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1. Introduction

Accurately measuring pain in humans and rodents is essential to
unravel the neurobiology of pain and discover effective pain
therapeutics. However, given its inherently subjective nature, pain is
nearly impossible to objectively assess. In the clinic, patients can
articulate their pain experience using questionnaires and pain
scales,8,13,20 but self-reporting can be unreliable due to various
psychological and social influences or difficulties for some patients to
verbalize their experience (eg, infants, toddlers, and those with
neurodevelopmental disorders).7,25At thebench, thesechallengesare
evenmore daunting as researchers rely on the behaviors of rodents to
measure pain or pain relief. Given this, there is a growing realization
among pain researchers, clinicians, and funding entities that these
traditional approaches of assessing pain in rodents may be flawed.
Importantly, these flaws may have contributed to several failed drugs
that initially showed promise as analgesics and point toward
inconsistencies in our understanding of basic pain neurobiology.5,17,28

This has prompted the field to seek new andmore reliable ways
to measure pain in rodents. In concert with these efforts,
behavioral neuroscientists across several fields are developing
new tools to improve their own behavioral assays. In this review,
we describe some of these efforts and provide background for
the wide adoption of these new tools by the pain research field to
speed the translation of basic science findings to the clinic.

2. Subsecond analysis of acute pain assays aids in
quantifying the sensory experience

The predominant measurement for pain sensation in rodents is
the paw withdrawal from a noxious thermal, chemical, or

mechanical stimulus. Features of the withdrawal response such
as latency or frequency occur over the span of a few seconds and
can be easily scored by novice experimenters. However,
meaningful features that occur on a millisecond timescale go
unnoticed with the unaided eye. To circumvent this, researchers
have turned toward high-speed video imaging, revealing that
millisecond behavioral features can be resolved and that these
features contain meaningful information about the animals’
internal pain state.

In one study, 2 of us (I.A-S. and N.T.F.) imaged the behavior of
freelymovingmice in small enclosures at 500 to 1000 fps to identify
the differences between subsecond movements induced by
noxious vs innocuous stimulation of the hind paw.1 Through
statistical analysis and machine learning, we found that 3 features
(paw height, paw velocity, and a combinatorial score of pain-
related behaviors including orbital tightening, paw shaking, paw
guarding, and jumping) could reliably distinguish withdrawals
induced by noxious vs innocuous stimuli. This opened the
possibility of creating a “mouse pain scale,” which used a principle
component analysis to combine the 3 features into a single number
(similar to the clinically used zero-to-ten scale). We further
demonstrated the utility of this pain scale by determining the
sensation evoked by 3 von Frey hair filaments (0.6, 1.4, and 4.0 g)
and found that only the 4.0 g induced a pain-like withdrawal, while
the 0.6- and 1.4-g filaments induced a withdrawal more similar to
that seenwith innocuous stimuli. Finally, we examinedwhere along
this pain scale optogenetic activation of 2 different nociceptor
populations, Trpv1Cre and MrgprdCre would fall. Predictably,
activation of Trpv1-lineage neurons induced a withdrawal within
the pain domain. However, activation of the nonpeptidergic
Mrgprd nociceptors led to awithdrawal within the nonpain domain.
Althoughhistorically consideredanociceptor population, data from
other reports also suggest these neurons are not sufficient to
transmit pain signals at baseline.4,10,15,26

Other groups have also extracted meaningful information from
subsecond behaviors. One group identified that the latency of
response to noxious stimuli was shorter (50-180 ms) than to
innocuous stimuli (220-320 ms).6 Another group resolved sub-
second movement of whisker vibrissae, body, tail, and hind paw
movement to identify that an animal’s posture can impact the
latency of noxious-related movements, suggesting circuit-level
inhibitory control of the behavior.9 One study demonstrated that
even using a lower frame rate (240 fps) with an Apple iPhone6
camera could resolve subsecond pawwithdrawal, paw guarding,
and jumping.3 Collectively, these studies reveal that meaningful
data can be extracted from enhanced temporal resolution of
stimulus-evoked pain assays, allowing for a better approximation
of an animal’s pain state.
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3. Considerations for using high-speed videography
to capture subsecond pain behaviors

Moving from webcams, camcorders, or smartphones to dedi-
cated high-speed cameras to study pain requires some
additional considerations. Although financial considerations rank
high on the list, the costs for cameras that can record around 1k
fps are dropping. Another consideration is the lighting used to
capture the videos. Most newer cameras can be activated with
infrared lighting that will not overtly perturb the animal’s behavior.
Newer high-speed cameras also produce minimal sound, as to
not disturb the animal. However, we still recommend habituating
animals to any sounds a camera generates. Finally, an important
consideration is the hard drive space available on the camera
itself because high-speed videos can be several GB, and most
high-speed cameras must first save a video on internal space
before transferring to external hard drives. We have found that at
least 4 to 8 GB of internal memory on a high-speed monochrome
camera is necessary for 5 to 10 seconds of high-resolution
recording (1024 3 1024 pixels) of behavior—which allows
sufficient temporal resolution to capture subsecond and multi-
second pain behaviors. With these improvements and reductions
in costs, high-speed imaging is accessible enough that more
laboratories in the field should consider incorporating high-speed
imaging when evaluating paw withdrawal as an endpoint since
such recordings can be used to better define the animal’s
behavioral state when the paw withdrawal occurs.

