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ABSTRACT
Although previous studies have reported the use of metabolomics for infectious diseases, little is known about the
potential function of plasma metabolites in children infected with Mycoplasma pneumoniae (MP). Here, a combination
of liquid chromatography-quadrupole time-of-flight mass spectrometry and random forest-based classification model
was used to provide a broader range of applications in MP diagnosis. In the training cohort, plasma from 63 MP
pneumonia children (MPPs), 37 healthy controls (HC) and 29 infectious disease controls (IDC) was collected. After
multivariate analyses, 357 metabolites were identified to be differentially expressed among MPP, HC and IDC groups,
and 3 metabolites (568.5661, 459.3493 and 411.3208) had high diagnostic values. In an independent cohort with
57 blinded subjects, samples were successfully classified into different groups, demonstrating the reliability of these
biomarkers for distinguishing MPPs from controls. A metabolomic signature analysis identified major classes of
glycerophospholipids, sphingolipids and fatty acyls were increased in MPPs. These markedly altered metabolites are
mainly involved in glycerophospholipid and sphingolipid metabolism. As the ubiquitous building blocks of eukaryotic
cell membranes, dysregulated lipid metabolism indicates damage of the cellular membrane and the activation of
immunity in MPPs. Moreover, lipid metabolites, differentially expressed between severe and mild MPPs, were correlated
with the markers of extrapulmonary complications, suggesting that they may be involved in MPP disease severity.
These findings may offer new insights into biomarker selection and the pathogenesis of MPP in children.
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Introduction

Mycoplasma pneumoniae (MP) is an atypical pathogen
and one of the most common causes of community-
acquired pneumonia (CAP) [1, 2]. Although MP
pneumonia (MPP) was once considered a “benign”
infection, it is associated with a high percentage of
morbidity and mortality. Severe forms of MP infection
have heterogeneous clinical presentations including
diffuse alveolar hemorrhage, cavitary lesions and
acute respiratory disease syndrome (ARDS) [3–5].
Existing diagnostic techniques have several limitations
for diagnosing pediatric MPP. For example, culture
and serological tests are not appropriate for rapid
detection because they are insensitive and time-

consuming [6], and use of the polymerase chain reac-
tion (PCR) method is also limited by the high cost and
complicated instrumentation [7, 8]. Therefore, rapid
and accurate diagnostic methods are required.

In general, detecting biomarkers in the plasma is a
useful auxiliary method to disease diagnosis [9, 10].
Recently, advances in metabolomic approaches have
promoted the comprehensive and unbiased evaluation
of billions of circulating metabolites that are associ-
ated with bioactivity, regulation and dysregulation.
Metabolomics has been extensively used in many
infectious and noninfectious diseases [11–18]. Pre-
liminary metabolomic studies have shown its suit-
ability for the identification of novel discriminative
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metabolites with potential application in the diagnosis
of early Alzheimer’s disease [18]; early detection of
type 2 diabetes [14]; diagnosis of active tuberculosis
in HIV patients [12] and the diagnosis and monitoring
of multiple sclerosis disease progression [17]. How-
ever, specific metabolites that can be used to discrimi-
nate MPPs from healthy controls (HCs) and other
infectious disease controls (IDCs), especially in chil-
dren, have not been identified.

For MP infection, the most severe damage occurs in
the respiratory tract and lungs [1], and consequently,
may alter the metabolites involved in inflammation.
Changes in the metabolome are the ultimate response
of a biological system to stimuli, and so, at least theor-
etically, these changes are a closer representation of
the phenotype. This allows the assessment of cellular
states and processes at a functional level [19]. Thus
these metabolic disorders may indirectly reflect pul-
monary inflammation and lead to multiple severe
extrapulmonary complications. Additionally, some
pathogens can evade the host’s immune system by
using host-derived lipid membranes during intercellu-
lar transmission. This allows them to expand and
replicate unrestricted in the early stages of infection
[20]. Failure to limit the infection at the initial stage
can exacerbate disease symptoms and further contrib-
ute to severe pneumonia. The metabolome is highly
dynamic, reflecting continuous changes of both meta-
bolic and signaling pathways, and is sensitive to
diverse host changes induced by infection [19]. There-
fore, it is important to investigate whether host-
derived metabolites in circulation are implicated in
the pathogenesis of MP infection.

