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Space of preattentive shape features
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Department of Psychology, Chinese University of

Hong Kong, Hong Kong

Four decades of studies in visual attention and visual
working memory used visual features such as colors,
orientations, and shapes. The layout of their featural
space is clearly established for most features (e.g.,
CIE-Lab for colors) but not shapes. Here, I attempted to
reveal the basic dimensions of preattentive shape
features by studying how shapes can be positioned
relative to one another in a way that matches their
perceived similarities. Specifically, 14 shapes were
optimized as n-dimensional vectors to achieve the
highest linear correlation (r) between the log-distances
between C (14, 2) = 91 pairs of shapes and the
discriminabilities (d′) of these 91 pairs in a texture
segregation task. These d′ values were measured on a
large sample (N = 200) and achieved high reliability
(Cronbach’s α = 0.982). A vast majority of variances in
the results (r = 0.974) can be explained by a
three-dimensional SCI shape space: segmentability,
compactness, and spikiness.

Public significance

Along with colors and orientations, shapes are
very commonly used as visual features in studies
of visual attention. However, there has been a lack
of understanding of the layout of the shape space.
This stands in contrast to other important feature
dimensions such as color—the layout of a color space
(e.g., CIE-Lab space) is very well known. For example,
in a systematic review of visual features, Wolfe (1998)
pointed out that “the most problematical basic feature
is shape or form. . . . The heart of the problem is a lack
of widely agreed understanding of the layout of shape
space” (p. 33). This problem still remains unsolved up
to now. In the present study, I attempted to reveal the
basic dimensions of shape features by studying how
shapes can be positioned relative to one another in
a way that matches their perceived similarities. The
present results suggested that, just like colors, shape
features are governed by a simple and lawful space. On
the practical side, these results provide guidance on how
to choose distinguishable shape sets for visual symbols
or glyphs in data visualization tasks (e.g., scatterplots).

Human observers extract a set of preattentive
features, such as colors, shapes, and orientations,
in parallel from the stimuli that are presented to
their visual system (Treisman & Gelade, 1980; Wolfe,
1994). In the past four decades, these features have
been commonly used to study visual attention, visual
working memory, and other related topics in cognitive
psychology. In some sense, these features serve as the
building blocks of findings and theories in these areas.

This study examined shape features in a task that
requires preattentive processing of large numbers of
shapes at once. Previous studies have shown that several
shape features appear to be processed preattentively,
including intersection, closure, line terminations, and
concavities (e.g., Chen, 1982; Donnelly, Humphreys, &
Riddoch, 1991; Elder & Zucker, 1993, 1994; Hulleman,
Winkel, & Boselie, 2000; Julesz, 1984, 1986; Julesz
& Bergen, 1983; Pomerantz & Pristach, 1989).1 The
present study aims to provide a unified space for
understanding the perceptual space of these shape
features.

Preattentive shapes features versus
postattentive shape processing

Shape is an umbrella term. Conceptually, there is a
clear distinction (e.g., Wolfe & Bennett, 1997) between
preattentive shape features that can be extracted in
parallel and efficiently used in guiding attention (e.g.,
Julesz, 1984, 1986) versus the postattentive processing
of an object’s shape (e.g., Biederman, 1987) that can
only occur when it is in the current focus of attention.2

Experimentally, these two can be dissociated from
each other in the sense that the preattentive shape
features’ advantage (over other aspects of shapes that
are not extracted as preattentive features) is substantial
in attention-demanding tasks (e.g., visual search
or texture segregation) but negligible in one-to-one
comparison tasks. For example, Huang (2015a; see also
Huang, 2015b, 2015c, 2020b, for related discussions)
systematically examined how 16 stimulus types are
processed in eight different tasks. These 16 stimulus
types include both “preattentive shapes features”
(e.g., four stimulus items involving the presence and
absence of the intersection, the hole, and the line
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termination) and also “Ts in different orientations” that
are not processed as preattentive shape features. Huang
(2015a) found that in a perceptual discrimination (i.e.,
one-to-one comparison) task, the preattentive shape
features were processed no better than Ts (thresholds 48
vs. 47 ms). However, in a visual search task that required
processing eight items, the former was processed
dramatically better than the latter (thresholds 81 vs. 335
ms).

These results suggest that the preattentive shape
feature is not a proportional reduction of all aspects
of shapes but is a special subset of the latter set of the
information. By making an analogy to the search engine
of an academic database, preattentive shape features
correspond to the keywords that can be used to make
a search, whereas the “postattentive shape processing”
corresponds to the complete content of an individual
article that can only be displayed one at a time. Only the
keywords but not all details of the articles can be used
to search for a target article. Moreover, the keywords of
an article are not the proportional reduction of all the
contents of that article but a special subset of it.

To summarize, among all the aspects of shapes, only
some special subset of information (preattentive shape
features) can be extracted in parallel and used to guide
attention. It is the purpose of the present study to
elucidate the exact content of this subset. Connections
to postattentive shapes processing and other studies
in the general domain of shape processing will be
discussed in the Discussion.

Shape space

An important concept in studies of visual features
is the feature space. Generally speaking, in a feature
space, each feature corresponds to an n-dimensional
vector, and so we can clearly see the relations between
the features in this n-dimensional space. For example,
in a CIE-Lab color space, each color corresponds to a
vector in a three-dimensional (3D) space.

Although we have a fairly good understanding of the
spaces for most features (for reviews, see Wolfe, 1998;
Wolfe & Horowitz, 2004, 2017), shape space remains
a mystery. In 1970, it was already discussed as an old
and established problem in Leonard Zusne’s book
Visual Perception of Form. In a systematic review of the
research on visual features, Wolfe (1998) pointed out
that “the most problematical basic feature is shape or
form. . . . The heart of the problem is a lack of widely
agreed understanding of the layout of shape space”
(p. 33). This problem still remains unsolved up to now.

Why is shape space so elusive? The root of the
difficulty seems to be the lack of a starting point. The
visual processing of other features (e.g., colors) may be
complex and nonobvious, but the features themselves
can usually be organized in a fairly straightforward way.
For example, the majority of saturated colors can be

found in the one-dimensional spectrum of wavelengths
of light. In contrast, the shape of an object can include
many details and cannot boil down to one or two
obvious dimensions. To formulate a hypothesis on the
structure of color space and to explain the functional
role of colors, one can consider the different ways
the spectrum of light may be nonlinearly mapped.
However, with shape space, we do not know where to
start. Therefore, with a lack of previous knowledge on
its layout, understanding shape space has to be achieved
by an open-ended exploration.

Discriminability versus featural distance

In this study, I attempted to reveal the basic
dimensions of preattentive shape features by studying
how the set of shapes I tried here can be positioned
relative to one another in a way that matches their
perceived similarities.

As shown in Figure 1a, if shapes are represented by
vectors in an n-dimensional shape space that is uniform,
then there should be a linear discriminability versus
featural distance relationship: The more discriminable
two shapes are from each other in a visual task (i.e.,
greater discriminability), the further away these two
shape vectors are from each other in the shape space
(i.e., longer featural distance). For example, if the
cross-circle difference is more discriminable than the
crescent-triangle difference, then it is reasonable to
assume that in the shape space, the cross-circle distance
is greater than the crescent-triangle distance.

Without prior knowledge on the scale of the
discriminability for shapes or the scale of featural
distance in shape space, I approached them in the
most typical ways in psychophysics.3 Specifically, I
assume d′ is a linear scale of discriminability (e.g.,
Macmillan & Creelman, 2004), and following the
classic Weber-Fechner law, I assume log-distance (i.e.,
the logarithmic value of the distance) is a linear scale of
the featural distance.

