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Abstract

Background and objectives

Gait can be severely affected by pain, muscle weakness, and aging resulting in lameness.

Despite the high incidence of lameness, there are no studies on the features that are useful

for classifying lameness patterns. Therefore, we aimed to identify features of high impor-

tance for classifying population differences in lameness patterns using an inertial measure-

ment unit mounted above the sacral region.

Methods

Features computed exhaustively for multidimensional time series consisting of three-axis

angular velocities and three-axis acceleration were carefully selected using the Benjamini–

Yekutieli procedure, and multiclass classification was performed using LightGBM (Microsoft

Corp., Redmond, WA, USA). We calculated the relative importance of the features that con-

tributed to the classification task in machine learning.

Results

The most important feature was found to be the absolute value of the Fourier coefficients of

the second frequency calculated by the one-dimensional discrete Fourier transform for real

input. This was determined by the fast Fourier transformation algorithm using data of a sin-

gle gait cycle of the yaw angular velocity of the pelvic region.

Conclusions

Using an inertial measurement unit worn over the sacral region, we determined a set of fea-

tures of high importance for classifying differences in lameness patterns based on different

factors. This completely new set of indicators can be used to advance the understanding of

lameness.
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Introduction

Gait is a complex movement, in which the body moves forward using the friction between the

sole and the ground as support, and the centroid position moves up, down, left, and right. It is

one of the most basic human movements. The smoothness of gait is easily reduced due to

pain, muscle weakness, and deformation caused by aging and various diseases. For example,

antalgic gait is a special type of walking with a limp that is characterized by a very short stance

phase aiming to avoid pain in weight-bearing joints [1].

Gait activity recognition, the ability to identify the state of walking from body sensor data

or wearable sensor data, is one of the most actively researched fields in recent years and has

attracted the attention of academic disciplines and health industries. The classification of gait

patterns has a great potential, as an assessment tool for diagnosing injuries and identifying

high-risk gait in the elderly. Several studies have shown that wearable inertial sensors can be

used to classify gait patterns [2–5].

Concerning the features that are useful for the classification of gait patterns, Quiroz et al.

showed that gravity signals provide high classification accuracy, especially for the static activi-

ties of sitting, standing, and lying down. They also reported that some features extracted from

angular velocity are not as useful for classification as body acceleration but can significantly

improve the accuracy of the feature set of body acceleration [6]. Fuentes et al. used nine fea-

tures of accelerometers for mobile phones for online motion recognition: the standard devia-

tion and the range of the orientation angle θ, the standard deviation and the minimum value

of the forward acceleration, the standard deviation of the vertical acceleration, the standard

deviation and the minimum Y values, and the standard deviation and the minimum Z values

[7].

In recent years, several attempts have been made to detect minute differences in gait pat-

terns. An automatic classification by Eskofier et al., using nine reflective markers placed on

the upper and lower limbs, showed 84.7% classification accuracy for sex. Moreover, the vari-

ance of the hip flexion-extension moment and the variance of the vertical ground reaction

force were selected as features. The classification accuracy of the shod/barefoot classification

was 98.3%, and there were two regression features: the quadratic polynomial component of

the foot sagittal plane angle and the linear polynomial component of the shank sagittal

plane angle. The classification accuracy for the existence of severe patellofemoral pain was

100%, and the mean hip abduction moment was identified as the only significant factor [8].

Rezaul et al. proposed a support vector machine-based approach for classifying young/old

gait patterns. Their findings suggested that histogram and Poincaré plots of minimum foot

clearance data during walking may provide useful gait features that can effectively recognize

young/old gait [9]. Benson et al. created a feature set consisting of three discrete features

(the value at heel-strike for the anterior-posterior axis of the left side, the peak maximum

for the anterior-posterior axis of the right side, and the peak minimum for the vertical axis

of the left side) and five advanced features (medial-lateral axis [ML]–standard deviation,

ML– 25th percentile, ML–root mean squared, ML–ratio, resultant signal–Sum of fast

Fourier transformation [FFT] Coefficients [3–6]). They showed that they could classify run-

ning at their preferred speed and 25% faster than their preferred speed with high accuracy

(97.23%) [10].

However, to our knowledge, there are no studies on the features that are useful for classify-

ing lameness patterns by different factors. Our aim was to identify features of high importance

for classifying population differences in lameness patterns by different factors using an inertial

measurement unit (IMU) mounted above the sacral region.
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Materials and methods

Experiments and data collection

Participants. This study was conducted in accordance with the Ethical Guidelines for

Medical and Health Research Involving Human Subjects and the ethical standards laid down

in the World Medical Association Declaration of Helsinki of 1975 and its later amendments.

