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Abstract

Background: Transposable elements (TEs) are interspersed DNA sequences that can move or copy to new positions
within a genome. TEs are believed to promote speciation and their activities play a significant role in human disease. In
the human genome, the 22 AluY and 6 AluS TE subfamilies have been the most recently active, and their transposition
has been implicated in many inherited human diseases and in various forms of cancer. Therefore, understanding their
transposition activity is very important and identifying the factors that affect their transpositional activity is of great
interest. Recently, there has been some work done to quantify the activity levels of active Alu TEs based on variation in
the sequence. Given this activity data, an analysis of TE activity based on the position of mutations is conducted.

Results: A method/simulation is created to computationally predict so-called harmful mutation regions in the
consensus sequence of a TE; that is, mutations that occur in these regions decrease the transpositional activity
dramatically. The methods are applied to the most active subfamily, AluY, to identify the harmful regions, and seven
harmful regions are identified within the AluY consensus with q-values less than 0.05. A supplementary simulation also
shows that the identified harmful regions covering the AluYa5 RNA functional regions are not occurring by chance.
This method is then applied to two additional TE families: the Alu family and the L1 family, to computationally detect
the harmful regions in these elements.

Conclusions: We use a computational method to identify a set of harmful mutation regions. Mutations within the
identified harmful regions decrease the transpositional activity of active elements. The correlation between the
mutations within these regions and the transpositional activity of TEs are shown to be statistically significant.
Verifications are presented using the activity of AluY elements and the secondary structure of the AluYa5 RNA,
providing evidence that the method is successfully identifying harmful mutation regions.
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Background
Transposable elements were first discovered by Barbara
McClintock in the 1950s during her studies of maize [1].
They are found in both eukaryotic and prokaryotic organ-
isms, including plants, animals, bacteria, and archaea.
Transposable elements were dismissed at one point as
being useless, but they are emerging to be thought of as
major players in evolution. Additionally, more and more
evidence is emerging that active TEs play a significant role
in human biology as they create genetic diversity in human
populations and can integrate into genes, potentially caus-
ing disease.

The proportion of TEs in a genome differs broadly
depending on the organism, ranging from 0.3% in
Escherichia coli to most of the genome (> 80%) in Zea
mays. In humans, 66–69% of the genome is repetitive or
repeat-derived [2], whereas coding sequences comprise
less than 5% of the genome. The majority of repeats in
human are transposable elements, making up about 45%
of the genome [3]. Some TEs have an evolutionary history
dating back hundreds of millions of years during which
they diversified to share very little sequence homology.
Over time, inactivated copies of these TEs have accu-
mulated and now comprise a significant proportion of
many genomes, serving as an important opportunity to
study molecular evolution. This is because every element
in the genome represents a “fossil record” that accumu-
lated mutations independently, meaning that they can be
used to study genomic changes both between and within
species.

Transposable elements are traditionally classified into
two broad categories based on their transposition mech-
anism and sequence organization [4]. Class I elements
are referred to as retrotransposons and they have a
“copy-and-paste” mechanism that transposes via reverse
transcription of an RNA intermediate. The RNA inter-
mediate is first transcribed from a genomic copy, then
it is reverse-transcribed back into DNA that is identical
to the original DNA by a reverse transcriptase encoded
in the TE sequence, and this process produces one new
copy in the host DNA [5]. Consequently, retrotransposons
can increase the number of copies of TEs, which thereby
increases genome size. Class II elements are called DNA
transposons, and they use a “cut-and-paste” mechanism to
move primarily through a DNA-mediated mechanism of
excision and insertion.

TEs can be further divided into four types — LTR retro-
transposons, LINEs, SINEs, and DNA transposons — on
the basis of the structural features of their sequences.
Among these types of TEs, non-LTR retrotransposons
(LINEs and SINEs) have been major factors of genome
evolution by providing diversity and plasticity to the
genome [6]. Within each type, TEs are subdivided into
families and subfamilies, based on the transposition

mechanism, and sequence similarity. For example, L1,
L2 are LINEs families, and Alu, SVA are SINEs fami-
lies. Furthermore, there are subfamilies AluY, AluJ, AluS
of the Alu family. TEs are also called autonomous or
non-autonomous based on whether or not they encode
the genes used for transposition. Note however that
autonomous does not imply that an element is active or
functional. A TE can be as active if it can transpose either
autonomously or non-autonomously.

Typically, the lifespan of one transposable element starts
from an activation of the transposon, followed by a rapid
burst of activity, while accumulating mutations, followed
by the slowing of transpositional activity after additional
mutations. The transposon then ebbs further until it
becomes inactive. The inactive elements, referred to as
fossil transposable elements, become relics and can get
interrupted by the transpositions of other active elements
[7]. Active elements comprise only a tiny proportion
of the TE content of the genomes of most organisms.
The genomes of eukaryotes are filled with thousands
of copies of the remnants of inactive TEs. For exam-
ple, there are roughly 50,000 autonomous and 200,000
non-autonomous fossil DNA transposons in the human
genome, and none of them are active any more [8].