Dimensionality reduction

In this modeling, the number of dimensions of
the shape space can be determined as the minimum
number of dimensions required to explain a major portion
of the variance in discriminabilities between all the
possible pairs of shapes among this set. For example,
if we study three shapes, A, B, and C, and measure
the three discriminabilities between the three pairs
of shapes, we may find the values of d′

AC, d′
AB, and

d′
BC can be adequately explained by placing these

three shapes in a one-dimensional space (Figure 1b);
alternatively, we may find that all three discriminabilities
are roughly equal to each other, and therefore they
have to be explained by placing the three shapes in a
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Figure 1. Rationale and method. The rationale of this study is illustrated (a). If shapes are represented by vectors in n-dimensional
uniform shape space, then there should be a linear discriminability-featural distance relationship: The more discriminable two shapes
are from each other, the further away they are from each other in the shape space. Next, the number of dimensions of the shape
space can be determined as the minimum number of dimensions required to explain a major portion of the variance in
discriminabilities between all the possible pairs of shapes among this set. For example, if we study three shapes, A, B, and C, and
measure the three discriminabilities between the three pairs of shapes, we may find the values of d′

AC, d′
AB, and d′

BC can be
adequately explained by placing these three shapes in a one-dimensional space (b); alternatively, we may find that all three
discriminabilities are roughly equal to each other, and so they therefore have to be explained by placing these three shapes in a
two-dimensional space (c). The present study included 14 typical shapes (d). In each trial, a target shape and a background shape
were chosen from these 14 shapes and respectively used to generate a rectangular target-shape array inside a background array.
Observers were asked to judge, in a very brief (100 ms) and masked display, whether the rectangle was vertical or horizontal (e).

two-dimensional space (Figure 1c). To generalize, if
we study a large set of shapes and n is the minimum
number of dimensions needed to explain a major
portion of the variance in discriminabilities between all
the possible pairs, then we can reasonably conclude that
shape space is an n-dimensional space.

Method

An overview of the method

The present study included 14 shape items
(Figure 1d). In each trial, 2 shapes were chosen from
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these 14 shapes. A target shape was used to fill in a
rectangular array, whereas a background shape was
used to fill in the rest of a background array (Figure 1e).
Observers were asked to judge, in a very brief (100 ms)
and masked display, whether the rectangle was vertical
or horizontal. This attention-demanding “texture
segregation” task (Beck, 1966, 1980) was chosen so that
the performance critically measured preattentive shape
features rather than postattentive processing of shapes.
The items were randomly presented in one of four
possible orientations to make sure that the task relied
on the shapes of the items in an orientation-invariant
sense.

Participants

A total of 200 university students (average age =
20 years, 147 females), all of whom had a normal
or corrected-to-normal vision, participated in this
study’s experiments. I planned for this large sample size
because there were only four trials per condition per
observer (see below), and I aimed for a target reliability
(Cronbach’s α) of at least 0.97. Fourteen observers
were excluded because their performance was below a
predetermined criterion (overall accuracy < 0.6), and
the data of the remaining 186 observers were analyzed.

All procedures were in accordance with the national
ethical standards on human experimentation and with
the Declaration of Helsinki of 1975, as revised in 2008,
and were approved by the research ethics committee
of the Chinese University of Hong Kong. Informed
consent was obtained from each observer.

Apparatus

The stimuli were presented on a computer monitor,
and the observers viewed the display from a distance of
about 60 cm.

Choice of shapes

Reasons for using two-dimensional filled geometrical
shapes

As shown in Figure 1d, a total of 14 shapes were
used in the present study. The scope of these shapes
was limited to two-dimensional (2D) geometrical filled
shapes. Alternatively, other important categories of
shape stimuli could have been used, such as real-world
objects (e.g., animals, letters, and characters), 3D
shapes, and 2D unfilled line-drawing shapes. The
present testing was restricted to one specific category
because the exhaustive testing of all possible pairs
of shapes requires a large number of observers. If

the scope is increased from 14 to 50 shapes, then
approximately 2,700 observers will be needed to reach
the same target reliability.

Given this restriction, the 2D geometrical shapes are
chosen for two reasons. First, this is the set that has
been linked directly with the preattentive shape features
(e.g., Chen, 1982; Donnelly, Humphreys, & Riddoch,
1991; Elder & Zucker, 1993, 1994; Hulleman, Winkel, &
Boselie, 2000; Julesz, 1984, 1986; Julesz & Bergen, 1983;
Pomerantz & Pristach, 1989). On the other hand, no
preattentive shape feature has been established for any
other categories such as animals, letters, or 3D shapes
(see Enns & Rensink, 1990, for an exception; but see
Zhang, Huang, Serap, & Rosenholtz, 2015), making
them less promising for the initial exploration.

Second, the category of 2D geometrical shapes
is a conceptually more fundamental category of
shapes, and the understanding of the shape features
in other categories requires a prior understanding of
this fundamental category. For example, if we have
identified a shape feature in 3D shape, we will need
to know whether that can be attributed to their 2D
profiles. Similarly, if we have identified a shape feature
in letters, we will need to know whether that can be
attributed to their geometrical shapes.

Within 2D geometrical shapes, there are still
variations. For example, shapes of unfilled line drawings
could have been used. In the present study, the unfilled
and filled shapes are not considered together because
they will differ obviously from each other on colors
and spatial frequency distributions. Between these
two options, the filled shapes are chosen because the
presence/absence of the holes of the shapes can be
interpreted more unambiguously.

To summarize, it seems fruitful to start with 2D filled
geometrical shapes as the initial exploration. Of course,
other categories are potentially important and need to
be explored in future studies.

Reasons for choosing these 14 specific shape items
This set of shapes is not a class of shapes generated

by varying in one or two predetermined dimensions,
as usually used in previous studies, but a collection of
intentionally diverse items. For the present purpose,
I wanted to maximize the diversity between items as
much as possible in the scope of 2D filled geometrical
shapes, with the hope that they can capture all
dimensions of preattentive shape features in this
open-ended exploration.

These shape items were chosen by considering two
criteria.

First, shape items were included to represent known
shape features as well as other conceptual dimensions
that are potentially important. For example, the О was
included to represent the feature of closure. The ✚ was
included to represent the feature of intersection. The �
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was included to represent the conjunction of the closure
and the intersection. The and were included to
represent the feature of concavity. The was included
to represent the dimension of “discontinued parts” (as
against the other shapes that are one continued region),
and the and were included to be the borderline
cases on this dimension of continuity. The and
were included to represent “elongated shapes.” Several
shapes were chosen to vary on the dimensions of
curvature (i.e., whether the edges are curved or straight
lines), including the shapes consisting of curved edges
(e.g., ●, О), the shapes consisting of straight lines (e.g.,
�,�), and those in between (e.g., , ).

Second, some shapes were included because they are
among the most typical examples of the layperson’s
concept of “shapes” (e.g., �, �, ●, , ♥).

Although it is impossible to perfectly match these
items on their sizes and spatial frequencies, informal
adjustments have been made to try to minimize these
differences so that their contributions to the task
performances can be kept at a minimal level.4

Stimuli and task

As shown in Figure 1e, in each stimulus display, a
total of 64 items were presented as one 8 × 8 array
on the center of the display. This array measured 8.5
× 8.5 cm. In each trial, 2 (out of all 14) shapes were
chosen, one as the “target shape” and the other as
the “background shape.” Twelve target-shape items
were presented in a rectangular array (3 × 4 or 4
× 3), whereas the rest of the 8 × 8 array was filled
by background-shape items. The position of the
target-shape array was randomized with the constraint
that it never resided on the leftmost column, rightmost
column, topmost row, or bottommost row. Observers
attempted to report whether the target-shape array was
vertical or horizontal.

