
bsessive-compulsive disorder (OCD) is a major
public health problem. OCD is a severe and chronically
debilitating disorder, affecting over 3 million people in
the United States alone. People afflicted with OCD
have distressing obsessions and compulsions that crip-
ple their functioning in everyday life.1,2 According to the
World Health Organization, OCD is among the ten
most disabling medical conditions worldwide.3 The
National Comorbidity Survey Replication found that,
in anxiety disorders, OCD has the highest percentage
(50.6%) of serious cases.4 The estimates of its lifetime
prevalence in pediatric and adult populations range
from 1% to 3%.4-6

Why focus on pediatric OCD?

The clinical phenomenology, nosology, and treatment of
pediatric OCD have been well described, making the ill-
ness a leading candidate for new and innovative neuro-
biological study. The two reasons to focus on pediatric
OCD are, first, that OCD commonly has its onset during
the developmental period,7 and second, that pediatric
OCD is continuous with adult OCD. The National
Institutes of Mental Health considers OCD to be a neu-
rodevelopmental disorder.8 Estimates of the mean age
at onset of OCD children range from 9 to 11 years in
boys to 11 to 13 years in girls.9,10 Evidence indicates that
an early age of onset in OCD is associated with a poor
outcome.11,12 There is a strong genetic component to the
illness, with estimates of the heritability of obsessive-
compulsive symptoms in children and adolescents rang-
ing from 45% to 65%.13 Pediatric OCD is chronic and
unremitting in up to 87% of cases.12 Children with OCD
are also at higher risk for other psychiatric disorders in
adulthood.9,14
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Obsessive-compulsive disorder (OCD) is a significant public
health problem. Selective serotonin reuptake inhibitors
(SSRIs) are the only FDA-approved medications for OCD.
However, SSRIs are of limited efficacy in clinical practice.
Given the persistence of symptoms and levels of treatment
response, it is clear that the serotonin paradigm of OCD
does not fully account for the neurobiology of the disor-
der, and that further translational research is needed. In
this review, the glutamate hypothesis of pediatric OCD is
explored, the neuroimaging evidence reviewed, and the
translational impact highlighted. The traditional strategy
of going from pharmacology to pathophysiology has failed
to show real progress in our understanding of the neuro-
biology of psychiatric illness and, while still in the early
stages, this work demonstrates the clear benefit of
approaching psychiatric illness from the opposite direction.   
© 2010, LLS SAS Dialogues Clin Neurosci. 2010;12:165-174.
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Why is translational research into 
pediatric OCD needed?

The biggest obstacles for people with OCD are getting a
proper diagnosis and access to effective treatment.15

Selective serotonin reuptake inhibitors (SSRIs) are the
only FDA-approved medications for OCD. Treatment of
OCD with SSRIs, while considered effective, has proven
limited in practice. SSRIs are typically only effective in
40% to 60% of patients.16 This leaves a substantial number
still ill.16 Indeed, many patients who are classed as “respon-
ders” are still markedly symptomatic after treatment; as
studies define treatment response as a 20% to 40% reduc-
tion in symptoms.16 In fact, typical OCD symptom severity
scores, as measured by the Children’s Yale-Brown
Obsessive-Compulsive Scale (CY-BOCS), post-treatment
are 15 to 20 (test score range 0 to 40), indicating mild-to-
moderate impairment.17 In addition to medication, cogni-
tive behavioral therapy (CBT) is also considered an effec-
tive treatment for OCD.18 However, even the combination
of CBT and medication still leaves approximately one
third of pediatric patients markedly ill.18 Furthermore, an
earlier onset of OCD may be more associated with the ill-
ness being treatment-refractory.18 Given the persistence of
symptoms and limited levels of response to treatment,
especially medication, it is clear that the serotonin para-
digm of understanding OCD does not fully account for the
neurobiology of the illness. In fact, our understanding of
the biology of the disorder has been limited, until now.

How can brain imaging inform 
translational approaches?