Consensus repetitive sequences (TEs and other repeats)
in eukaryotes have been reconstructed and captured in a
database called Repbase Update [9]. Repbase is the pri-
mary reference database of TEs used in DNA annotation
and analysis.

Motivations
The genomes of most organisms have only a small propor-
tion of active TEs. The genomes of eukaryotes are filled
with thousands of copies of the remnants of inactive TEs.
For instance, out of the over 500,000 L1s in the human
genome, there are only about 100 active copies [10]. A gust
of transposition of L1 and Alu elements in the primate lin-
eage occurred about 40 million years ago (MYA), followed
by a slowing of transpositional activity since then [11].
Recent evidence indicates that there are 35 to 40 subfami-
lies of Alu, SVA, and L1 elements staying actively mobile in
the human genome [6, 12], and all of the active transpos-
able elements comprise less than 0.05% of the nucleotides
in the human genome. It has been estimated that active
human transposons generate about one insertion for every
10 to 100 live births [13–15]. The rate of L1 retrotranspo-
sition is estimated as 1/140 live births per generation [16],
and one new Alu insertion is generated for every 20 live
human births [15].

Alu transposition events can have a major impact
on human disease [12], as active TEs can integrate
into important genes. In fact, there have been forty-
three disease-causing Alu insertions identified [17]. In
very recent research on Alzheimer’s disease, a molecular
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mechanism of the Alzheimer’s process was proposed to be
caused by the Alu elements losing their normal controls
as a person ages, causing damage to the normal machin-
ery that supplies energy to brain cells, which can lead to
a loss of neurons and dementia [18]. The authors hypoth-
esize that Alu insertions in mitochondrial genes can lead
to progressive neurological disfunction. Therefore, it is of
importance to understand how the activity level of Alus
can change based on possible mutations.

Alu elements are approximately 300 base pairs long, and
are non-autonomous. They rely upon L1-encoded pro-
teins for their own mobilization [19]. Alu elements have a
dimeric structure of two similar monomers (the left and
right arms) that are joined by a linker and terminated with
a poly(A) tail [20]. As shown in Fig. 1, the left arm con-
tains weak (but functional) A and B boxes of the RNA
polymerase III internal promoter [12].

Different periods of evolutionary history have given rise
to different families and subfamilies of Alu elements, each
containing a small number of active Alu elements that
serve as the source of subsequent families [8]. According
to Repbase Update, there are three Alu subfamilies. AluJ is
the oldest at about 65 million years old, and is thought to
be completely inactive [12, 17, 21, 22]. Next, the AluS sub-
family is the second oldest, as they became active approx-
imately 30 million years ago, and some elements are still
active in humans [22, 23]. Lastly, AluY is the youngest
subfamily, and most elements are currently active [24].
Because there is no specific mechanism for removal of
Alu insertions, Alu evolution is dominated by the accu-
mulation of new Alu inserts [8]. These new copies of Alu
accumulate mutations independently over time.

In order to analyze the transpositional activity of the
active Alu copies in the human genome, an in vivo
plasmid-based mobilization assay was designed in [22] to
examine the mobilization capacity of Alu copies across
the human genome. Generally, the Alu retrotransposition
was detected on induction by LINE expression vectors.
Human HeLa cells were co-transfected with a marked
Alu element and an expression vector for the human L1
under the control of the CMV promotor. Cells were ampli-
fied and transposition events were detected. This method

allows for comparing the relative mobilization efficiencies
of varying core elements without changing other factors
and eliminating variation of flanking sequences.

Some representative elements were carefully selected
from the database of 850,044 full-length human Alu
copies in [22], in addition to several synthetic older
consensus elements that are no longer present in the
modern human genome, totalling 89 elements, with 52
AluY, 28 AluS, and 9 AluJ. These elements were then
cloned and tested in a mobile assay. From the functional
analysis of these Alu elements in the mobile assay, the
elements that had fewer changes relative to the con-
sensus sequences tended to have the highest levels of
activity. Indeed, no elements with more than 10% muta-
tions (at least 28 bp changes) were active [22]. Hence,
the amount of sequence variation is an effective factor
in altering transpositional activity. However, polymor-
phic AluY copies had higher transpositional activity than
randomly chosen AluY copies with sequence variation,
indicating that some sequence changes are more effective
than others in altering activity. Therefore, more analysis
is required to understand more precisely what influences
TE activity.