This texture segregation task (Beck, 1966, 1980)
was chosen as an attention-demanding task5 to
characterize the roles of shapes as basic visual features.
For this purpose, one-to-one comparison tasks (e.g.,
pairwise comparison or same-different discrimination)
were naturally excluded from the options. Another
classic option for an attention-demanding task is the
visual search task (e.g., Treisman & Gelade, 1980;
Wolfe, 1994). In the present study, texture segregation
was chosen as the better option than visual search
because I wanted the task to require the observers
to simultaneously select multiple items that were the
same shape but presented in different orientations.
This ensured that the task measured the shape in an
orientation-invariant sense rather than focusing on a
shape template at a specific orientation; for example, a
crescent should be seen as the same shape regardless
of whether it is facing upward or leftward. For this

purpose, each item was randomly presented in one of
four orientations (0˚, 90˚, 180˚, 270˚).

The stimulus items were presented briefly, and
accuracy was measured as the index of performance.

Procedure

Each trial started with a white fixation cross. The
fixation cross was presented in the center of the
display for 800 ms and was followed by the stimulus
display, which was presented for 100 ms and then
masked. The mask remained until a response was
made. The observers were asked to report whether the
rectangular target-shape array was vertical (pressing
“j”) or horizontal (pressing “k”). They were asked to
respond as accurately as possible but were under no
time pressure (i.e., “unspeeded” responses).

Each observer completed five blocks (182 trials per
block). In total, there were 14 × 13 = 182 conditions
of choosing a target shape and a background shape
out of the 14 shapes, and it was arranged so that each
condition appeared once in each block.

The first block was regarded as practice and excluded
from the analysis. In this practice block, the stimulus
duration gradually decreased from 800 ms to 100 ms, so
the observers could have an opportunity to learn about
the task gradually.

Results

Data

I measured accuracies in a total of 182 conditions.
The reliability of these accuracies (Cronbach’s α) was
0.982. This provided a solid foundation for subsequent
modeling. The Cronbach’s α is an index of the reliability
across individual items. It should be clarified that, for
the present purpose, the “items” are not individual
shapes but individual observers.

These accuracies were converted to 182 d′ values
(Figure 2). This conversion was done because the
d′, but not accuracy, is usually a linear measure of
discriminability in psychophysics (e.g., Macmillan &
Creelman, 2004).

The discriminability between each pair of shapes
(A, B) is reflected in two conditions (Target-A-
Background-B vs. Target-B-Background-A). For
example, the “star-target-crescent-background” and
“crescent-target-star-background” displays both
reflected the discriminability between star and crescent.
Therefore, the 182 d′ values were two-to-one averaged
into 91 d′ values (see Figure 2), which were then used
in optimization as indexes of the discriminabilities
between the 91 pairs of shapes.
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Figure 2. Data. For a pair of shape (A and B), the blue bar represents the d′ of performing a texture segregation task for the
Target-A-Background-B condition, whereas the red bar represents the Target-B-Background-A condition. The black line represents the
predicted d′ from the SCI shape space. See text for details.

Optimization

The coordinates of the 14 shapes as n-dimensional
vectors were optimized to achieve the highest
correlation (Pearson’s r) between the featural distances
(i.e., the logarithmic value of the Euclidean distance
between the vectors, following the Weber-Fechner
law) between the 91 pairs and the 91 discriminabilities
between them. These coordinates were found
through an optimization algorithm. The algorithm

attempts to find the maximum (or minimum) of
a function by varying input values and calculating
the value of the function. Optimization is widely
used in science and engineering (Nocedal & Wright,
2006). The present study adopted a straightforward
general-purpose algorithm6: dimension-by-dimension
fixed-step-size movements, implemented as a four-level
loop (see Figure 3). The MATLAB script of this
optimization procedure is available on the Open Science
Framework project page at https://osf.io/khgdt/.

https://osf.io/khgdt/
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Figure 3. The program flowchart of the optimization algorithm. The present study adopted a general-purpose straightforward
algorithm: dimension-by-dimension fixed-step-size movements, implemented as a four-level loop. Here, 14 vectors were used to
represent the coordinates of the 14 shape items in the shape space. On the level of whole optimization procedure, multiple runs
were started from different sets of random starting vectors and the runs repeated until a best-fitting r had been replicated 20 times.
On the level of a run, at the beginning of each run, the step size was set as 0.5. A run consisted of multiple scans. These scans were
repeated until meeting the criterion of successfully reaching a maximum of the fitting index r (step size < 0.000001) or until meeting
some criteria of terminating a run. On the level of a scan, in each scan, the program sequentially scanned through all dimensions of all
vectors. If, in a complete scan, there was no change for any of the dimensions of any of the 14 vectors because the fitting index (r) was
already at a maximum, then the step size was halved at the end of this scan. On the level of a move, at this most elementary level, a
dimension of a vector attempted to move by the specified step size until the fitting index (r) had reached a maximum. After each
movement, the scale of vectors was standardized.

Level of the whole optimization procedure
In this algorithm, 14 vectors were used to represent

the coordinates of the 14 shape items in the shape
space. The whole optimization procedure consisted
of multiple runs that were started from different sets

of random starting vectors (M = zero vector, SD
= 1). The runs repeated until a best-fitting r had
been replicated 20 times; this was set to make sure
that the global, rather than a local, maximum was
achieved.
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Level of a run
At the beginning of each run, the step size was set

as 0.5. A run consisted of multiple scans. These scans
were repeated until meeting the criterion of successfully
reaching a maximum of the fitting index r (step size <
0.000001) or until meeting some criteria of terminating
a run.7

Level of a scan
In each scan, the program sequentially scanned

through all dimensions of all vectors. If, in a complete
scan, there was no change for any of the dimensions of
any of the 14 vectors because the fitting index (r) was
already at a maximum, then the step size was halved at
the end of this scan.

Level of a move
At this most elementary level, a dimension of a

vector attempted to move by the specified step size until
the fitting index (r) had reached a maximum. After each
movement, the scale of vectors was standardized.

Results of optimization

Next, for n = 1 to 6, I used this optimization
algorithm to find the coordinates of the 14 shapes in
n-dimensional space to achieve the highest correlation
(r) between the log-distances between the 91 pairs of
shapes and the 91 d′ values of these pairs. As shown
in Figure 4a, the shape space is most reasonably
characterized by three dimensions. The fitting is already
very good (r = 0.974) and improves relatively little for
the subsequent dimensions. Therefore, I will focus on
the 3D model in further discussion. The possibilities
of a greater (or a smaller) number of dimensions will
be considered in the Overfitting and Underfitting
subsections in the Discussion.

Rotation of the shape space

The optimization in the present study is based
on the discriminability-featural distance relation.
Therefore, this optimization index remains the same
if the layout of these vectors is affected by rigid
motion (translation, rotation, reflection) or uniform
scaling. Most importantly, to improve the conceptual
interpretability of the dimensions, the layout of the
vectors needs to be rotated so that the three axes
match three interpretable shape features. Given the
lack of previous knowledge on the layout of the shape
space, there is no objectively optimal way of doing
this. Therefore, I rotated it manually with the goal of

matching the previously established dimensions: the
intersection and closure. Clearly, this can be achieved
fairly well, and the resulting third dimension also has a
fairly clear conceptual meaning (spikiness). This will
probably need to be finely adjusted in the future when
a more objective method is developed to determine the
exact direction of the three axes.