The traditional, but not exclusive, strategy in psychiatry
has been to go from the pharmacology to the patho-
physiology of a given disorder. The development of the
serotonin hypothesis of OCD is an example of this
approach, where medications were applied first and a
physiological explanation shaped around that. This
approach has failed to show real progress in our under-
standing of the neurobiology of psychiatric illness.19

However, developing an understanding of the physiol-
ogy of psychiatric disorders has been difficult. That is,
until the development of brain imaging methodologies
that have allowed for the in vivo examination of the liv-
ing brain. Postmortem work, while informative, does
have its limits, and samples in pediatric populations with
psychiatric illness are rare. There have been 2 decades
since the application of brain imaging to the study of
OCD, and tremendous progress has been made.
Bringing these advances from the “bench” however, has
been difficult.
Translational research has in two basic hurdles to
jump.20 The first hurdle is in transferring new under-
standings of the mechanisms of the disorder into
novel treatments, diagnostic tools, and prevention. The
second hurdle is in taking these novel therapies, diag-
nostic and preventative methods, and implementing
these protocols in the actual clinic (Figure 1). As out-
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Figure 1. Basic pathway of translational research and the two main hurdles that need to be crossed to make research clinically relevant. The stan-
dard method in psychiatry has been to move from pharmacology in clinical practice to theories of pathophysiology.
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lined in the following section, significant progress has
been made in increasing our understanding of the
neurobiological substrates of pediatric OCD. These
advances have directly led to the novel application of
agents to treat pediatric OCD. This is one of the rare
instances in psychiatric research where knowledge has
indeed moved from the “bench” and closer to the
“bedside.”

Basic neurobiological model 
of pediatric OCD

In this section, we will outline the basic neurobiological
model of OCD (Figure 2). The cortical-striatal-
thalamic circuit has been the most consistently impli-
cated in OCD.21,22 In the striatum, 80% of all synapses are
cortical inputs.23 The cortical regions projecting to the
striatum can be divided into “motor” and “limbic asso-
ciative.” Motor projections include somatosensory,
motor, and premotor cortex. More pertinent to OCD,

the “limbic associative” projections are derived from the
amygdala, hippocampus, orbital, frontal, cingulate, pari-
etal, temporal, entorhinal, and association cortex.24 One
can subdivide the cortical-striatal connections into cir-
cuit loops. There are sensorimotor, oculomotor, dorsal
cognitive, ventral cognitive, affective/motivational loops
that extend from the cortex to the striatum to the thala-
mus and back to the cortex.22 The anatomy and organi-
zation of the cortical-striatal circuits have been reviewed
in depth elsewhere.25-30 These circuits progress through
distinct parts of the frontal cortex, basal ganglia, sub-
stantia nigra, and the thalamus in a self-repeating loop.25

Two of the pathways act to regulate output from frontal
cortex to insure appropriate behavioral responses to
stimuli.25 The “direct” pathway facilitates thalamic stim-
ulation of the cortex. The “indirect” pathway acts to
inhibit the thalamus—thus permitting the cortex to shift
sets and respond to novel stimuli. OCD may result from
excessive neural tone in the direct pathway relative to
the indirect pathway.
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Figure 2. Basic schematic of the cortical-striatal-thalamic-cortical loop pertinent to pediatric obsessive-compulsive disorder. 

Direct thalamic stimulation of cortex

Indirect inhibition of the thalamus

Cortex Striatum

Subthalamic
nucleus

Thalamus

Globus
pallidus
internal
segment

Globus
pallidus
external
segment

Glutamate
γ-aminobutyric acid (GABA)

PAGES_11_AG_1009_BA.qxd:DCNS#45  9/06/10  10:27  Page 167



Neuroimaging studies of pediatric OCD

Below is a brief review of neuroimaging studies of pedi-
atric OCD. The aim is provide enough background to
highlight the move to a translational approach from an
investigative one. Reports relevant to the translational
research approach are in the following section.