A new computational method is developed in this paper
to further analyze how the sequence of an element influ-
ences its transpositional activity. This method identifies
the most critical regions lying within the AluY consensus
such that mutations have a critical effect in deactivat-
ing the elements’ transposition, called “harmful mutation
regions”. This analysis can be applied to any TE in any
organism with experiments akin to those in [22], provid-
ing a quantified transposition fraction for each TE.

Methods
Materials
In this section, the 52 AluY sequences from the exper-
iment in [22] will be analyzed, as the AluY family is
the youngest Alu subfamily with the largest number of
active elements. To start, pairwise sequence alignments
of the AluY consensus sequence (gathered from Repbase
Update) versus the AluY elements (from the experiment)
were calculated, giving pairwise scores for every AluY

Fig. 1 Structure of Alu elements
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element sequence with the consensus. percent identity is
used here for pairwise scores.

AluYa5 elements were used in [22] as a standard for
comparing the transposition. Thus, an element is consid-
ered more active than AluYa5 when the cell culture of
this element showed greater fluorescence intensity than
the cell culture of AluYa5, and vice versa. Then, the aver-
age activity fraction of a TE is defined as a percentage of
the fluorescence intensity of the cell culture of this TE
over that of AluYa5 elements. The Alu elements can then
be categorized by their average activity fraction (which
ranges from 0 to 118% of AluYa5 activity — it can be over
100% if the activity is higher than AluYa5). Starting from
these activity fractions, all Alu elements were organized
into four activity level groups as in Definition 1.

Definition 1 AluY elements are grouped into:

• the inactive group, that consists of elements with
activity fractions that range from 0 to < 5%,

• the low activity group, that consists of elements with
activity fractions that range from 5 to < 40%,

• the moderate activity group, that consists of elements
with activity fraction that range from 40 to < 66.6%,

• the high activity group, that consists of elements with
activity fraction greater than 66.6%.

The percent identity versus the consensus of all AluY
elements were plotted against their activity fractions in
Fig. 2, where the x-axis is the percent identity and the
y-axis is the activity fraction. Each data point represents
one AluY element.

The elements are also divided into activity groups as per
Definition 1 (i.e. high, moderate, low, and inactive group,
as marked in Fig. 2). Although the elements with a higher
percent identity tend to have a higher activity level, a lin-
ear relationship is not clear. For example, there exist some
elements in the high activity group with a low percent
identity; conversely, some elements have a higher percent
identity but are in the low activity or inactive groups.
This leads to the hypothesis that some mutation sites are
more affective than others in altering the elements’ trans-
positional activities. Hence, a computational method is
proposed in the next subsections to identify these harmful
regions.

Notations
Some notations need to be provided before describing the
computational method.

Definition 2 For the method, variable names are used so
that the method applies in a variety of circumstances. The
total number of elements in the TE family is denoted by N,
and the length of the consensus sequence is denoted by L.

For example, considering the 52 AluY elements in [22]
with a consensus of 282, then N = 52 and L = 282.

A window is a region within the consensus, and is defined
by a window size, denoted by wsize, and a start position of
the window.

Then, a window denoted by wi is the region of
the consensus from the ith position to the position
j = i + wsize − 1.

Hence, the number of windows, denoted by nw, can be
calculated as nw = L − wsize + 1.

Fig. 2 Plot of the 52 AluY elements. The plot of the 52 AluY elements from [22]. Each element is a point, where the x-axis is the percent identity
versus the consensus and the y-axis is the activity fractions. The elements are partitioned into different groups of activity levels according to the
group definitions. Some elements are also grouped into vertical bins for further analysis



The Author(s) BMC Genomics 2017, 18(Suppl 9):862 Page 5 of 49

Definition 3 Mutations within the window wi of one TE
element is defined as the total number of mutations (ver-
sus the consensus) of this element lying within the window,
denoted by mi.

For example, for an element with mutations at positions
2, 3, 7, 15, 80, 224 in the consensus, with wsize = 10, then
m1 = 3 (number of mutations in the window from posi-
tion 1 to 10), and m10 = 1 (number of mutations in the
window from position 10 to 19).

Definition 4 For every element, every window from the
beginning to the end of the consensus is considered, to gen-
erate a vector of mutations in all windows for this element.
Mutations in every window of every element can be rep-
resented as a mutation matrix, denoted as M(N × nw).

M(N × nw) =

⎡
⎢⎢⎢⎣

m11 m12 m13 . . . m1nw
m21 m22 m23 . . . m2nw
...

...
...

...
...

mN1 mN2 mN3 . . . mNnw

⎤
⎥⎥⎥⎦ (1)

Taking the example of the AluY elements in [22], there
are N = 52 rows and nw = 273 (where L = 282, wsize =

10) columns in the matrix. The mutation matrix of the
AluY elements, representing the mutations of each ele-
ment in each window, is shown as a heat map in Fig. 3,
where the windows are shown in the x-axis and the AluY
TEs sorted by descending activity fractions are shown in
the y-axis. The activity groups are also marked with black
lines in the figure.