Discussion

(S)egmentability-(C)ompactness-Sp(i)kiness
(SCI) shape space

The optimization for 3D shape space generated 14 3D
vectors, each representing a shape in the shape space.
The 91 predicted discriminabilities calculated from
these vectors are also given as black lines in Figure 2,
and they are generally quite close to the measured
discriminabilities (red and blue bars in Figure 2).
Following the rationale illustrated in Figure 1a, I also
plotted the relationship between the featural distances
(in log scale) between the 91 pairs of shapes in the 3D
shape space and the 91 discriminabilities (d′) between
them (Figure 4b). There is clearly a strong relationship
between the two.

The best-fitting coordinates of the 14 shapes as 3D
vectors are plotted in Figure 4c (and also in Figure 4d,
which plotted the same data in two panels). The layout
was orthogonally rotated so that the three axes match
three interpretable shape features. This 3D shape space
had also been translated and uniformly scaled so that all
scores from all three dimensions could fit into the range
[0, 10]. These transformations were conducted only
for the purpose of making the scores more intuitive
and had no effect on either the fitting index or the
interpretations of dimensions.

Segmentability
The first dimension is shown as the x-axis of Figure 4c

(and also x-axis of the left graph of Figure 4d). It
matches quite well with the conceptual dimension of
“intersection” that has been well established in previous
studies (Julesz, 1984, 1986; Julesz & Bergen, 1983).
Shapes including clear intersections (� and ✚) scored
very high on this dimension, and most of the other
shapes scored low. Interestingly, the shape � scored as
high as ✚, and the shape also scored moderately.
It seems that this dimension generally responds to
“joints” on which multiple segments are connected,
rather than strictly to the crossing of two lines. This
observation is consistent with Wolfe and DiMase’s
(2003) finding that, preattentively, an intersection is
indistinguishable from a four-segment shape that does
not include an intersection. Taken together, although
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Figure 4. Results and analysis. For number of dimensions = 1 to 6, I used an optimization algorithm to determine the best model (i.e.,
highest correlation). It seems that the shape space is most reasonably characterized by three dimensions because the fitting is
already very good (r = 0.974) and improves relatively little for the subsequent dimensions (a). Following the rationale illustrated
in Figure 1a, there is a strong correlation between the log-distances between the 91 pairs of shapes in this 3D shape space and the 91
discriminabilities (d′) between them (b). The best-fitting coordinates of the 14 shapes as 3D vectors were plotted in (c) (and also in (d)
that plotted the same data in two graphs). The first dimension (x-axis of (c) and also x-axis of the left graph of (d)) matches well with
the conceptual dimension of “segmentability” (e.g., ✚ vs. ●). The second dimension (y-axis of (c) and also y-axis of both graphs of (d))
matches well with the conceptual dimension of “compactness” (e.g., О vs. �). The third dimension (hue of bubbles of (c) and also
x-axis of the right graph of (d)) matches well with the conceptual dimension of “spikiness” (e.g., vs. ●). Together, they constitute a
(s)egmentability-(c)ompactness-sp(i)kiness (SCI) space.
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this dimension was initially identified by looking for
the presence/absence of intersections, the nature of this
dimension is reflected more precisely by the concept of
“segmentability.”

Compactness
The second dimension is shown as the y-axis

of Figure 4c (and also y-axis of both graphs
of Figure 4d). It matches fairly well with the conceptual
dimension of “closure” (i.e., holes) that has been well
established in previous studies (Chen, 1982; Donnelly,
Humphreys, & Riddoch, 1991; Elder & Zucker, 1993,
1994; Pomerantz & Pristach, 1989). Shapes including
clear holes (� andО) scored very low on this dimension,
and most of the other shapes scored high. Interestingly,
three shapes (�, , and ) scored moderately. It seems
that this dimension also reflects the “semicovered
spaces” that can be included by connecting two points
in the shape (e.g., gaps, or concavities; Hulleman,
Winkel, & Boselie, 2000). In other words, although this
dimension was initially identified by looking for the
presence/absence of closures (holes), the notions of
closure and concavity perhaps can be unified and should
be more precisely described as a type of “compactness”
index: the ratio of “the area of a shape” and “the area
of the smallest convex shape covering it.” Therefore,
this dimension is formally termed compactness. It is
not entirely clear why � scored higher than ● on this
compactness dimension even if they should be equal
(i.e., both 1) on the compactness index defined above.
This may reflect noise or some conceptual aspect of this
dimension that we do not yet understand. Future work
will be needed to find out.

Spikiness
The third dimension is represented by the hues of

bubbles in Figure 4c (and also x-axis of the right graph
of Figure 4d), and it seems to reflect the spikiness of a
shape: Those shown by the reddish bubbles (�, , , ,
and ) have sharp spikes, whereas those shown by the
bluish bubbles (●, ♥, �, and ) have smooth contours
without any sharp spikes. This notion of spikiness is
very consistent with the recent finding that both human
observers and their lateral occipital complex (LOC)
area are very sensitive to the spiky parts of the objects
(de Beeck, Torfs, & Wagemans, 2008). Ecologically, the
spikiness of an object perhaps indicates a potential
danger of grasping an object,8 and this is perhaps why
spikiness is processed as a basic visual feature. This
spikiness dimension seems to be driven nonlinearly by
the presence of at least one or two very sharp spikes,
rather than linearly by the number of spikes. For
example, the and score higher than �, even if the
latter has many more spikes.

This dimension of spikiness seems to be related to
the concept of “line termination,” which has been
proposed as a basic shape feature (Julesz, 1984; Julesz
& Bergen, 1983). Clearly, a line termination is usually
also a spiky part (e.g., ), so the previous findings
concerning line termination can generally be explained
in terms of spikiness. However, this third dimension of
shape seems to be more generally consistent with the
concept of spikiness than with the specific definition of
line termination. For example, should score higher
than in terms of the number of line terminations, but
the former is arguably less spiky because the spiky parts
do not point outward and are therefore not dangerous
for grasping. It is not entirely clear why �, which has
four corners, scored even lower than a disk with a
completely smooth surface (●). Perhaps, this is because
it appears as a standard box that can be placed more
stably and held more readily than a ball, so it is in some
sense even less dangerous than a ball. Future work will
be needed to explore this hypothesis.

(S)egmentability-(C)ompactness-Sp(i)kiness (SCI) shape
space

To summarize, the three dimensions of this shape
space respectively match the concept of segmentation,
compactness, and spikiness. Therefore, taking the first
letters of segmentability and compactness and the “I”
from spikiness, this 3D shape space is named SCI shape
space.

Overfitting

Overfitting is an important concern for complex
models. For the present study, the correlation (r) that
can be reached by the optimization algorithm will
always improve with a larger number of dimensions
because more dimensions always give more room to
explain the variations in the data. However, some
of these additional dimensions may have provided
artificial explanations for “random noises” rather than
substantive underlying mechanisms. It is therefore
important to assess the issue of overfitting for the
SCI shape space. Specifically, are three dimensions too
many? Is the third dimension an artificial one or not?

The central problem of overfitting is the failure of
making good predictions for new data. I considered two
types of new data: the generalization to a new group of
observers and the generalization to new shapes.