In this study, we combined liquid chromatography-
quadrupole time-of-flight mass spectrometry and a ran-
dom forest-based classification model to select the most
discriminant markers from 63 MPPs, 37 HCs and 29
IDCs. The biomarkers were further validated on an
independent cohort with 57 blinded subjects. Further
investigations into altered metabolites revealed a sig-
nificant impact of MP on lipid metabolism, especially
pathways involving glycerophospholipid and sphingoli-
pid metabolism that likely contribute to the pathogen-
esis of MPP. Differentially expressed metabolites
associated with MPP disease severity were also ana-
lysed. These findings provide valuable knowledge
about plasma biomarkers associated with MPP and an
insight into the pathogenesis of MP infection.

Material and methods

Patients and controls

Patients and controls were recruited from Beijing
Children’s Hospital from April 2016 to August 2018.
Diagnosis of pediatric MPP was performed by the
Chinese Medical Association guidelines as follows:

(1) fever, acute respiratory symptoms (cough, tachyp-
nea, difficulty breathing) or both; (2) low breathing or
dry, wet rales; (3) chest film findings characterized by
lung portal lymph node and lung gate shadow, bronch-
opneumonia, interstitial pneumonia, and large and
high-density shadow; and (4) children with positive
PCR results or MP antibody titer seroconversion
from negative (<1:80) to positive (≥1:160) titers. Severe
MPP was defined as MPP with one of the following: (1)
poor general condition; (2) increased breathing rate; (3)
cyanosis and dyspnea; (4) infiltration with multilobed
or ≥2/3 of the lung; (4) transcutaneous oxygen satur-
ation ≤92% in room air; (6) extrapulmonary compli-
cations [21]. IDC patients were enrolled by the
standard that was published previously by our lab
[22]. HC group subjects were enrolled from children
who underwent a health checkup at Beijing Children’s
Hospital. Patients with immunodeficiency or those
taking immunosuppressants were excluded.

This research was approved by the Ethics Commit-
tee of Beijing Children’s Hospital. All the methods and
research protocol in this research were conducted by
the Ethics Committee’s existing guidelines.

Evaluation of clinical characteristics and
multiple markers

Clinical information was retrospectively collected from
the medical records of patients. Complete information
about the clinical symptoms and multiple systemic
markers were reviewed. The patient demographics,
clinical symptoms, inflammatory markers [C-reactive
protein (CRP), white blood cell (WBC), procalcitonin
(PCT), neutrophil% (NEUT%), lymphocyte%
(LYMPH%)], multiple systemic indicators including
digestive markers [aspartate aminotransferase (AST),
alanine aminotransferase (ALT), total bile acids
(TBA), γ-glutamyl transpeptidase (GGT), albumin
(ALB), total bilirubin (TBIL), direct bilirubin (DBIL),
indirect bilirubin (IBIL), alkaline phosphatase (ALP)],
cardiovascular markers [hydroxybutyrate dehydrogen-
ase (HBDB), lactate dehydrogenase (LDH), creatine
kinase (CK), phosphocreatine kinase isoenzyme (CK-
MB)], hematological markers [red blood cell (RBC),
D-Dimer, fibrinogen (FIB), total protein (PT), platelet
(PLT), AT-III, hemoglobin (Hgb)] andurinarymarkers
[Urea, urinary creatinine (Cr)] were analysed and com-
pared between severe and mild MPPs on admission.

Liquid chromatography–mass spectrometry

A mixture of acetonitrile/methanol (75:25 v/v, 300 μL)
was added to the plasma (100 μL) for protein deposition.
After vortexing for 60 s, the mixture was left to rest for
10 min and centrifuged at 12,000 rpm for 10 min at 4°C.
Syringe filters (0.22 mm, Jinteng) were used to filter the
supernatant prior to LC/MS/MS analysis [23].
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The Nexera X2 system (Shimadzu, Japan) and Tri-
pleTOF 5600 quadrupole-time-of-flight mass spec-
trometers (AB SCIEX, USA) were used for ultra-
performance liquid chromatography combined with
quadrupole time-of-flight tandem mass spectrometry
(UPLC Q-TOF MS).

Liquid chromatography separation was performed
on a ZORBAX Eclipse Plus C18 column (2.1 × 100,
3.5 mm, Agilent, USA) maintained at 45°C. The
injected sample volume was 10 µL for each run in the
positive and negative injection mode, and the flow
rate of the mobile phase was 0.5 mL/min. The quadru-
pole analyser ranged from 50 to 1500 m/z. Indepen-
dent reference lock-mass ions via Analyst TF 1.6 and
MarkerView 1.2.1 (absciex, USA) were used to ensure
mass accuracy during data acquisition. A peak table
with retention time, m/z, and corresponding peak
intensity was generated using MSDIAL ver3.70. The
assigned modified metabolite ions were identified by
database searches in theHumanMetabolomeDatabase
(HMDB, http://www.hmdb.ca/spectra/ms/search).