It is easy to see from Fig. 3 that certain windows are
darker than others, which provides visual evidence that
certain regions in the sequence tend to have more muta-
tions. However, the heat map alone does not help indicate
which mutations are correlated with a change in transpo-
sitional activity, nor does it show how they are related. By
using correlation analysis method below, it will be shown
that mutations in certain windows are indeed harmful to
elements’ activities.

Pearson’s coefficient of correlation and multiple test
correction
In this section, a method is proposed to identify the
harmful regions in an active TE by using the Pearson’s
coefficient of correlation. The Pearson’s coefficient of cor-
relation (denoted by ρ) is used to measure the linear
correlation between two variables X and Y. The result

Fig. 3 The number of mutations in each window of the AluY elements. The number of mutations versus the consensus of every AluY elements of
Fig. 2 in each window with wsize = 10. TEs are sorted in descending order by their activity fractions from the top to the bottom of the chart
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ranges from -1 to 1, with 1 indicating total positive corre-
lation, 0 indicating no correlation, and -1 indicating total
negative correlation. It is defined as the covariance of the
two variables, cov(X, Y ), divided by the standard deviation
of X, σX , multiplied by the standard deviation of Y, σY ,

ρ = cov(X, Y )

σXσY
. (2)

The Pearson’s correlation coefficient is a model-free
method, as it shows the nature of the data without being
built on an existing model. Indeed, in model-based meth-
ods, if data does not fit the model perfectly, results can be
misleading.

For each window in the AluY consensus, the variable X
is the number of mutations in each window of each AluY
element, and the variable Y is the activity fraction of each
AluY element. The Pearson’s coefficient of correlation was
calculated by comparing X against Y, using the correlation
function cor in the R Language. The observed correla-
tions from the data in the experiment in [22] are calculated
and denoted by

ρobs = (ρ1, ρ2, . . . , ρnw),

as shown in Fig. 4. It can be seen that mutations occur-
ring in most windows have negative correlation with the
transpositional activity. As negative correlation indicates
that the TE activity decreases as the number of mutations
in a window increases, the mutations in these windows
are harmful to TE activity. However, to evaluate whether
these negative correlations arise by randomness/chance,
a statistical significance test is used. The p-value mea-
sures the probability that more negative correlations than
what was observed in the data set can be caused solely by
chance. This is a measure of significance in terms of the
false positive rate [25].

To correct for multiple comparison bias caused by the
large number of windows, a q-value is also reported. A
q-value is a similar measurement to a p-value. It is a

quantity for convenience of reporting the “false discov-
ery rate” (FDR) [26]. The false positive rate and FDR are
defined differently — given a rule for calling features sig-
nificant, the false positive rate is the rate that truly null
features are called significant, while the FDR is the rate at
which significant features are truly null [27]. As an exam-
ple, a false positive rate of 5% in a study means that 5%
of the truly null features are called significant on average,
while a FDR of 5% indicates that 5% of all features that are
called significant are truly null. In general, the FDR is a
sensible measure capturing the balance between the num-
ber of true positives and false positives. Multiple testing
correction will be performed using the qvalue package
[28] under Bioconductor in the R Language.

Results
In order to investigate the relationships between the
transpositional activity and the mutations of a TE, a
null hypothesis is proposed as “mutations in a window
are not negatively related (or undifferentiated) to the
activity of the TE”. To test the hypothesis, a statistical
simulation is used to generate random data as elaborated
in the steps below. The framework of the simulation is a
general statistical technique for hypothesis testing.

Given a mutation matrix, M(N × nw), as described in
Eq. (1), the activity fractions vector of the N elements, αN ,
and the observed correlations ρobs, perform the following
operations (also depicted with the flow chart in Fig. 5).

Step 1: generate simulated correlations.
Given the number of iterations as n (eg. n = 1000),

for each iteration denoted by i,

1. permute M by columns as Mi;
2. calculate correlations between Mi and αN . The

correlations for each window for this iterations
is denoted by ρ(i,1), ρ(i,2), . . . , ρ(i,nw).

Step 2: form simulated and observed correlations
into a matrix.

Fig. 4 The Pearson’s coefficients of correlation between the number of mutations in each window and the activity fractions of the AluY elements.
The x-axis gives the windows in order on the AluY consensus
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Fig. 5 The flow chart of the computational method

Table 1 Simulated and observed correlations between
mutations and transpositional activity

Iteration w1 w2 . . . wj . . . wnw

1 ρ(1,1) ρ(1,2) . . . ρ(1,j) . . . ρ(1,nw)

2 ρ(2,1) ρ(2,2) . . . ρ(2,j) . . . ρ(2,nw)

...
...

...
...

...
...