First, for generalization to a new group of
observers, I used an out-of-sample fitting procedure
to assess this problem. In this procedure, I
randomly split the data into two parts (i.e., 93
observers for each), conducted an optimization
on Part 1, and calculated the usual in-sample
fitting index on which the optimization was based,
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Figure 5. Assessments of overfitting. The central problem of
overfitting is the failure of making good predictions for new
data. For generalization to a new group of observers (a), I used
an out-of-sample fitting procedure to assess this problem.
Unsurprisingly, the in-sample fitting was better than the
out-of-sample fitting, and the difference grew with more
dimensions. However, it is also clear that the difference was
relatively trivial (r = 0.972 vs. 0.957 for the 3D model), and this
suggests that the SCI shape space can be generalized to a new
group of observers. For generalization to new shapes (b), I used
a leave-one-out fitting procedure to assess this problem.
Unsurprisingly, when a shape was left out, the fitting of the
shape was worse than the usual fitting, and the difference grew
with more dimensions. However, it is also clear that the
difference was modest (a 49% increase of RMSE), and this
suggests that the SCI shape space can be generalized to new
shapes.

r(log-distances Part 1, discriminabilities Part 1), as well as the out-of-
sample fitting index, r(log-distances Part 1, discriminabilities Part 2).
This was repeated 15 times, and the average results are
plotted in Figure 5a. Unsurprisingly, the in-sample
fitting was better than the out-of-sample fitting, and the
difference grew with more dimensions. However, it is
also clear that the difference was relatively trivial (r =
0.972 vs. 0.957 for the 3D model), and this suggests that
the SCI shape space can be generalized fairly well to a
new group of observers.

Second, for generalization to new shapes, the set
of shapes is too small to be split into two subsets.

Therefore, to assess this issue, I used a leave-one-out
fitting procedure to assess this problem. In this
procedure, I took one “test shape” out and used
optimization to fully determine a shape space on the
basis of the other 13 shapes. Then I put the test shape
back to see how well this test shape could fit with this
previously optimized shape space (i.e., fitting of the
13 d′ values relevant to this test shape) and compared
it against the usual situation in which all 14 shapes
were optimized together. Here, the linear correlation
coefficient (r) could not be used as an unbiased index
to compare the fitting of a subset to that of the whole
set,9 so I used the root-mean-square error (RMSE).
This procedure was repeated for all 14 shapes, and the
average results are plotted in Figure 5b. Unsurprisingly,
when a shape was left out, the fitting of the shape was
worse than the usual fitting, and the difference grew
with more dimensions. However, it is also clear that
the difference was modest (a 49% increase of RMSE
for the 3D model) and this suggests that the SCI shape
space can be generalized reasonably well to new shapes.
Of course, this leave-one-out fitting procedure only
provides evidence for the generalization within this
category of shapes, namely, other 2D filled geometrical
shapes. With this restriction, it seems unlikely that
the current diverse set has missed the variations in a
whole dimension. In the “additional shape sets” section
below, we will consider the issue of generalization to
other types of shapes, such as 3D shapes and shapes of
real-world objects (e.g., animal silhouettes, letters, and
characters).

In addition to the quantified assessments, conceptual
clarity is essential to the prevention of overfitting. As
mentioned above, the three dimensions of SCI shape
space have fairly clear conceptual interpretations. For
comparison, the best-fitting two-dimensional model is
plotted in Figure 6, and it is clearly inadequate and
overly compressed. Some of the fundamentally different
variations (✚ vs.● difference; О vs.● difference) have
been forced to reside on almost the same dimension,
which is conceptually inappropriate. Therefore, 3D
(i.e., SCI) shape space is conceptually better than the
two-dimensional shape space.

It is worth mentioning that another important type
of generalization is the generalization to new tasks.
The present study has only tried one task. Therefore,
we cannot really come up with quantified assessments
on how well the SCI will generalize to other tasks.
Conceptually, I predict that the SCI should be able
to generalize very well to other attention-demanding
tasks (e.g., visual search), but probably only partly to
one-to-one comparison tasks (e.g., pairwise comparison
or same-different discrimination) because the latter
tasks measures postattentive processing of shapes. It
will be interesting to see how much (and what aspect)
of SCI can generalize to these one-to-one comparison
tasks.
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Figure 6. The best-fitting two-dimensional shape space. It is
clearly inadequate and overly compressed. Some of the
fundamentally different variations (✚ vs. ● difference;О vs. ●
difference) have been forced to reside on almost the same
dimension, which is conceptually inappropriate. Therefore, 3D
(i.e., SCI) shape space is conceptually better than the
two-dimensional shape space.

Underfitting

Although overfitting is a more prevalent problem in
modeling, underfitting is also an important potential
issue that needs to be considered. Underfitting occurs
when a model cannot adequately capture an underlying
trend of the data (e.g., a linear model is used on data
with an apparent nonlinear trend). For the present
study, there is indeed a slightly nonlinear trend in the
fitting of SCI shape space (see Figure 4b), and the
fitting (r) can be improved from 0.974 to 0.976 if a
quadratic function is used. Although this nonlinearity
has reached significance (p < 0.01), the magnitude of
improvement is too trivial, so I decided that, without
a good conceptual interpretation, it should not be
implemented in SCI shape space.

It should also be considered whether a fourth
dimension should be added to the SCI shape space.
The best-fitting four-dimensional model is plotted
in Figure 7, and the layout is rotated so that the
first three dimensions approximately match the three
dimensions of the SCI shape space.10 As can be seen
in the y-axis of Figure 7b, the fourth dimension is not
associated with any clear conceptual interpretation.
Therefore, 3D (i.e., SCI) shape space is also conceptually
better than the four-dimensional shape space.

Theoretical implications

The most important theoretical contribution of the
SCI space is determining the layout of the space of

Figure 7. The best-fitting four-dimensional shape space. The
layout is rotated so that the first three dimensions
approximately match the three dimensions of the SCI shape
space. As can be seen in the y-axis of (b), the fourth dimension
is not associated with any clear conceptual interpretation.
Therefore, 3D (i.e., SCI) shape space is conceptually better than
the four-dimensional shape space.

preattentive shape features. An important merit of the
SCI space is its very good fit to empirical data (r =
0.974). This suggests that, just like colors, shapes are
governed by a simple and lawful space.

This SCI space advances our knowledge in two ways.
First, previous studies on preattentive shape features
have mainly focused on identifying several isolated
conceptual distinctions (e.g., the presence/absence of
a closure, an intersection, or a line termination). The
SCI space has not only confirmed these dimensions
but, more important, has also placed them in a unified
and quantified framework. Second, the present finding
points to important modifications to these concepts,
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from “intersection” to “segmentability,” from “closure”
and “concavity” to “compactness,” and from “line
termination” to “spikiness.”

Practical implications

This SCI shape space also has potential applications.
A practical guide is provided in Figure 8a, which lists six
shapes that are most well separated in SCI shape space.
These shapes are listed in descending orders. Therefore,
for a set of three clearly distinguishable shapes, the first
three should be used and so forth. These can be used by
researchers who want to find a set of distinguishable
shape items.

This set of distinguishable shape items can be used to
improve the discriminabilities between shape symbols.
One obvious potential case is the symbols used in
scatterplots. Figures 8b and 8c respectively show sample
displays in which default symbols of Microsoft Excel
and those of Tableau are used, whereas Figure 8d shows
one in which these six distinguishable shapes are used. It
seems that the series of data can be distinguished more
easily from each other in Figure 8d than in Figures 8b
and 8c.