4. Supervised automated tracking and pose
estimation with machine learning and deep neural
networks to increase pain assessment workflow

High-speed imaging with manual tracking allows researchers to
record behavior at millisecond resolution timescales, but the
process of manually scoring and tracking these movements of
multiple body areas across potentially thousands of frames or
hours of data can be laborious and influenced by experimenter
bias or methodological inconsistencies. Several research groups
are developing newways of automatically tracking animal posture
(pose estimation) and the movements of body regions of interest
(bROI) in animals ranging from invertebrates to vertebrates.11

One new platform, DeepLabCut, has already been widely
adopted across the behavioral neuroscience community22

(Table 1). This open-source system uses deep neural networks
to perform pose estimation without the need of placing reflective
markers on the animals. DeepLabCut was built from an earlier
pose estimation algorithm called DeeperCut, which used
thousands of labeled data sets to accurately track body parts of
humans engaged in diverse tasks from rowing to throwing
a baseball.16 The goal of DeepLabCut was to modify the existing
DeeperCut algorithm to achieve human-level tracking accuracy in
animals while also reducing the amount of computer training. The
use case of this software relies on an experimenter manually
identifying all bROI in as few as 200 frames. The software then
uses those frames to train itself to identify the same bROI
throughout the entire video or other videos with similar camera
angles that contain one ormore animals. Thus, after the initial 200
frames of training, the software can track animal movement in all
future experiments.

Another deep-learning pose estimation program, LEAP,23 is
also gaining traction in the behavioral neuroscience community
(Table 1). Initially developed for Drosophila, LEAP moves beyond
DeepLabCut by introducing a graphical user interphase to label
body features. Similar to DeepLabCut, LEAP uses a convolutional
neural network capable of making predictions of bROI in a given

image. With LEAP, users only need to label the first 10 images of
a data set for training, which can be performed in 1 hour. The
authors demonstrate that LEAP can faithfully track bROI in both
flies or freely behaving mice. Similar to DeepLabCut, LEAP is also
free and open source with online instructions. At the time of this
publication, a new version of LEAP, SLEAP (Social LEAP
Estimates Animal Poses), has been announced but not yet
published and will include the ability to track multiple animals in
a single video.

Importantly, automated tracking of behavioral features can
also be applied to the detection of spontaneous pain in rodents.
The Mogil laboratory previously developed a mouse grimace
scale (MGS) based on changes in facial expressions induced by
noxious stimuli of moderate duration (10 minutes-4 hours).18

However, the MGS relies on humans scoring a small number of
frames in videos, making the MGS labor-intensive and subject to
variability across research groups. To overcome this, the Mogil
and Zylka laboratories built a new platform for automated scoring
of the MGS (aMGS), using a convolutional neural network24

(Table 1). The aMGS was trained with nearly 6000 facial images
of albinomice either in pain or not in pain for testing and validation.
Using a postoperative pain assay, the aMGS was able to
accurately predict pain, and relief of pain, with an accuracy equal
to that of a human scorer. As automation of the MGS platform
continues to develop, this technology should become a mainstay
platform used in preclinical pain and analgesic assessment.

5. Unsupervised identification and measurement of
novel pain-related behavioral features

DeepLabCut and LEAP markerless tracking software allow
a researcher to easily track bROI and then perform analysis on
the subsequent data. However, these software platforms rely on
the user identifying movement features of bROI. In some cases,
there may be rich information not easily recognizable to humans.
Thus, some groups are working to develop deep learning
technologies that can automatically identify important features
an experimenter should focus on. In these instances, instead of
a user identifying a movement feature, deep learning software
can identify previously unrecognized movement features that
contain important information to distinguish between experimen-
tal groups.

The Datta laboratory has applied this approach to the
development of a platform, MoSeq, to decode spontaneous
mouse behaviors within an open field using three-dimensional
(3D) depth imaging and 3 separate cameras (Table 1). Using this,
they revealed that normal mouse behavior is structured into 60
different movement blocks (eg, darting, freezing, low/high rear-
ing, etc) of roughly 350 ms in length with mice frequently
transitioning between these blocks.27 They coined these
movement blocks “behavioral syllables,” similar to the syllables
used to create words in language. Importantly, these syllables
were not identified or defined by the experimenter. Instead, they
were classified automatically by deep neural networks. As a proof
of principle, researchers in the Datta laboratory re-evaluated the
walking phenotype of mouse mutants for a gene important for
fluid locomotion. Although previous kinematic assessment
identified abnormal motor movement patterns, this new platform
uncovered a so-called “waddle” walking phenotype in both
homozygous and heterozygous mutant mice—a phenotype
missed by other scoring techniques.2,12,19,21