...

i ρ(i,1) ρ(i,2) . . . ρ(i,j) . . . ρ(i,nw)

...
...

...
...

...
...

...

n ρ(n,1) ρ(n,2) . . . ρ(n,j) . . . ρ(n,nw)

observed
correlation (ρobs)

ρ1 ρ2 . . . ρj . . . ρnw

p-value p1 p2 . . . pj . . . pnw

q-value q1 q2 . . . qj . . . qnw

After the n iterations, there are n simulated corre-
lations for each window. The simulated correlations
along with the observed correlations are formed into
a matrix and summarized in Table 1.
Step 3: calculate p-values for each window.

For each column wj (1 ≤ j ≤ nw) in Table 1, calcu-
late a p-value of ρj in the distribution of ρ(i,j)(1 ≤ i ≤
n), which is pj = P(ρ(i,j) ≤ ρj), where 1 ≤ j ≤ nw.
Step 4: calculate q-values for each window.

After the p-values are calculated for each window,
estimate the q-values of each window, q1, q2, . . . , qnw
using the function qvalue in the R Language.
Step 5: test the null hypothesis for each window.

For each window wj (1 ≤ j ≤ nw), compare its
q-value, qj, to a confident threshold λ (eg. λ = 0.05).
If qj < λ, we can reject the null hypothesis. If the
null hypothesis is rejected, then the window wj is
harmful, and the sites in the window are harmful
sites.

Fig. 6 The density plot of correlations. The density plot of the
simulated correlations in the window between position 20 and 29
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Fig. 7 The p-values in a, and q-values in b of the AluY elements. The x-axis gives the windows in order on the AluY consensus

Step 6: filter out all windows that are harmful and
form overall harmful regions.

The example below illustrates how to test if a specific
window, w20, is considered to be a harmful window by
comparing the observed correlation and simulated corre-
lations between the elements’ transpositional activity and
mutations, by using the method above.

Example 1 Consider in particular an example with a
window size wsize = 10, the number of iterations n =
10, 000, and consider window w20 (between positions 20
and 29). Given the matrix of mutations, M, the method
calculates the observed correlation of w20 by comparing
the number of mutations in the 20th window, M[ , 20] (the
20th column of the matrix), and the elements’ activity frac-
tions vector, αN . The observed correlation is calculated
to be ρ20 = −0.5059255. Then the following steps are
performed:

Step 1: permute M[ , 20] n times and calculate
the correlation for every permutation, denoted by
ρ(1,20), ρ(2,20), . . . , ρ(n,20). The density plot of the sim-
ulated correlations ρ(1,20), ρ(2,20), . . . , ρ(n,20) is shown
in Fig. 6.

Table 2 The harmful mutation regions in AluY elements
calculated from correlation analysis (λ = 0.05)

Region ID RegionStart RegionEnd Average q-value

1 14 34 0.0101

2 38 57 0.0183

3 78 87 <0.0001

4 149 172 0.0178

5 180 190 <0.0001

6 212 222 0.0232

Step 2: calculate the p-value of the observed correla-
tion in the distribution: p20 = P(ρ(i,20) ≤ ρ20) <

0.00001. Using the same method, the p-values of all
windows can be calculated.
Step 3: perform a multiple test correction to calcu-
late the q-values. The q-value of the window in this
example is calculated as q20 < 0.00001.
Step 4: given the confident threshold λ = 0.05, we can
reject the null hypothesis. Hence, the window w20 is
considered as a harmful window, which means that
mutations occurring within this window are more
affective to the transpositional activity of the AluY
elements.

Using this method, the p-value and q-value are calcu-
lated for every window in the AluY consensus and the
results are shown in Fig. 7a and b respectively. Given a
confidential threshold λ = 0.05, a window in the AluY

Table 3 The percentage of mutations grouped by bins marked
on Fig. 2 over the total number of mutations in each group

Activity group Harmful regions Neutral sites

bin 1

low activity 13% 63%

moderate activity 13% 63%

high activity 0% 100%

bin 2

low activity 0% 0%

moderate activity 0% 5%

high activity 0% 0%

bin 3

low activity 6% 0%

moderate activity 0% 11%

high activity 0% 8%

bin 4

low activity 0% 33%

moderate activity 40% 20%

high activity 0% 10%



The Author(s) BMC Genomics 2017, 18(Suppl 9):862 Page 9 of 49

Fig. 8 The secondary structure of an AluYa5 RNA. The SRP contact sites and the A and B boxes are marked in grey. The harmful regions identified in
Table 2 are marked in yellow along the structure as indicated in the legend

consensus is identified as a harmful window if and only
if its q-value ≤ λ. The harmful windows that are over-
lapped are classified into harmful regions as listed in
Table 2. With λ = 0.05, the identified harmful regions
in Table 2 cover 34.5% of the total length of AluY con-
sensus sequence. Next, these computationally identified
regions will be verified to be harmful to the activity of
AluY elements.