Frontal cortex

Rosenberg et al31 did not find any significant difference
in prefrontal cortex (PFC) volume between pediatric
OCD patients and age- and sex-matched controls.
However, the measurement of total PFC volume may
have been too gross a measure, and more subtle abnor-
malities in specific subregions lost. Indeed, the genu of
the corpus callosum, which connects aspects of PFC
across the hemispheres, was found to be larger in pedi-
atric OCD subjects.32 Larger anterior cingulate volumes
were also noted, consonant with the larger genu find-
ing.33 Anterior cingulate volume was correlated with
OCD symptom severity (r=0.73, obsessive subscale).
This was replicated in a second sample.34 This is note-
worthy as replication is rare in psychiatric research.
Developmentally, the normal increase in anterior cingu-
late volume with age (r=0.45) was absent in patients with
OCD (r=-0.12). Rosenberg and Keshavan33 hypothesized
that increased anterior cingulate volumes correlating
with reduced basal ganglia volumes (r=-0.46) in pediatric
patients with OCD is suggestive of neural network dys-
plasia—characterized by alterations in postnatal prun-
ing. Developmentally, the greater anterior cingulate vol-
ume and lack of a correlation with age in pediatric
patients with OCD may reflect delayed or reduced
neural pruning, while reduced striatal volume might
reflect increased pruning. No differences in posterior
cingulate or dorsolateral prefrontal cortex (DLPFC) vol-
ume were noted.33

Subcortical and other regions

Smaller basal ganglia volumes have been reported in
treatment-naïve pediatric OCD patients.31 Furthermore,
greater ventricular brain ratios have been observed in
adolescent patients with OCD compared with healthy
controls, which would be expected with decreased basal
ganglia volume.35 The thalamus was found to be larger in
pediatric OCD patients as compared with controls, a dif-

ference that resolved with SSRI treatment36 but not cog-
nitive behavioral therapy.37 Also in the thalamus, greater
medial but not lateral thalamic choline was observed in
pediatric patients with OCD compared with both
healthy controls and patients with major depressive dis-
order (MDD).38 The choline resonance is derived pri-
marily from membrane lipid compounds, and the
increase may be related to the volumetric alteration
noted earlier.36 Greater creatine concentration was also
noted39 in patients, perhaps reflecting a greater metabolic
demand in the medial thalamus. Amygdala volume
decreased with effective SSRI treatment in pediatric
OCD patients.40 Interestingly, the change in amygdala
volume was not related to a change in OCD symptom
severity, but correlated with SSRI dosage. Pituitary gland
volume was significantly smaller in pediatric OCD
patients as compared to matched controls.41 This was
especially apparent in males, highlighting a possible sex
difference in OCD.

Glutamate and pediatric OCD proton 
magnetic resonance spectroscopy 

studies (1H-MRS)

The core excitatory neurotransmitter of this cortical-
striatal-thalamic circuit mentioned earlier is glutamate.
It was in 1998 that Rosenberg and Keshavan33 first
hypothesized a role for glutamate in pediatric OCD, and
evidence of glutamate abnormalities in OCD has been
mounting since. In the first report on glutamate in OCD,
Rosenberg et al,42 using proton magnetic resonance
spectroscopy (1H-MRS), observed above-normal stri-
atal glutamate + glutamine (Glx) concentrations in psy-
chotropic-naive pediatric OCD patients as compared
with controls, which normalized after effective treat-
ment with an SSRI. This decrease in striatal Glx may
endure after SSRI discontinuation.43 Interestingly, the
other treatment considered effective for OCD, CBT, did
not alter caudate Glx concentrations in pediatric OCD
patients despite a reduction in symptoms.44 Conversely,
in the anterior cingulate, a single-voxel 1H-MRS study
found lower Glx concentrations in pediatric OCD
patients than in healthy controls.45 This was replicated
in adults with OCD, where below normal anterior cin-
gulate Glx was observed in female patients.46 Lower
anterior cingulate glutamate correlated with symptom
severity in this sample. Again in adult OCD patients,
Whiteside et al47 observed elevated Glx/PCr+Cr (crea-
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tine) levels in the orbital frontal white matter in patients
as compared with controls. These effects appear to be
regionally specific, with no effect noted in the occipital
cortex, an area not typically implicated in the patho-
physiology of OCD.42 In conclusion, in vivo studies of
the cortical-striatal-thalamic circuit in OCD have impli-
cated glutamate directly. It is important to note, how-
ever, that correlation does not indicate causation and
the overall weight of the evidence implicating glutamate
should be considered.