Written informed consent was obtained from all participants. This study has been approved

by the institutional review board of Wakayama Medical University Hospital (No. 3236). Six-

teen healthy volunteers (sex, eight men and eight women) participated in the study.

Experimental method. The participants walked on a 10-m indoor walking path under the

supervision of an experienced clinical researcher, and the IMU mounted above the sacral

region simultaneously measured acceleration in three axes (vertical, front-back, and side-to-

side directions) and angular velocity around the three axes.

All participants in the study performed four tasks: regular gait and three simulated abnor-

mal gaits. In the “regular gait” session, participants walked along a 10-m path, where they per-

formed a so-called natural gait. In the simulated “abnormal gait,” the participants walked

along the same path while wearing (i) a knee brace, (ii) a shoe lift, and (iii) ankle weights (Fig

1a–1c). A knee brace was used to simulate disabilities, such as knee contracture and lack of

muscle coordination. The shoe lift was 3 cm thick and was used to simulate the effects of leg

length discrepancy. The ankle weights were simulated for hemiplegia. To determine the opti-

mal weight, a preliminary experiment, in which three participants (two male and one female)

wore ankle weights of several different weights, was conducted before starting the walking test.

The optimal weight was defined as the minimum weight at which all participants experienced

difficulty while pretending to walk normally, and we selected the weight closest to 12% of their

body weight from the range of weights in 0.5 increments. Participants were advised not to con-

tinue if they felt that they could not walk safely alone, and if necessary, a person walked along-

side them to prevent falls. Each participant repeated the 6-s walk for 12 times in total, in three

“regular gait” sessions and in three sessions of simulated “abnormal gait.” The order of the

walks was randomly determined using the Microsoft Excel RANDBETWEEN function

(Microsoft Corp., Redmond, WA, USA).

Fig 1. (a) The walking task was performed wearing a knee brace, (b) a shoe lift, and (c) ankle weights.

https://doi.org/10.1371/journal.pone.0258067.g001
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A smartphone with a built-in inertial sensor (Xperia Z5 501SO, Android 6.0.1; Sony Corp.,

Tokyo, Japan) was attached to the participants’ clothing at the level of the second sacral spi-

nous process (S2), where the body’s center of gravity is located in the standing position, using

a 5-cm-wide tape. The tape was fixed at the top and bottom of the smartphone and around the

pelvic area (Fig 2).

We ensured that the smartphone-holding tape did not restrict the participant’s movement.

The participants were briefed on the application and reviewed the audio instructions prior to

the gait evaluation. The application was developed for the Android platform for use in this

study to record and collect inertial sensor data using a smartphone.

With the participants in an upright position in front of the start line, the supervisor initiated

the application for inertial sensor data collection. Participants performed the walking tasks

while listening to rhythmic sounds at a rate of 100 beats/min and stopped walking upon hear-

ing a beeping sound 6 s after the start sound. The data were recorded for 6 s after the start

sound. Acceleration and angular velocity data were collected at sampling frequencies of 50 and

250 Hz, respectively. The collected time-series data were saved on a smartphone’s SD card in a.

csv file format. The data stored on the SD card were exported to a personal computer (PC)

using a USB cable, and all subsequent processing was performed using a PC.

Axis settings. The walking direction was defined as the global y-axis, the left-right direc-

tion as the global x-axis, and the vertical direction as the global z-axis (Fig 3). The accelerations

Fig 2. Smartphone attached to the body.

https://doi.org/10.1371/journal.pone.0258067.g002
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obtained from the IMU were transformed from the device coordinate system to the global

coordinate system, assuming that the smartphone was placed vertically with the screen facing

away from the device, with the y-axis and the z-axis being the global z-axis and y-axis, respec-

tively. The angular velocities were transformed from the device coordinate to the global coor-

dinate system, similar to the axis transformation of acceleration.

Data processing

The time-series data of acceleration and angular velocity obtained from the IMU were

smoothed by removing high-frequency noise components of the waveform, taking the average

of the values over a past fixed period using the exponentially weighted moving average

(EWMA), with the weights decreasing exponentially from the most recent value. To determine

the optimal moving average period, we examined several different periods using the wave-

forms of three randomly selected walks. In this study, the period of the smallest moving aver-

age, during which high-frequency noise >8 Hz was extinguished, was considered optimal. The

angular velocity data were converted to a weighted average of the last 40 values; the accelera-

tion data were converted to a weighted average of the last 10 values (a 10-period EWMA).

The peak of the acceleration of the vertical (global z-axis) component, which remains

despite any lameness, was used as an index for clipping the gait cycle. The first to the third

peak, the third to the fifth peak, and the fifth to the seventh peak of the time series in the global

z-axis direction were identified as partial time series. The three gait cycles, with a window

width from the first to the seventh peak, were also extracted as a partial time series. Especially,

from one time series data, three data points of a single gait cycle and one data point of three

gait cycles were clipped.