Statistical analysis

Statistical analysis of clinical data
Clinical indices were analysed using SPSS 16.0. Con-
tinuous data were analysed using a Student’s t-test
and categorical data were tested using Fisher’s exact
test. Data were expressed as mean ± SD. The level of
significance was set at P < 0.05. Correlation analysis
was performed using R version 3.6.1.

Statistical analysis of metabolomics
Missing values were imputed with the minimal value
for each feature. Fold-change (FC) was calculated on
the mean of the same patient group for each pair of
comparing groups. Two-sided unpaired Welch’s
t-test was performed for each pair of comparing
groups. The statistical significant altered metabolites
were selected using the following criteria: VIP > 1,
P value < 0.05 and |FC| >1.5.

The Mann–Whitney U test was used to compare the
MPP group with the HC or IDC group. Principal
component analysis (PCA) was applied to visualize
the distributions of the different groups on the mean-
centered and Pareto-scaled data. Partial least squares-
discriminate analysis (PLS-DA) was conducted using
MetaboAnalyst 4.0 (http://www.metaboanalyst.ca/
MetaboAnalyst/). The PLS-DAmodels were cross-vali-
dated using a 10-foldmethodwith unit variance scaling.

Volcano plots were calculated using a combination
of FC and t tests, and the intensity data of these
regions were used in GraphPad analysis, hierarchical
cluster analysis and metabolic pathway analysis. Heat
maps of differential metabolites and relationships
were displayed using the Multi Experiment Viewer
software (MeV, version 4.7.4). Pathway analysis and

visualization were applied using the Metaboanalyst4.0
web portal (http://www.metaboanalyst.ca/).

Connected networks of the differentially expressed
metabolites were built and analysed in Metscape,
which is a plug-in for Cytoscape (v.3.2.1). Metscape
was used to build the network of metabolites, analyse
the correlation of these different metabolites and visu-
alize the compound networks.

Selection of biomarker candidates

We used random forest analysis to select the top metab-
olites that were differentially expressed between the three
groups. Then, we used receiver operating characteristic
(ROC) curves to evaluate the accuracy of themetabolites
in the validation sets. The diagnostic parameters, includ-
ing sensitivity and specificity, were defined by the mini-
mum distance to the top-left corner [24].

Results

Study design and patients

The patients’ demographic characteristics are shown
in Table 1. Sixty-three MPP patients, 37 HC children
and 29 IDC patients were included in the training
cohort for biomarker selection (Figure 1A) and 57
children, including 28 MPPs, 16 HCs and 13 IDCs
were included in the independent testing cohort to
verify the biomarkers (Figure 1B). The causative
agents of IDC patients are shown in Table S1. All
HCs and IDCs showed negative PCR results for MP.

The data from both training and testing cohorts
were then combined to identify the characteristic
metabolite changes of MPPs and provide an insight
into the pathogenesis of MP infection. Moreover,
differentially expressed metabolites between severe
and mild MPPs, and their relationship with clinical
indices were also analysed (Figure 1C).

Biomarkers selection of MPP

We investigated the possibility of differentiating MPPs
from HCs and IDCs based on the molecular metab-
olite signatures. After peak alignment and removal
of missing values, 4523 positive-mode features were
detected. To ensure reliability, a PCA score plot was
generated (Figure S1A), which included control
group, model group and QC samples. QC samples
(blue) clustered together tightly, reflecting the stability
of the instrument and showing that the quality of all
the LC–MS data for this study was satisfactory. In
addition, during the entire experiment, 90%, 47%
and 12% of the metabolite RSD in the QC samples
were within 30%, 15% and 5%, respectively (Figure
S1B). These results illustrate the reliability of the
analytical method used in this work.
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VariableswithVIP value>1.0,P value <0.05, and |FC|
>1.5 were considered to be potential differential metab-
olites. A PLS-DAmodel was applied to characterize dis-
turbances of MPPs with HCs (Figure 2A) and IDCs
(Figure 2B). Themodel for classification of these groups
obtained satisfactory validation, with R2 (cum) 0.996
andQ2 (cum) 0.982 between the MPP and HC groups
(Figure 2C) and with R2 (cum) 0.995 and Q2 (cum)
0.972 between the MPP and IDC groups (Figure 2D).

The analysis results showed that 570 and 556metab-
olites differed between the MPPs and HCs or IDCs,
respectively. Of these, 357 were overlapping (Figure
2E). A random forest analysis was performed to esti-
mate the importance of each metabolite. As presented
in Table S2, 13 metabolites had higher significance
than the other metabolites, of which, 3 metabolites
(411.3208, 568.5661 and 459.3493) showed high diag-
nostic values (Figure 3A and Table S3).