Animal models and peripheral 
marker studies

These neuroimaging findings have been bolstered by
studies using other methods and models. Chakrabarty et
al48 studied cerebral spinal fluid (CSF) concentration of
glutamate in 21 psychotropic-naïve adults with OCD and
18 healthy controls. CSF glutamate concentration was
significantly greater in OCD patients as compared with
control subjects. Indirect support for glutamate involve-
ment in OCD has also been provided by rodent models
of obsessive-compulsive49,50 and stereotypic behaviors.51

Glutamate transporter polymorphisms

Three independent groups have found that the 3’
region of SCL1A1 may contain a susceptibility allele
for OCD, predominantly in male offspring.52-54 The pro-
tein product is the high-affinity neuronal and epithelial
transporter (EAAT3, EAAC1) for L-glutamate, L- and
D-aspartate, and cysteine.55,56 EAAT3/EAAC1 is found
in cortex, basal ganglia, and hippocampus, and has been
detected in all parts of the neuron.57 In the adults, glu-
tamate transport helps to keep extracellular glutamate
below neurotoxic concentrations.58 EAAT3/EAAC1
exhibits rather low expression and makes a minor con-
tribution to the removal of synaptic glutamate as com-
pared with EAAT1 and EAAT2.59 During early brain
development, it is expressed before astrocytes are func-
tional. This is suggestive that EAAT3/EAAC1 is
involved in the developmental role of glutamate.59 A
critical role of EAAT3/EAAC1 in neurodevelopment
is consistent with the linkage and association findings
supporting SLC1A1 as a primary candidate gene in not
only pediatric OCD,52-54 but also in autistic spectrum dis-
orders.60 Testosterone and prolactin regulate the expres-
sion of EAAT3/EAAC1.56 The increase in expression

of EAAT3/EAAC1 by testosterone is consistent with
the association of OCD with SLC1A1 being strongest
in males.52,53 As for the possible function of the poly-
morphism, mice deficient in EAAC1 develop impaired
self-grooming.55 This suggests that EAAT3/EAAC1
knockouts in pediatric OCD may be associated with
increased rather than with decreased EAAT3 expres-
sion.

Glutamate receptor polymorphisms

In addition to the glutamate transporter, the 5072T/G
variant of NMDA subunit 2B gene (GRIN2B) has been
associated with OCD in pediatric patients.61 Specifically,
the 5072G–5988T haplotype was associated with OCD.
GRIN2B, on chromosome 12p, encodes for the NR2B
subunit of the ionotropic glutamate receptor. It is
expressed mainly in the striatum and the prefrontal cor-
tex.62 This consistent with regions demonstrating gluta-
matergic abnormalities in pediatric OCD patients.42,45

Furthermore, GRIN2B has been linked to schizophre-
nia,63 attention deficit hyperactivity disorder64 and bipo-
lar disorder.65 During cortical development, GRIN2B is
thought to play a role in plasticity.66 In addition, neuro-
toxic levels of glutamate during the neonatal period
increase the expression of NMDA NR2B in the striatum
and cortex.67 Functionally, the increased expression of
GRIN2B in reaction to excess glutamate68 suggests that
pediatric OCD is associated with greater GRIN2B
expression in the striatum. Most recently, a significant
association was identified between the rs1019385 poly-
morphism of GRIN2B and decreased anterior cingulate
cortex Glx but not with occipital Glx in pediatric OCD
patients.69