In recent years, there have been growing interests
in an in-depth integration between the basic studies
of human perception and the applied studies on data
visualization (e.g., Nothelfer, Gleicher, & Franconeri,
2017; Szafir et al., 2016). The SCI shape space
also has the immediate potential for making such
connections. For example, the default set of shape
items in professional data visualization software (e.g.,
Tableau) has included more unique shapes than those
in Microsoft Excel. However, as shown above, they
can be further enriched by using the distinguishable
shapes in Figure 8a. Specifically, the first six Tableau
shapes can be divided into two sets (Set 1: �, ◦, �;
Set 2: +, , ), and the three items in either set are
not very distinguishable from each other because they
do not differ greatly on segmentability, compactness,
or spikiness. Therefore, this set can be improved
by replacing some of the existing shapes with the
discriminable shapes mentioned above (i.e., , , ●, �).

Two recent studies on data visualization are
particularly relevant. First, Burlinson, Subramanian,
and Goolkasian (2018) have successfully applied the
perceptual distinction between open and closed shapes
(i.e., the feature “closure” or “hole” that has been
included in the dimension compactness in the present
study) to the domain of data visualization. Specifically,
their observers were presented two intermixed set of
shapes and were asked to perform three tasks that
were similar to typical visualization tasks: (a) average
value (determine which of the two sets of shapes
had a higher position on the y-axis), (b) numerosity
(determine which of the two sets of shapes contained

Figure 8. Clearly distinguishable shapes. Shapes are often used
as signs and symbols. For these purposes, it is usually desirable
to use shapes that are clearly distinguishable from each other.
Panel (a) provides a practical guide of 6 shapes that are most
well separated in SCI shape space. These shapes are listed in
descending order of distinguishability. Therefore, for a set of
three clearly distinguishable shapes, the first three should be
used, and so forth. Panels (b) and (c) respectively show sample
displays in which default symbols of Microsoft Excel and those
of Tableau are used, whereas (d) shows one in which these six
distinguishable shapes are used. It seems that the series of data
can be distinguished more easily from each other in (d) than in
(b) and (c).
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more elements), and (c) trend judgments (determine
which set of shapes showed a linear relationship). Their
results confirmed that differentiating the two sets of
shapes with an open-closed distinction consistently
improved performance in these tasks. Future work
should test the other two shape dimensions in the
SCI space (segmentability and spikiness) on the tasks
used by Burlinson et al. (2018) to verify that those
distinctions can also improve the efficiency of these
data visualization tasks. While the tasks of Burlinson
et al. (2018) involved more complex processing (further
processing/judgments on the selected subset) compared
to the present tasks, differentiating sets by differences
in segmentability and spikiness should still improve
performance, because the core processing bottleneck
should still be the shape-based selection of a subset of
items in the display.

Second, Demiralp, Bernstein, and Heer (2014) have
measured “perceptual kernels” (perceptual distance
matrices between a set of visual items) from various
data visualization tasks. In Demiralp et al.’s (2014)
terms, the present study essentially has measured a
perceptual kernel consisting of 14 shapes. However,
there are two important differences between Demiralp
et al.’s (2014) perceptual kernels and the SCI shape
space. First, their tasks are a one-to-one comparison
(i.e., pairwise rating) rather than attention-demanding
tasks, so their perceptual kernels may be more closely
related to postattentive shape processing as discussed
in the introduction. Second, the present study was
intentionally designed to capture the diverse variations
in the whole shape space, but Demiralp et al. (2014) have
focused on several specific points of the shape space
(e.g., triangles, crosses). Accordingly, they found that
these shape items form a few clear-cut clusters (e.g., the
triangles or the crosses) in the shape space (i.e., palette).
Given the two differences, it is difficult to align the
shape spaces between these two studies. Nevertheless,
it seems the shape space or palette in Demiralp et al.’s
(2014) figure 1 can be approximately mapped to the
SCI space of the present study. Specifically, the present
set of shapes (and perhaps some variations on these
items in ways that are similar to Demiralp et al., 2014)
should be tried in these one-to-one comparison data
visualization tasks to see whether their findings can be
generalized to shape items in other parts of shape space.

Other shape sets?

As discussed above, in addition to the 2D geometrical
filled shapes, other important shape categories should
be considered in the future. The list includes real-world
objects (e.g., animals), letters and characters, 3D shapes,
and 2D unfilled line-drawing shapes.

First, for real-world objects such as animals, we
can perhaps create their silhouettes as experimental

stimuli, so that the processing is mainly based on shape
rather than other cues (e.g., colors, spatial frequency
distributions). In addition, letters and characters are
technically shapes and they are very important to
us functionally. As discussed in Wolfe and Horowitz
(2017), there is weak or no evidence for these types of
real-world stimuli to play any special role in guiding
attention. If this is true, then these shape sets will
basically reveal the same SCI shape space as the present
experiment does. Future studies will be needed to either
confirm this hypothesis or reveal new dimensions or
new findings in some other way (e.g., asymmetry of
dimensions).

Second, many researchers study 3D shapes (e.g.,
Pizlo, 2010), including both real-world objects (e.g., a
rabbit viewed from different perspectives) and artificial
objects. Given the limited support for the 3D shapes
as preattentive visual features (Enns & Rensink, 1990;
but see Zhang et al., 2015), it seems doubtful that
they will make any special contribution to the space
of preattentive shape features other than what can be
extracted from their 2D profiles. Future studies will be
needed to either confirm this hypothesis or reveal new
dimensions or other new findings.

Third, the shape space revealed from 2D unfilled
line-drawing shapes may differ significantly from what
is found in the present study. Specifically, the dimension
of compactness may be weakened because all shapes
now contain a large portion of “empty spaces.” Future
studies will be needed to retest the line-drawing versions
of the present 14 shapes. The results can shed important
light on the question of how visual mechanisms recover
surfaces from line-drawing shapes.

Shape dimensions in postattentive processing
of shapes

In terms of the above-stated distinction between
preattentive shape features and postattentive processing
of shapes, the studies of visual shapes in the area
of object recognition generally fall into the category
of postattentive shape processing. In these studies,
observers usually perform a one-to-one comparison of
the detailed shapes.

Some of these studies have studied the dimensions of
shape processing. But they usually dealt with specific
predefined dimensions rather than attempted to reveal
all the shape dimensions. For example, Ons, De Baene,
and Wagemans (2011) studied whether two predefined
dimensions (aspect ratio and medial axis curvature) are
integrally encoded or not. Clearly, these two dimensions
were not intended to cover all the dimensions of shape
processing.

More generally, it seems doubtful that there could
be a general-purpose several-dimensional space for
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postattentive shape processing after all. By definition,
the detailed shape is an irreducible high-dimensional
vector. A shape as simple as an irregular hexagon has
10 free dimensions (x and y for six vertexes minus the
x and y of the overall object), and there is no way
they can be reduced because two irregular hexagons
will only be identical if they are matched on all these
dimensions. So there is no hope of building a 3D
shape space. In addition, these dimensions depend on
the subclass of shapes, and the shape space for each
of these subclasses would necessarily be different.
Therefore, it needs to be clearly stated that SCI is only a
space of preattentive shape features and is not intended
to be a general-purpose shape space for postattentive
processing of shapes in tasks requiring one-to-one
comparison of visual details.

Having made this disclaimer, it does seem likely that
a lot of useful insights can be learned from studies of
postattentive processing of shapes, as will be discussed
in the next section.

Connections to previous studies on
postattentive shape processing

The previous studies on postattentive shape
processing have a few important implications on the
SCI shape space.