Fig. 9 The density plot of coverage. The density of the coverage of
random generated regions. The blue vertical line is the coverage of
the harmful regions

Verifications
In this subsection, the harmful regions predicted in
Table 2 will be verified in two different ways. First, the
AluY elements with a similar percent identity versus the
consensus are examined to see if having various activity
is due to whether or not mutations occurred in harm-
ful regions. Second, a possible reason for the harmful
regions affecting transpositional activity is because the
harmful regions overlap with the functional sites of the
AluYa5 RNA that are important for the transposition of
the elements.

Verification by activities of AluY elements
Each of the AluY elements from [22] are compared to the
consensus sequence. The relationship between the per-
cent identity of these elements and their transpositional
activity levels is plotted in Fig. 2. By grouping elements
with similar percent identity into vertical bins, as marked
in the figure, it is evident that the activity levels of the ele-
ments in the same bin vary considerably. As an example,
the elements in bin #1 all have approximately 97% percent
identity with the consensus, but their activity levels range
from 1% to 106% (in comparison to the activity of AluYa5).
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Fig. 10 The number of mutations in each window of the Alu elements.
The number of mutations of the Alu elements in each window on the
Alu consensus (wsize = 10). The TEs are sorted by their activity
fractions in descending order from the top to the bottom of the chart

One possibility for this difference is that some mutations
occur within the harmful regions, which decreases their
activities dramatically. Therefore, all mutations in the high
activity group are classified as “neutral sites”, as activity
levels remain high despite the mutations. Table 3 lists the
percentage of mutations that occurred in both the harm-
ful region and neutral region for each activity group in the
bins in Fig. 2. Notice that, in the low activity groups of
each bin, there are more mutations in the harmful region
compared to other activity groups. Moreover, none of the
mutations in the high activity groups falls into the harmful
regions. Therefore, it is reasonable that the mutations that
occurred in the identified harmful regions may indeed
cause the low activity levels of these elements.

Verification by AluYa5 RNA secondary structure
As described previously, Alu elements have left and right
arms, and the left arm contains A and B boxes of the

RNA polymerase III internal promoter. Figure 8 shows
the secondary structure of the AluYa5 RNA as predicted
by Mfold [29] (a secondary structure prediction program)
based on previously determined secondary structure in
[20, 30]. It is known that SRP9/14 binding is necessary
for efficient Alu mobilization, and the left Alu monomer
binding to SRP9/14 is more important for mobilization
than the right Alu monomer binding [22]. In Fig. 8, both
the major and the minor SRP contact sites, and the A and
B boxes, are marked on the secondary structure in grey;
the identified harmful regions in Table 2 are marked in
yellow. As shown in Fig. 8, the harmful regions “cover” the
two major SRP contact sites and the B box very well, and
there are three additional unknown regions that are also
recognized as harmful. The unknown regions might have
some interesting unknown function.

Next, it will be shown via simulation that the identi-
fied harmful regions do not cover the functional regions
totally randomly (by chance). The coverage of harmful
regions is defined to be the percentage of the overlapped
number of positions between harmful regions (marked in
yellow) and functional regions (marked in grey) divided
by the total number of positions in the functional regions
(marked in grey). The simulation compares the coverage
of the harmful regions and that of randomly generated
regions as follows: given the lengths and positions of func-
tional regions (nf as number of functional regions), the
lengths and positions of harmful regions (nh as number of
harmful regions), and the number of trials as n,

1. calculate the coverage of harmful regions

CovharmR.

2. For every iteration i, where 1 ≤ i ≤ n,

(a) randomly generate nh regions with the same
lengths as the harmful regions identified as
shown in Table 2, and the algorithm makes

Fig. 11 The Pearson’s coefficients of correlation between the number of mutations in each window and the activity fractions of the Alu elements.
The x-axis gives the windows in order on the Alu consensus
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Fig. 12 The p-values in a, and q-values in b of the Alu elements. The x-axis gives the windows in order on the Alu consensus

sure that these regions do not overlap with
each other;

(b) calculate the coverage of randomly generated
regions in this iteration, denoted by CovrandRi .

3. After n iterations, there are n generated coverages,
denoted by

CovrandR1 , CovrandR2 , . . . , CovrandRn .

4. Calculate the probability where the coverage of
harmful regions is less than the coverage of random
regions as

P(CovharmR < CovrandR).

Executing the simulation with this method on the AluY
harmful regions calculated in Table 2 for n = 10, 000 itera-
tions, Fig. 9 shows the density of the empirical distribution
of the coverage of random regions, and the blue line on
the figure shows the coverage of the harmful regions in
Table 2.