Independent validation of biomarkers

To evaluate the reliability of the biomarkers, a random-
ized and blinded set was used for validation (Figure
3B). The AUC, sensitivity and specificity of the ROC
curves generated from the verification set are presented
in Figure 3(C–G) and Table S3. As shown in Figure 3
(C), 411.3208, 459.3493, and 568.5661 had AUC values
of 1, 0.884, 0.926 when MPP patients were compared

with HCs, respectively. Additionally, the comparison
of MPPs and IDCs also showed relatively high
AUCs, ranging 0.864–1 (Figure 3D). Importantly, the
metabolite 411.3208 (4a-formyl-5a-cholesta-8,24-
dien-3b-ol) was able to completely distinguish MPP
from HC or IDC in the validation set, with 100% sen-
sitivity and specificity (Figure 3E and Table S3). For the
other two metabolites, 459.3493 had a sensitivity of
85.7% and 71.4% and a specificity of 87.5% and
89%, respectively, for MPPs diagnosis compared with
HCs or IDCs (Figure 3F and Table S3). 568.5661
(Cer (d18:0/18:0)) had a sensitivity of 93.8% and
89.3% and a specificity of 96.4% and 90.0%, respect-
ively, for MPPs diagnosis compared with HCs or
IDCs (Figure 3G and Table S3). The PCA showed
that the samples were classified into different groups,
indicating the reliability of these biomarkers for dis-
tinguishing MPP from controls (Figure 3E–G).

Dysregulated lipid metabolism indicates
membrane fusion damage and immune
damage induced by MP infection

Pathogens are known to cause significant changes to
the host cell metabolites by altering key pathways
during infection [25]. Thus, to gain an insight into
the pathogenesis of MPP, the data from the training

Table 1. Demographic characteristics of participants enrolled.
Training cohort (n = 129) Independent testing cohort (n = 57)

MPP HC IDC P valuea MPP HC IDC P valuea

Sample size 63 37 29 / 28 16 13 /
Gender(male/female) 36/27 22/15 16/13 0.438 15/13 9/7 8/5 0.512
Age(years)b 6.9 ± 3.0 6.3 ± 3.5 5.6 ± 3.9 0.323 7.0 ± 3.0 7.0 ± 3.0 6.2 ± 5.6 0.082
Range (years) 3–15 0.5–14 0.3–16 / 1–14 0.5–15 1–16 /

MPP, mycoplasma pneumoniae pneumonia; HC, healthy control; IDC, infectious disease control.
aP-value among MPP, HC and IDC.
bData are presented as the mean ± SD.

Figure 1. Study design and patients: (A) samples in a training cohort for metabolomic analysis; (B) verification of biomarkers in an
independent testing cohort; (C) data from training and testing cohorts for metabolomics signature analysis.
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and testing cohorts were combined to analyse the
metabolomic signatures of MP infection.

Metabolite profiles of MPPs
In the PLS-DA analysis, the MPP samples were separ-
ated from HCs and IDCs, illustrating evident differ-
ences in their plasma metabolite profiles (Figure 4A).
Volcano plots from untargeted metabolomic analyses
highlight the different metabolites that increased (red)
or decreased (blue) in the plasma ofMPPs, as compared
to HCs and IDCs, respectively (Figure 4B and C). The
overlapping differentially expressed metabolites
between MPPs and HCs or IDCs were then selected
for pathogenesis analysis (Figure 4D). Interestingly,
we found that most differentially expressed metabolites
in MPPs were concentrated in lipids, including glycer-
ophospholipids, sphingolipids, triadylcglycerols and
fatty acyls (Figure 4E); a detailed version of this figure
is provided in Table S4. This result indicates that MP
infection mainly affected lipid metabolism, which
might play an important role in the pathogenesis of
MPP.

Glycerophospholipid and sphingolipid
metabolism is involved in MPP-related pathways
To obtain further metabolic pathway information
about the different metabolites, the KEGG Pathway

Database was used to analyse the above differentially
expressed metabolites. Based on P value that were
<0.05, metabolomics data revealed a significant impact
of MPP on lipid metabolism, especially pathways in
glycerophospholipid metabolism and sphingolipid
metabolism (Figure 5A and Table S5).