First, an important theme in studies of shape
processing is to try to develop formal ways of defining
the elements of a shape (or elementary processes in
processing a shape). Pentland (1986) and Biederman
(1987) respectively proposed superquadrics and geons
as building elements of shapes. They can certainly
account for a lot of variations in the concept of shape.
However, as Hoffman and Singh (1997) pointed out,
they tend to be “limited in scope.” Leyton (1988)
tried to come up with a “grammar” of describing the
shapes in terms of protrusion, indentation, squashing,
and internal resistance. It offers some potential
insights on the ways of understanding the origin of
shape dimensions from a functional point of view.
Subsequently, Hoffman and Singh (1997) developed a
way of using negative minima to define the parts of
an object, and Feldman and Singh (2005) formally
defined the Shannon information on the border of
objects. These quantitative models have the advantage
of making precise predictions. For example, Feldman
and Singh (2005) showed that a minimum carries more
information than a maximum, which perhaps explains
why the concavity is a basic shape feature (Hulleman,
Winkel, & Boselie, 2000). Future development of
SCI space should be developed in a similar direction.
Specifically, image-based quantitative models should
be developed to try to define formally and extract the
SCI values from the stimulus items and fit those to

the behavior data. The segmentability can perhaps be
defined in terms of the “number of parts” and the
“strength of connection,” which can be quantified
by the values of minimum points on the border.
Compactness can perhaps be defined in terms of the
ratio of the area of the shape to the area of the smallest
convex shape covering it. Spikiness can perhaps be
defined in terms of the values of one or two global
maxima on the border. Obviously, the present set of 14
shapes is too limited for this purpose. A much larger set
of shape items will be required.

Second, in another set of studies, researchers
(Cortese & Dyre, 1996; Shepard & Cermak, 1973;
Wilkinson, Wilson, & Habak 1998; Zahn & Roskies,
1972) defined a radial frequency analysis (i.e., Fourier
analysis in polar-coordinate) and showed that perceived
similarities among a set of shapes match well with the
parameter space defined by this analysis. On the one
hand, this notion of radial frequency seems relevant to
some or even all the three dimensions proposed in the
present study. Higher-frequency shapes perhaps tend to
form more segments, to have more semicovered spaces,
and to be spikier. On the other hand, the difference
between these two lines of studies is also obvious. The
81 shapes used in Shepard and Cermak (1973) seem to
differ from each other only in terms of detailed shapes
but not in terms of any preattentive shape feature.
The shapes in Wilkinson, Wilson, and Habak (1998)
do seem to differ from each other preattentively. But
it seems those differences boil down to differences in
spatial frequency, which is something we try to exclude
as a confounding factor in this study. As discussed
above, the present study has intentionally avoided using
a coherent class of shapes, so it will be difficult to test
the applicability of radial frequency analysis directly.
But future work should be conducted to explore
the potential connection between these two lines of
studies.

Third, a large set of studies has shown that the shapes
are encoded in V2, V4, IT, and LOC areas in monkey
and human observers (Anzai, Peng, & Van Essen,
2007; de Beeck, Torfs, & Wagemans, 2008; de Beeck,
Wagemans, & Vogels, 2001; Hegdé & Van Essen, 2000;
2005; Pasupathy & Connor, 2002; Yamane, Carlson,
& Connor, 2008). Generally, these findings make it
plausible that there are one or more shape maps in the
brain that will encode shapes as preattentive features.
These studies have not systematically explored the
dimensions in the encoding of these neurons (or brain
areas), so it is difficult to directly compare these two
lines of studies. However, there seems to be evidence in
favor of coding of segmentability (Anzai et al., 2007;
Hegdé & Van Essen, 2000; Pasupathy & Connor, 2002),
compactness (Hegdé & Van Essen, 2000), and spikiness
(de Beeck, Torfs, & Wagemans, 2008).
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Residual and potential mechanisms

Although the SCI shape space fits the data very
well, the fitting (r = 0.974) is still less than perfect. A
large portion of the fitting errors is likely to be simply
caused by noises in measurement. Nevertheless, it is still
worth considering potential residual mechanisms and,
when possible, assessing their contributions. To start,
the average residual errors are plotted (in Figure 9a)
for each shape as the target item and also for each
shape as the background item. With one exception ( ),
there appears to be a negative relationship between the
average residual errors of a shape as the target item and
of that shape as the background item.

To see why these items differ from each other in
this way, the difference between being the target and
background items is plotted in Figure 9b. The residual
errors are clearly affected by the rotational symmetry
of a shape, namely, how much a shape looks the same
after rotations. For the six shapes with the largest
negative differences, four of them are identical for all
four orientations (�, ✚, ●, and О), whereas for each of
the other two shapes (� and �), the four appearances
of the four orientations do not appear to be visually
very different from each other (see Figure 9b). On
the other hand, for each of the two shapes with the
largest positive differences ( and ), the four (or two)
appearances of the different orientations do appear to
be very different from each other.

Therefore, a plausible account for these
target/background differences is that they reflect
the degrees of homogeneity when a shape fills in
the target array (or the background). This is clearly
related to the classic finding on similarity effect in
visual search (Duncan & Humphreys, 1989). Duncan
and Humphreys (1989) found that visual search
performance is enhanced by the similarity between
the nontarget items, and this is because it is easier to
ignore a homogeneous array as the background. In the
present study, a more homogeneous background region
also leads to better performance because it is easier
to ignore. On the other hand, a more homogeneous
target region leads to worse performance because it is
easier to (mistakenly) ignore the homogeneous target
region.

The target/background difference (as shown
in Figure 9b) is correlated fairly strongly (r = 0.58) with
the residual errors in the 182 conditions and is clearly
an important residual mechanism.

There are other residual or potential mechanisms.
First, unlike colors, shapes cannot be defined in a way
that is perfectly orthogonal from other features. For
example, the items differ in their sizes, and there are
various aspects of it (e.g., area of the black region, the
diameter of minimum covering circle). The items also
differ in terms of the spatial frequency components.
It is impossible to control all of them simultaneously.

Figure 9. Residual errors. Panel (a) plotted the average residual
errors for each shape as the target item and also for each shape
as the background item. Panel (b) plotted the difference
between being the target and background items. A positive
value indicates that the performance tended to be better when
a shape was the target shape than was the background shape.
The residual errors are clearly affected by the rotational
symmetry of a shape, namely, how much a shape looks the
same after rotations. For the six shapes with the largest
negative differences, four of them are identical for all four
orientations (�, ✚, ●, andО), whereas for each of the other
two shapes (� and �), the four appearances of the four
orientations do not appear to be visually very different from
each other. On the other hand, for each of the two shapes with
the largest positive differences ( and ), the four (or two)
appearances of the different orientations do appear to be very
different from each other.

Nevertheless, these factors are unlikely to have played
important roles. For one thing, if one or more items do
enjoy such an extra difference (e.g., noticeably larger
than other items), then use of these items will lead
to better performance both as the target item and as
the background item. Clearly, there is no such item
in Figure 9a.
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Second, previous studies showed that the asymmetry
of dimensions of visual features can have substantial
impacts on observers’ performances (Treisman &
Souther, 1985). If such feature asymmetry does
contribute significantly to the performances, we would
have seen clear indications in Figure 9b. For example,
if there is a noticeable asymmetry for spikiness, we
would have seen a significant correlation between the
shape items’ asymmetry ratings (as shown in Figure 9b)
and their coordinates on the dimension of spikiness.
However, the correlation is not significant between
the asymmetry rating and any of the SCI dimensions.
Therefore, feature asymmetry is unlikely to have played
an important role.