The probability where the coverage of harmful regions
is less than the coverage of random regions is calcu-
lated as P(CovharmR < CovrandR) = 22%; that is, 78% of
randomly generated regions have less coverage than the
harmful regions identified by our method. Therefore, the
harmful regions cover the AluY functional regions and we
conclude that this coverage is likely not by chance.

Additional case studies
The computational method proposed to calculate the
harmful mutation regions of TEs was applied to a specific
TE family (the AluY subfamily) where the transpositional
activity fractions of the elements in this family were quan-
tified in [22]. The predicted regions of the AluY elements
using this method were verified using both the activities of

AluY elements and the AluYa5 RNA secondary structure,
which also supports the correctness of the computational
method proposed. In this section, this method will be
applied to two other cases — the Alu family generally and
the LINE-1 (L1) family, to identify the harmful mutation
regions lying within their consensus sequences.

The Alu family
The work in [22] has systematically tested 89 represen-
tatives from many Alu families and also subfamilies, and
all the AluY elements have been examined in previous
sections. In this subsection, the computational method
will be applied to a bigger set of elements of the Alu fam-
ily, including 9 AluJ, 28 AluS, and 52 AluY, where their
activity fractions are quantified in [22].

There are a total of 89 elements (N = 89) and the length
of the Alu consensus is L = 312. First, pairwise sequence
alignment of each of the N Alu elements is performed
against the Alu consensus sequence from Repbase Update
to get the mutation data for each element. Given the win-
dow size as wsize = 10, calculate a mutation matrix,
M(N × nw), as in Eq. 1, where nw = L − wsize + 1. This

Table 4 The harmful mutation regions in Alu elements
calculated from correlation analysis (λ = 0.05)

Region ID RegionStart RegionEnd Average q-value

1 1 62 0.0010

2 104 119 0.0015

3 126 144 0.0181

4 147 173 0.0078

5 176 193 0.0102

6 233 250 0.0066

7 254 266 0.0176
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Table 5 The harmful mutation regions in L1 elements calculated
from correlation analysis (λ = 0.01)

Region ID RegionStart RegionEnd Average q-value

1 19 31 < 0.0001

2 94 112 < 0.0001

3 182 191 < 0.0001

4 314 323 < 0.0001

5 353 362 < 0.0001

6 364 375 < 0.0001

7 381 407 < 0.0001

8 474 491 0.0041

9 505 523 < 0.0001

10 530 547 < 0.0001

11 588 603 < 0.0001

12 661 671 < 0.0001

13 698 707 < 0.0001

14 854 864 < 0.0001

15 925 943 < 0.0001

16 1000 1020 < 0.0001

17 1046 1061 < 0.0001

18 1328 1342 < 0.0001

19 1386 1398 < 0.0001

20 1455 1467 < 0.0001

21 1508 1517 < 0.0001

22 1594 1612 < 0.0001

23 1935 1947 < 0.0001

24 2095 2104 < 0.0001

25 2315 2330 < 0.0001

26 2332 2348 < 0.0001

27 2460 2478 < 0.0001

28 2547 2556 < 0.0001

29 2591 2600 < 0.0001

30 2710 2722 < 0.0001

31 2838 2855 < 0.0001

32 2889 2899 < 0.0001

33 2945 2963 < 0.0001

34 2983 2992 < 0.0001

35 3147 3162 < 0.0001

36 3198 3216 < 0.0001

37 3247 3256 < 0.0001

38 3299 3310 < 0.0001

39 3330 3339 < 0.0001

40 3421 3431 < 0.0001

41 3479 3497 < 0.0001

42 3822 3846 < 0.0001

43 3869 3887 < 0.0001

Table 5 The harmful mutation regions in L1 elements calculated
from correlation analysis (λ = 0.01) (Continued)

Region ID RegionStart RegionEnd Average q-value

44 4262 4283 < 0.0001

45 4295 4311 < 0.0001

46 4340 4349 < 0.0001

47 4399 4424 < 0.0001

48 4446 4464 < 0.0001

49 4613 4631 < 0.0001

50 4676 4685 < 0.0001

51 4812 4827 < 0.0001

52 4899 4910 < 0.0001

53 5114 5131 < 0.0001

54 5152 5170 < 0.0001

55 5179 5197 < 0.0001

56 5269 5279 < 0.0001

57 5413 5424 < 0.0001

58 5426 5441 < 0.0001

59 5476 5488 < 0.0001

60 5586 5596 < 0.0001

61 5713 5724 < 0.0001

62 5756 5765 < 0.0001

63 5773 5787 < 0.0001

64 5816 5829 < 0.0001

mutation matrix, representing the number of mutations
in each window, is plotted in the heat map as shown in
Fig. 10. The observed Pearson’s coefficient of correlation
between the mutations in windows and the activities of
the Alu elements are calculated using Eq. 2 and is shown
in Fig. 11.