The acceleration and angular velocity in each direction in the same range were combined

and treated as a multidimensional time series. We included 552 and 185 data points of a single

and of three gait cycles, respectively, for which all multidimensional time series were complete.

All signal processing was performed using Microsoft Excel (2019).

Feature extraction. Tsfresh is a Python package (Python Software Foundation, Wilming-

ton, DE, USA) that is used to automatically calculate a large number of time-series characteris-

tics or features [11]. To determine the significance of Tsfresh features for the characterization

Fig 3. Axis settings in the device coordinate system and the global coordinate system.

https://doi.org/10.1371/journal.pone.0258067.g003
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of “abnormal gait,” we conducted a comprehensive analysis of multidimensional time series

for each gait cycle. We exhaustively calculated 4674 Tsfresh features from a multidimensional

time series of a single gait cycle and 1104 features from a multidimensional time series of three

gait cycles and defined the characteristics of each gait.

Feature selection. We used the “gait status” label to select Tsfresh features. The "gait sta-

tus" labels were as follows: (0) regular gait, (1) wearing a knee brace, (2) wearing a shoe lift,

and (3) wearing ankle weights. The p-value was used to determine the predictive power of

each Tsfresh feature, and the Benjamini–Yekutieli procedure was used to decide which Tsfresh

features to keep [12]. Multiple test procedures were performed on the training data, and the

top 10 Tsfresh features were retained. We also performed a binary classification procedure

between every two elements of the "gait status" labels, leaving the top 10 Tsfresh features in

each combination and excluding duplicates.

Classification. In this study, LightGBM was used as a classifier. LightGBM is a gradient-

boosting framework based on a decision-tree-based learning algorithm [13]. It is a popular

boosting algorithm of fast training efficiency that can handle a large number of applications.

LightGBM has been applied to electroencephalogram signal classification with some success in

practical problems, such as emotion recognition [14,15] and epilepsy prediction [16]. Here, 7/

8 of the training data were randomly extracted as the training (in a narrow sense) set, and the

remaining (1/8) information was used as the validation set for training using the LightGBM

model.

Machine learning models also generally have additional pre-specified settings called hyper-

parameters. Tuning the hyperparameters may help optimize performance. In this study, we

used the default model with default hyperparameters and the tuned model with the hyperpara-

meters adjusted by Optuna (Preferred Networks, Tokyo, Japan). The latter is an automatic

hyperparameter optimization software framework specially designed for machine learning

[17]. For the tuning of hyperparameters by Optuna, nested cross-validation (k = 3) was used,

in which the training data for each fold divided by k-fold cross validation were further divided

into three parts, and the optimal condition was adopted.

Validation and evaluation metrics

The performance of each model was evaluated as the mean of 5-fold cross-validation. In the k-

fold cross-validation, the original sample was randomly divided into k equally sized subsam-

ples. Of the k subsamples, one subsample was used as test data to test the model, and the

remaining k—1 subsamples were used as training data. Then, the cross-validation was

repeated k times, and each of the k subsamples was used once as the test data. This validation

technique rules out the possibility of the model to learn the identity of the selected feature set

by ensuring that the data are not mixed into the training and test sets.

As an evaluation metric, we assessed the accuracy, which denotes the ratio of the number of

correct predictions to the total number of predictions. The accuracy was calculated as follows:

Accuracy ¼
TP þ TN

TP þ FP þ TN þ FN

where TP, TN, FP, and FN correspond to true positives, true negatives, false positives, and

false negatives, respectively.

We calculated the relative importance of the features that contributed to the classification

task in machine learning to use data from a single gait cycle and from three gait cycles. The rel-

ative importance was averaged over five cross-validation runs.
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Results

Participant characteristics

The participants were aged between 21 and 43 years (mean age, 32.9 ± 7.7 years). The mean

height and weight were 167.4 ± 8.1 cm and 62.4 ± 17.7 kg, respectively.

Importance of features

The accuracies of the model using data from a single gait cycle and from three gait cycles were

0.871 and 0.811, respectively. It seems that the relevant features of each class were captured in

the training stage, which made it possible to achieve good classification performance. The

superordinate features and average relative importance for each model are listed in Tables 1

and 2.

Discussion

In this study, we identified important features for classifying abnormal gait using a device

attached to the pelvis. The exhaustive search revealed features that have been overlooked by

Table 1. Average relative importance of the top 10 features of the model using data of a single gait cycle.