Although powerful, MoSeq is not a turn-key solution and requires
substantial code customization and a full-time computer scientist.
Tomakeunsupervisedbehavioral analysismore accessible, the new
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software suite, B-SOID, developed by the Yttri laboratory, was
created in which the automated tracking capabilities of DeepLabCut
were combined with feature extraction similar toMoSeq14 (Table 1).
The current iteration of B-SOID tracks 6 body parts and categorizes
those positions into 7 behaviors that have been manually defined in
the software: pause, rear, groom, sniff, locomote, orient left, and
orient right. Although fairly general, these behaviors enable
researchers to easily and automatically identify trends and
sequences in the behaviors associated with whatever stimulus or
condition is applied. Alternatively, B-SOID also offers the ability to
segment statistically different behaviors based entirely on the data
without any manual definition from the user. This feature of the
software is perhaps most promising because it will enable pain
researchers to discover novel, nonobvious behaviors that can
provide insight into the rich experience of pain. One current limitation
is thatB-SOIDonly accepts video recorded frombeneath theanimal.
Many behaviors that pain researchers care about, like itching or
scratching, are best captured either from above, the side, or
a combination of multiple views demonstrating the need for B-SOID
to expand to include multiangle analysis. Nevertheless, B-SOID
represents a significant advance in terms of ease of use and should

enable pain researchers with minimal programming skills to take
advantage of unsupervised behavioral analysis.

6. Future directions

It should be noted that machine learning–based tools for pain
research are still in their infancy.Weneed a greater understanding
of accuracy, how well different tools predict analgesic efficacy
across a broad range of drugs and pain models, concordance
between tools and laboratories, and ease of adoption for pain
researchers. Major barriers still exist despite open-source sharing
of new analytic pipelines. Most pain research laboratories lack the
personnel to install, troubleshoot, and operate these somewhat
finicky software packages. Efforts must be expanded to simplify
the user interface and operability to facilitate broader use. Still, the
combination of markerless tracking for automated pose estima-
tion and deep learning networks for feature extraction will
undoubtedly help the field identify new pain-related behaviors at
both subsecond and multiminute time scales while making
already established behaviors easier and more reliable to
measure. It is possible that researchers may identify nuances to

Table 1

Software for markerless tracking and feature extraction of animal behavior.

Software
name

Application Reference PMID Open
source

Training
tutorials

Software link Notes

DeepLabCut Markerless tracking of bROI 30127430, 31227823 Yes Yes https://github.com/AlexEMG/

DeepLabCut

Markerless tracking removes

need for reflective markers,

minimal training of deep neural

networks, and multianimal pose

tracking integration. With lack of

GUI, coding can be challenging

for novice user.

LEAP Markerless tracking of bROI 30573820 Yes Yes https://github.com/talmo/leap Markerless tracking removes

need for reflective markers,

minimal training of deep neural

networks, and GUI available,

however, not able to track

multiple animals in single video.

SLEAP Markerless tracking of bROI Unpublished na Na na Markerless tracking removes

need for reflective markers,

minimal training of deep neural

networks, GUI available, and

multianimal pose tracking

integration announced.

aMGS Automated measurement of

mouse grimace scale

29546805 Yes Yes https://github.com/

BenjaminCorvera/MGS-pipeline-

distribution

Automated tracking of MGS

increases workflow and

decreases variability of scoring,

fast detection of spontaneous

behavior, currently only works

with albino mice.

MoSeq Feature extraction 26687221 Yes No Need an MTA to access software Unsupervised extraction of

important behavioral features,

however, requires advanced

computing ability.

B-SOID Pose estimation and feature

extraction

Preprint: https://doi.org/10.

1101/770271

Yes Yes https://github.com/YttriLab/B-

SOID

Unsupervised extraction of

important behavioral features,

automated markerless tracking.

However, current version only

uses video from below and users

cannot define unique behaviors to

track.

bROI, body regions of interest; GUI, graphical user interphase; MGS, mouse grimace scale.
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rodent pain behavior by tracking an eye, ear, paw, or even a single
digit, vastly improving upon our ability to use rodents in pain
research.

Although the technologies detailed here will undoubtedly
increase an experimenter’s accuracy at measuring acute pain,
it remains uncertain how well each of these technologies will
perform in measuring chronic states, such as neuropathic pain.
Because animals in chronic pain states often guard their injured
limbs or show reductions in mounting robust motor outputs, this
may be a rate-limiting factor since some of the platforms
described above rely on animals performing quick and intense
movements (Fig. 1). Therefore, it is possible that an advanced
version of aMGS, and the unsupervised learning platforms with
the capacity to detect spontaneous pain behaviors such as
MoSeq or B-SOID, may be the most reliable in detecting subtle
phenotypes that define the pain states during neuropathic or
inflammatory pain.

To end where we began, a very small number of basic science
findings in preclinical pain models are translated into the clinic as
novel pain therapeutics. Therefore, another future direction could
be for laboratories to perform pain behavior testing in rodents with
some of the technologies described here and test both known
analgesics and drugs that showed painkilling promise in rodents
but failed subsequently in clinical trials.29 What if increased
resolution in pain measurement in rodents could save us valuable
time and energy by not pursuing the wrong targets? Only time will
tell the true value in using these newer tools to study pain in mice

and rats, but if our predictions are correct, the field has reason to
be optimistic.
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