Then the steps in the computational method are fol-
lowed to perform the statistical significance tests on the
Alu data for n = 10, 000, and the simulated correlations
are calculated. The p-value and q-value are calculated for
each window. The results are shown in Fig. 12. Finally, the
harmful regions in the Alu elements are calculated and
listed in Table 4. In summary, the total length of the harm-
ful mutation regions is 171 bp, which is 54.81% of the Alu
consensus.

The L1 family
L1 elements make up 17% of the human genome [31]. An
active L1 is about 6 kb in length, and it has been estimated
that an average diploid human genome contains approxi-
mately 80–100 active L1s [32]. In the work of [32], 82 L1
elements were cloned and each assayed for its ability to
retrotranspose in cultured cells. These elements were then
compared with the L1RP element to get their quantified
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Fig. 13 The Pearson’s coefficients of correlation between the number of mutations in each window and the activity fractions of the L1 elements.
The x-axis gives the windows in order on the L1 consensus

retrotranspositional activity fractions in a similar fashion
to [22].

Among the 82 L1 elements in [32], N = 77 were
retrieved where both their sequences and activity frac-
tions were available. The length of the L1 consensus
sequence (accession no. L19092.1) is 6053 bp (L = 6053).
Using the computational method, a mutation matrix
M(N × nw) is generated, and the observed Pearson’s coef-
ficient of correlation between the mutations in windows
and the activities of the L1 elements are calculated using
Eq. 2. Then the steps in the computational method are
followed to perform the statistical significance tests on
the L1 data for n = 10, 000, and the simulated corre-
lations are calculated. The p-value and q-value for each
window are estimated, which gives the harmful regions in

the L1 elements. There are 201 harmful regions calculated
from N = 77 L1 elements, and the total length of these
regions is 3500 bp in total, which covers 57.82% of the L1
consensus sequence.

Notice that a large number (38 out of 77) of the L1
elements have an activity fraction of 0%, and many (25
out of 77) are inactive with activity fractions between 0
to 5%. Due to the large number of elements being inac-
tive (more than 80% of the total number of elements),
the effects to the negative correlations between the muta-
tions in these elements and the transpositional activity
are biased. Therefore, the same calculation is performed
again to only include the elements with non-zero activ-
ity fractions (N = 39). The observed Pearson’s coefficient
of correlation between the mutations in windows and the

Fig. 14 The p-values in a, and q-values in b of the L1 elements. The x-axis gives the windows in order on the L1 consensus
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activities of the L1 elements are calculated using Eq. 2 and
shown in Fig. 13. The p-value and q-value for each window
are shown in Fig. 14, and the predicted harmful regions
with λ = 0.01 are listed in Table 5. The total length of
these regions is 894 bp, which covers 14.77% of the L1
consensus.

Discussions
The computational method was inspired by the observa-
tion on Fig. 4 of the AluY family that mutations occurring
in most of the windows have negative correlation with the
transpositional activity. In contrast, in Fig. 11 of the Alu
family and Fig. 13 of the L1 family, there are a number of
windows that have positive correlation with the transposi-
tional activity. A positive correlation indicates that the TE
transpositional activity increases as the number of muta-
tions in a window increases. This might be because of
the selection of the consensus sequence, as the mutations
are calculated based on the consensus sequence which is
assumed to be a “representative” element in that family,
and the mutations in younger elements with higher activ-
ity relative to the consensus may seem to “increase” the
elements’ activity. Furthermore, as was previously men-
tioned, there might be many factors altering elements’
activities simultaneously and mutations are only one fac-
tor among them. Thus, the reasons that some mutations
have positive correlations to transpositional activity might
be caused by a combination of other unknown factors.

Conclusions
In this paper, major factors that affect the transpositional
activity of TEs is discussed. A computational method is
developed to identify specific regions where mutations
harm activity, called harmful regions, using correlation
analysis and statistical significance tests. The harmful
regions are that verified by examining elements with the
very similar percent identity but usually different transpo-
sitional activity. Moreover, the identified harmful regions
were shown to “cover” the AluY SRP major binding sites,
which is indeed important for the AluY element to bind
to SRP9/14 for its transposition, also supporting the fact
that these regions are important in the transposition of
active elements. Three additional harmful regions were
also identified. The computational method is then applied
to a bigger set of elements of the Alu family, and then to
the L1 family to identify their harmful mutation regions.
To the best of our knowledge, this is the only work that
computationally identifies regions that significantly affect
transpositional activity, and there has not been any other
studies involving a similar data analysis. However, the role
of other factors influencing activity is still unknown. The
method was only applied to both the Alu and L1 fam-
ilies in the human genome, as they are highly active in
the human genome, and the data of activity levels exist.

However, the technique can be easily applied to other fam-
ilies of TEs and other organisms once activity levels and
sequence data are determined.
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