Feature names Relative importance

Yaw_fft_coefficient_attr_abs_coeff_2 0.135

Roll_fft_coefficient_attr_real_coeff_2 0.119

Pitch_fft_coefficient_attr_abs_coeff_1 0.101

Global y-axis_maximum 0.084

Global y-axis_quantile_q_0_8 0.059

Roll_fft_coefficient_attr_abs_coeff_4 0.052

Pitch_agg_autocorrelation_f_agg_var_maxlag_40 0.052

Global z-axis_quantile_q_0_2 0.044

Global z-axis_quantile_q_0_1 0.038

Yaw_change_quantiles_f_agg_var_isabs_False_qh_1_0_ql_0_8 0.030

fft: Fast Fourier transformation; attr: Attribute; abs: Absolute; coeff: Coefficient; agg: Aggregate; var: Variance; maxlag: Maximum lag; isabs: The path is absolute (true/

false); qh: Higher quantile of the corridor; ql: Lower quantile of the corridor.

https://doi.org/10.1371/journal.pone.0258067.t001

Table 2. Average relative importance of the top 10 features of the model using data of three gait cycles.

Feature names Relative importance

Yaw_fft_coefficient_attr_abs_coeff_6 0.193

Roll_fft_coefficient_attr_real_coeff_6 0.192

Roll_fft_coefficient_attr_abs_coeff_12 0.122

Pitch_fft_coefficient_attr_abs_coeff_3 0.069

Global z-axis_quantile_q_0_1 0.052

Global y-axis_maximum 0.044

Pitch_sample_entropy 0.035

Pitch_agg_autocorrelation_f_agg_var_maxlag_40 0.032

Global z-axis_minimum 0.030

Yaw_change_quantiles_f_agg_mean_isabs_True_qh_1_0_ql_0_8 0.027

fft: Fast Fourier transformation; attr: Attribute; abs: Absolute; coeff: Coefficient; agg: Aggregate; var: Variance; maxlag: Maximum lag; isabs: The path is absolute (true/

false); qh: Higher quantile of the corridor; ql: Lower quantile of the corridor.

https://doi.org/10.1371/journal.pone.0258067.t002

PLOS ONE Feature selection to classify lameness using a smartphone-based inertial measurement unit

PLOS ONE | https://doi.org/10.1371/journal.pone.0258067 September 30, 2021 7 / 9

https://doi.org/10.1371/journal.pone.0258067.t001
https://doi.org/10.1371/journal.pone.0258067.t002
https://doi.org/10.1371/journal.pone.0258067


conventional analysis and introduced a new focus for understanding lameness. This method

can be directly applied to group classification tasks.

The accuracy of the four-class classification using data from a single gait cycle was 0.871.

The accuracy results of the binary classification between each type of reproduced lameness

and of normal gait were excellent: 0.97 for wearing a knee brace, 0.91 for wearing a shoe lift,

and 0.9 for wearing ankle weights.

The most important feature of the model using data of a single gait cycle was “Yaw_fft_

coefficient_attr_abs_coeff_2.” The average relative importance of this feature was 0.135. This

feature is the absolute value of the Fourier coefficient of the second frequency calculated by

one-dimensional discrete Fourier transform of the pelvic yaw angular velocity data. The most

important feature of the model using data of three gait cycles was “Yaw_fft_coefficient_at-

tr_abs_coeff_6.” The average relative importance of this feature was 0.193. This feature is the

absolute value of the Fourier coefficient of the sixth frequency calculated by one-dimensional

discrete Fourier transform using data of three gait cycles of the yaw angular velocity of the pel-

vic. These features are thought to reflect the difference in the timing of the left and right peaks

of the pelvic yaw angular velocity in kinematics.

The important features revealed in this study were mostly angular velocity-derived features.

In the model containing data from a single gait cycle, the total relative importance of angular

velocity-derived features was 0.663, and the total relative importance of acceleration-derived

features was 0.326. None of the features derived from the global x-axis were included. As

reported by Kavanagh et al. in their regularity analysis using approximate entropy [18], the

fact that the ML direction of acceleration is the least regular variable was considered a factor.

The main limitation of this study was the fact that the abnormal gait was simulated; further,

the 3-cm prosthetic height and 12% weight may have simulated a more severe lameness than

that of patients. However, the proposed approach showed great potential and provided a solid

foundation for further research on gait analysis. As a future project, we plan to characterize

factor-related gait in patients with lameness. We would also like to conduct a large-scale study

that includes data from elderly individuals to systematically analyze gait-related differences

among diverse patient groups.

Conclusions

Using an inertial measurement unit worn over the sacral region, we identified a set of features

of high importance for classifying group differences in lameness patterns by different factors.

This is a completely new set of indicators for understanding lameness.
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