Limitations to the glutamate hypothesis of
obsessive-compulsive disorder

Clearly, a solitary neurochemical hypothesis of a psy-
chiatric disorder is limited, as neurotransmitters do not
operate in a vacuum. The preferential response of OCD
patients to SSRIs has spawned the “serotonin” hypoth-
esis of OCD. There is also neurobiological evidence to
substantiate that assertion. For example, the serotonin
transporter protein (5-HTPR) capacity indexed in
platelets by 3H-paroxetine is reduced in pediatric OCD
patients compared with controls.70 However, the persis-
tence of symptoms despite targeting serotonin pharma-
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cologically indicates limits of the serotonin hypothesis
of OCD.16,17 Indeed, glutamate and serotonin interact on
a number of levels in the frontal striatal circuit. For
instance, Becquet et al71 found that glutamate exerts a
potent inhibitory effect on serotonin release in the cau-
date nucleus. In addition, the orbitofrontal cortex sends
projections to dorsal raphe nuclei, which in turn sends
serotonergic input to the striatum. The orbitofrontal cor-
tex also has direct glutamate projections to the striatum,
which play a role in the release and turnover of sero-
tonin and regulation of serotonin receptor number in the
striatum. Given the above evidence, we believe that glu-
tamate is a logical choice for a biomarker and possible

translational focus, as it may play a role in the patho-
physiology of the disorder, the mechanism of action of
the proposed medication, and its interplay with sero-
tonin, the target of currently approved OCD medica-
tions.

Translational impact

Indeed, the glutamate hypothesis and consequent evi-
dence have lead to the application of glutamate-modu-
lating agents for the treatment of pediatric OCD (Figure
3). Given the previously mentioned limitations of SSRI
treatment for OCD, the search for novel medica-
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Figure 3. From initial findings to hypothesis to evidence and impact. The first hurdle in translational research has been crossed with neurobiologi-
cal evidence being translated to clinical trials. ACC = anterior cingulate, Glx = glutamate + glutamine, GRIN2B = glutamate receptor gene,
OCD = obsessive-compulsive disorder, SLC1A1 = glutamate transporter gene
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tions/applications and drug combinations is warranted.
Recently, the glutamate modulating agent riluzole (1-
amino-6-trifluoromethoxybenzothiazole) has shown
promise in psychiatric disorders.72-76 Riluzole is typically
well tolerated by patients and is FDA-approved for the
treatment of amyotrophic lateral sclerosis (ALS).77-79 The
mechanism of action of riluzole is not entirely clear.
Riluzole can act in three ways: (i) as an inhibitor of glu-
tamate release; (ii) inactivating voltage dependant
sodium channels in cortical neurons; and (iii) acting to
block γ-aminobutyric acid (GABA) reuptake.80-82 In both
a case report and an open-label trial in adults with
OCD,72,73 riluzole demonstrated an ability to reduce the
symptoms of OCD. More recently, an open-label trial in
pediatric OCD patients (8 to 16 years) found that rilu-
zole was both beneficial and well tolerated.76 Currently,
a National Institutes of Mental health-sponsored large
double-blind clinical trial is under way. Given the above
neurobiological findings and clinical reports, glutamate
modulating agents like riluzole offer particular promise
as an anti-OCD therapies.
Other glutamate and GABA-modulating agents have
shown some promise as well. For example, topiramate
has shown some promise in treating OCD in adults.83-85

However, there are case reports indicating that some
glutamate modulating medications (lamotrigine, topi-
ramate) have induced OCD-like behaviors.86-88

Furthermore, the occurrence of skin rash with lamot-
rigine treatment is also a concern.89 Aside from safety,
the mechanism of action is also important in choosing
which glutamatergic agent. While topiramate enhances
GABA activity and lamotrigine is a sodium channel
blocker, riluzole acts primarily to inhibit glutamate.
Given the above neurobiological findings and clinical

reports, glutamate modulating agents like riluzole, offer
particular promise as an anti-OCD therapies.

