t i q

q q d f t q

( ) ( ) ,

( ) ( ) (16)

c
t

c

m m m
t

m m

1 1
0

1 0 0

1 1 0 1 0
2

Equations  (15) and (16) are exactly solvable by using the modified Laplace transformation, e.g., 
∫= 




=

∞˜ ˜f z f t dtf t e( ) ( ) ( ) izt
0

 . After time scaling transformation, it is easy to obtain

α α

α
α α

=
−

− ∆ − Σ
=

−
− ∆ − ∑

=
−

− ∆ − ∑
=

−

− ∆ − ∑









˜ ˜

z iz E
z z z

q z izq p
z z

z
t q t

z z
q z

t
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, ( ) (0) (0)
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, ( )

[ ( ) ]
( )

,
(17)

c c m m

c c m m

0 0 2

1
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1
0

2

2

 

where ∫∑ = ω
π

ω
ω ω− +

z( )c
d J

z2
( )c

0
 and ∫∑ = ω

π
ω ω

ω−
z( )m

d J

z2
( )m

2 2  are the Laplace transform of the self-energy correction. 
The modified Bromwich integral is then given by ∫=

π λ

λ

−∞+

∞+ −
f t dzf z e( ) ( )

i

i izt1
2

. In view of Eq. (17), we define the 
Green’s functions α0 and q0, which obey the Dyson equations

∫

∫

α α τ τ α τ

τ τ τ

= − ∆ − −

= −∆ + −



̈

i d f t

q q d f t q

( ) ( ),

( ) ( ), (18)

c
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c
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t
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0 0
0

0
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and is subjected to the initial conditions α =(0) 10 , =q (0) 00  and =q (0) 10 . The solution of q t( )0  is given by 

∫=
ω
π ω ω ω−∞

∞ −

−∆ − −

ω−



q t( ) d e
K iJ0 2 ( ) ( )

i t

m m
2

, while α t( )0  is given in Eq. (6).
The dissipationless non-Markovian dynamics usually requires ∞ ≠f ( ) 0 (in absence of any external driving). 

In other word, it is referred to a process of nonthermal stabilization46, in which the initial information of the sys-
tem partially maintains. In this case, there should be poles exist on the real z axis for f z( ). Due to the discontinuity 
of the Laplace transform of the self-energy correction, however, the real poles exist only in the frequency regions 
that all spectral density vanishes. In this region, ω ω∑ = K( ) ( )c m c m, , . From the physical point of view, it can be 
explained by the bound state generated between the system and its environment47–49, which is actually a stationary 
state with a vanishing decay rate. It usually occurs when the environments has band gaps or a finite band.

The reservoir and its coupling to the system are fully characterized by the spectral density J(ω). For thermal 
bosonic (photon and phonon) baths, the most general spectral density as introduced in37 should be a Poisson-type 
distribution function with some frequency cutoff. From the experimental point of view, it is often not possible to 
model the environment in an accurate way, because their density of states is unknown. However one can in prin-
ciple extract the information of the spectral density of the heat baths by ingenious experiment. Recently, this work 
is accomplished by Gröblacher et al.29. The main experimental results show that the specific geometry of the slab 
cause strongly sub-Ohmic spectral densities. To theoretically explore the decoherence dynamics, we therefore 
consider the Ohmic spectrum.

On the other hand, as discussed above, the imaginary part of ω∑ ( )c m,  is discontinuous on the real z axis, i.e., 
ω ω ω ω∑ = +K J( ) ( ) ( )c c

i
c2 0  and ω ω ω ω∑ = − −K J J( ) ( ) ( ( ) ( ))m m

i
m m4

. For the cavity mode, the corre-
sponding pole is determined by ω ω− ∆ − =K ( ) 0r c c r  with ω ω≤ −r 0. For the mechanical mode, the imagi-
nary part of ω∑ ( )m  vanishes only at the zero point, although an Ohmic spectrum with a finite band is considered. 
The main reason lies in their different internal memory kernels, the structure of which is entirely determined by 
the specific type of interactions between the system components and the corresponding environment. For the 
zero point, note that ω∆ + = ≠K (0) 0m m m . Thus it is unable to form a bound state between the mechanical 
mode and the environment unless some band gaps appear in the spectrum38.
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