Third, some of the items may be more familiar to
the observers. For example, the shape � resembles the
Chinese character (meaning “field”) and is familiar
to the observers. Again, this factor is unlikely to have
played an important role: The shape � is not special
in Figure 9a.

Fourth, the present set of shape items has some
degree of symmetry, either axial or rotational or both.
So perhaps this special set is not representative of
the general shapes that are usually not symmetric.
Although this issue should be explored in the future,
it is unlikely to have made a significant difference in
the layout of the SCI shape space. Generally speaking,
although symmetry has been shown to play a very
important role in the processing of visual shapes
(Wagemans, 1997, 2003), these studies usually deal
with the postattentive processing of shapes. In other
words, these studies have demonstrated that symmetry
judgment of a single visual pattern is parallel and
effortless without the scrutiny of the elements in this
pattern11 but have not demonstrated that symmetry of a
visual pattern is a preattentive feature in the sense that
multiple visual patterns can be processed in parallel.
The only study that set out to test this question (Olivers
& van der Helm, 1998) asked observers to search
for an symmetric pattern among several asymmetric
patterns (or do the opposite) and found that the times
required to accomplish this task are highly dependent
on the number of distractor patterns (often greater
than 100 ms/item). From these results, symmetry
does not appear to be a preattentive visual feature. In
addition, the potential role of symmetry in SCI shape
space can also be tentatively assessed in the present
results. If symmetry is a dimension of preattentive
shape feature, there will be an additional advantage to
distinguish between items that are more symmetric (i.e.,
identical appearance across all four orientations: �, ✚,
●, and О) and items that are less so (i.e., very different
appearance in these four orientations: and ), and
this would have emerged as a separate dimension on
the shape space. However, there is no indication of this
happening, confirming the opinion that symmetry is
not a preattentive visual feature (Olivers & van der
Helm, 1998).

Fifth, in the current modeling, I assumed that d′
is a perfectly linear measure for the discriminability,
and the data have largely confirmed this. However,
this assumption may be violated for various reasons
(e.g., averaging across good performers and bad
performers, making occasional errors for nonperceptual
reasons). Unfortunately, it is impossible to estimate and
correct the impacts of these potential factors because
there were only four trials per condition per observer.
Nevertheless, this factor is unlikely to have played an
important role because the fitting of the model would
otherwise be significantly worse.

Sixth, one difficulty for perfect control lies in the
irreducible nature of the dimensions in the detailed
shapes. The SCI shape space is meant to capture the
roles of shapes as preattentive features, namely, the
aspects of shapes that can be extracted in parallel and
used to guide attention. However, it is not implausible
that the one-to-one comparison of visual details
will always play a trivial, but nonzero, role in the
performance of even an attention-demanding task.
Nevertheless, this factor is unlikely to have played an
important role because the fitting of the model would
otherwise be significantly worse.

Conclusion

In the present study, I attempted to reveal the basic
dimensions of preattentive shape features by studying
how shapes can be positioned relative to one another in
a way that matches their perceived similarities. A great
majority of mechanisms (r = 0.974) can be explained
by a 3D shape space: segmentability, compactness, and
spikiness. On the theoretical side, this study has placed
previously identified dimensions (e.g., intersection,
closure, line termination, concavity) in a unified and
quantified framework and has pointed to important
modifications to these concepts (intersection→
segmentability, closure and concavity → compactness,
line termination → spikiness). On the practical side,
the study has provided a guide on finding a set of
distinguishable shape items.

Keywords: shape, visual feature, visual attention,
texture segregation
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Footnotes
1More recent studies have rarely focused on these shape features
themselves but have nevertheless kept on using shapes as exemplars of
features to study other important questions in visual attention and visual
working memory (e.g., Bae & Flombaum, 2013; Cowan, Blume, & Saults,
2013; Gajewski & Brockmole, 2006; Huang, 2020a; Kong & Fougnie,
2019; Ort, Fahrenfort, & Olivers, 2017; Yu, Xiao, Bemis, & Franconeri,
2019).
2Consistent with this conceptual distinction, there is also a critical
methodological difference between these two ways of studying shape
processing. Those that study shape as preattentive features usually use
attention-demanding tasks (e.g., visual search, Wolfe, 1998; or texture
segregation, Beck, 1966, 1980), which require the observers to process the
shapes of a large array of objects, whereas those who study postattentive
processing of shapes usually use tasks that require one-to-one comparison
of shapes (e.g., object recognition task).
3Here it is assumed that the shape space is uniform and linear. It is
certainly possible that the shape space is nonlinear in some way, and future
explorations and adjustments may be needed. However, without prior
evidence in favor of a specific type of nonlinear model, my initial model
assumes linearity.
4The adjustment of sizes was done by asking 10 naive observers to
adjust the sizes of these items until they appear to be equally large, and
the logarithmic mean of the 10 results was used for each shape item.
The adjustment of spatial frequencies was done by asking another 10
naive observers to pick out those items that appear to be in noticeably
more fine-grained or more coarse-grained texture. Only one item (✚) was
consistently chosen as being fine-grained (6 out of the 10 observers), so
the lines were widened (to become the current version) to remove this
apparent difference.
5One may notice that early researchers (e.g., Julesz) often referred to
“effortless texture segregation.” So there is an apparent conflict between
those statements and the present claim that the texture segregation is an
attention-demanding task. Actually, although the wording may be the
opposite, they actually intend to convey the same message. When referring
to “effortless texture segregation,” what these researchers tried to express
was not that the texture segregation task is always effortless for all types
of visual stimuli but that it was an impressive finding that the texture
segregation task, which is usually attention demanding, is effortless for
some special types of visual stimuli.
6This is in some sense a “brute-force” algorithm that is possibly suboptimal
in terms of computational efficiency. However, the present function is
high-dimensional and nonlinear, making the application of the typical
algorithms (e.g., gradient descent) potentially problematic. So it is overall
a better solution to adopt this general-purpose “brute-force” algorithm.
It should be mentioned that this optimization algorithm is just a tool to
find the shape spaces (i.e., coordinates). It is the latter, not the former,
that is the “model of the present study.” Therefore, this general-purpose
straightforward algorithm is sufficient for the present purpose.
7Specifically, a run is terminated if one of two criteria was meet. First, if
the number of scans exceeded 1,000 in a run, then this run was terminated.

Second, whenever the step was halved, it was assessed whether the fitting
index (r) was as good as expected (from previous best-fitting runs, allowing
some zooms); if not, then this run was terminated. These criteria were
implemented to throw out unpromising runs. Testing on simulated data
showed that they are both effective (i.e., reasonably good hit) and safe
(i.e., very low false alarm rate).
8This is very relevant to the recent studies that showed that attention is
automatically affected by the convenience of grasping an object (e.g.,
Gozli, West, & Pratt, 2012).
9This is because the correlation (r) is an assessment of the global
relationship. Therefore, if data are split into two subsets, the r of the entire
set is not a linear combination of the two r of the two subsets.
10This matching is only approximate. This is because the present model is
not a linear model. Therefore, a lower-dimension model is not exactly an
orthogonal projection of a higher-dimension model.
11Even this parallel and effortless perception of the symmetry of a single
visual pattern is subject to certain limits. Huang and Pashler (2002; see
also Huang & Pashler, 2007, for a generalized account) showed that
multiple features in a single pattern have to be assessed sequentially.
Huang, Pashler, and Junge (2004) showed that the symmetry judgment is
coarse in the sense that the processing of elements is significantly reduced
in denser patterns.
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