Conclusions

There is converging biological evidence indicating a role
for glutamate in the symptoms of OCD.42,45,47-49,52-54,61,90

Additionally, pharmacologically modulating glutamate
has been shown to have an effect on OCD symptoms.72,75,76

Hence, 1H-MRS, CSF, genetic, animal, and clinical stud-
ies have all implicated glutamate in OCD, indicating a
clear conceptual link between glutamate and OCD symp-
toms. Indeed, the work on the glutamate hypothesis in
pediatric OCD fits with Dr Tomas Insel’s call for “ratio-
nal therapeutics” for psychiatric illness.91 Considering the
large number of nonresponders and residual symptoms in
even patients classed as responders to SSRI treatment,
there is a pressing need to find better therapies. This work
may have high clinical impact as it may stimulate the
wider application of glutamate modulating agents for
pediatric OCD. As mentioned earlier, the traditional strat-
egy of going from pharmacology to pathophysiology has
failed to show real progress in our understanding of the
neurobiology of psychiatric illness.19 New approaches, such
as discussed here, may allow for progress that is more sub-
stantial. Given the findings regarding glutamate and
OCD, and the development of novel safe agents that
modulate glutamate, we could be on the cusp of break-
through. As with any new medication intervention, there
is the risk of failure. However, the payoff is enormous, as
a much-needed new avenue of treatment will be devel-
oped. ❏
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La investigación translacional de 
neuroimágenes en el trastorno obsesivo-
compulsivo pediátrico

El trastorno obsesivo-compulsivo (TOC) es un impor-
tante problema de salud pública. Los inhibidores
selectivos de la recaptura de serotonina (ISRS) son
los únicos medicamentos aprobados por la FDA
para el TOC. Sin embargo, los ISRS en la práctica clí-
nica son de una eficacia limitada. Considerando la
persistencia de los síntomas y los niveles de res-
puesta terapéutica, es claro que el paradigma sero-
toninérgico del TOC no da cuenta totalmente de la
neurobiología del trastorno y se requiere de más
investigación translacional. En esta revisión se
explora la hipótesis glutamatérgica del TOC pediá-
trico, se revisan las evidencias de las neuroimáge-
nes y los impactos translacionales más destacados.
La estrategia tradicional de ir desde la farmacolo-
gía a la fisiopatología no ha podido mostrar el real
progreso en nuestra comprensión de la neurobio-
logía de la enfermedad psiquiátrica y, aunque sea
en las primeras etapas, este trabajo demuestra el
claro beneficio de una aproximación a la enferme-
dad psiquiátrica en el sentido opuesto.

Recherche translationnelle en neuro-
imagerie dans le trouble obsessionnel 
compulsif de l’enfant

Le trouble obsessionnel-compulsif (TOC) est un
important problème de santé publique. Les inhibi-
teurs sélectifs de la recapture de la sérotonine (ISRS)
sont les seuls médicaments pour le TOC approuvés
par la FDA, bien qu’ils soient peu efficaces en pra-
tique clinique. Étant donné la persistance des symp-
tômes et les taux de réponse au traitement, il est
clair que le modèle sérotoninergique du TOC ne
rend pas vraiment compte de la neurobiologie du
trouble et qu’une recherche translationnelle sup-
plémentaire est nécessaire. Nous examinons dans
cet article l’hypothèse glutamatergique du TOC
chez l’enfant, nous passons en revue la neuro-ima-
gerie et nous insistons sur l’impact translationnel.
La stratégie classique allant de la pharmacologie à
la physiopathologie n’a pas réussi à montrer un vrai
progrès dans notre compréhension de la neurobio-
logie de la maladie psychiatrique et, alors qu’il en
est encore aux premiers stades, ce travail démontre
le véritable bénéfice d'une approche inverse de la
maladie psychiatrique. 
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