The significant difference of plasma metabolites can
reflect the metabolic changes and pathogenesis of MP
infection [1]. Here, major classes of plasma glycero-
phospholipids including lysophosphatidic acid
(LPA), lysophosphatidylcholine (LPC), phosphatidic
acid (PA), phosphatidylcholine (PC), glycerophospho-
serines (PS) and phosphatidylethanolamines (PE)
were significantly increased in MPPs compared to
HCs and IDCs (Figure S2). Most sphingolipids and
fatty acyls were also significantly increased in MPPs
compared to controls (Figure S3). Moreover, metab-
olites associated with glycerophospholids and
sphignolipids metabolism, such as phosphatidate, 1-
Acyl-sn-glycero-3-phosphocholine, palmityl-CoA,
and diacylglycerol (DG) were also increased in MPPs
(Figure 5B and C). As ubiquitous building blocks of
eukaryotic cell membranes, a large body of evidence
has demonstrated that sphingolipid metabolites are
signaling molecules that regulate a diverse range of
cellular processes that are important in immunity,
inflammation and inflammatory disorders [26].

Figure 2. Identification of differentially expressed metabolites in MPPs: (A) PLS-DA score plots for the MPPs and HCs; (B) PLS-DA
score plots for the MPPs and IDCs; (C) parameters for assessing the quality of the PLS-DA model for the MPPs and HCs; (D) par-
ameters for assessing the quality of the PLS-DA model for the MPPs and IDCs; (E) differentially expressed metabolites identified in
MPP children compared with IDC and HC.
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Glycerophospholids not only comprise the bulk of the
cellular membrane bilayers but also regulate a variety
of biological processes [27, 28]. Collectively, the high
expression of glycerophospholids and sphingolipids
in MPPs suggests both membrane fusion damage
and dysregulated immunity induced by MP infection,
consistent with previous studies [29].

Intricate correlation networks identify
pathologically relevant metabolites
To obtain additional insights about the relationship
between metabolites, the different metabolites were
selected to build a potential metabolic network using
Cytoscape, a tool for interactive exploration using
human metabolic networks (Figure 6A). Only differ-
ential lipids and amino acid correlations with empiri-
cal P < 0.05 were displayed. Strong correlations
between metabolite levels can imply that these metab-
olites lie along a common metabolic pathway and are
co-regulated, and that changing correlation patterns
between metabolite-pairs in disease compared to
healthy states can potentially indicate pathologically
relevant metabolic dysregulation (Figure 6A). We
noticed that most metabolites that contained glycero-
phospholipids, and glycerolipids were up-regulated in
the MP groups and had highly correlated coefficients
(Figure 6B).

Module I comprised of Cer (d18:0/18:0) as the hub
connected to numerous DGs, [i.e. DG (18:4/24:1/0:0),
DG (22:2/22:6/0:0), DG (22:1/22:6/0:0) and DG
(18:2n6/0:0/22:5n6)] by pink lines, indicating a posi-
tive association between Cer (d18:0/18:0) and DG in
MPPs. Cer (d18:0/18:0) belongs to the class of glycer-
olipid and the interrelationships of these lipids might
reveal the direction of future potential mechanisms
(Figure 6C). Collectively, our results suggest that gly-
cerophospholipids, glycerolipids, and metabolites
associated with glycerophospholids and sphingolipids
metabolism form a complex network, which might
partake in the pathogenesis of MP infection.

Dysregulated lipid metabolism is associated
with MPP disease severity

MP infection leads to membrane fusion damage and
lipid metabolism changes. Whether there are differen-
tially expressed metabolites associated with MPP dis-
ease severity is unclear. Therefore, this study also
investigated if host-derived metabolites in circulation
were implicated in MPP disease severity.

Metabolite profiles in severe MPPs vs. mild MPPs
Of the 91 MPP patients enrolled in this study, 54
patients had severe MPPs and 37 were mild cases.

Figure 3. Identification and verification of potential biomarker combinations for the classification of MPP Patients: (A) the
workflow for biomarker selection; (B) verification of biomarkers in an independent cohort with 57 blinded subjects; (C) AUC values
of three biomarkers were calculated for the classification of MPPs and HCs; (D) AUC values of three biomarkers were calculated for
the classification of MPPs and IDCs; (E) the confusion matrix and PCA analysis of 411.3208 among different plasma samples from
cohort 2; (F) the confusion matrix and PCA analysis of 459.3493 among different plasma samples from cohort 2; (G) the confusion
matrix and PCA analysis of 568.5661 among different plasma samples from cohort 2.
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Compared with mild MPPs, severe cases were associ-
ated with greater pleural effusion, greater cardiac
damage, liver damage, longer fever duration (P =
0.006), and longer hospital stay (P = 0.013). Indices
of systemic inflammation, such as CRP (P = 0.004),
also exhibited progressive increases as disease severity
increased. Moreover, the level of laboratory par-
ameters related to liver function (AST, ALT, TBA)
and cardiovascular function (HBDB, LDH, CK-MB)
were significantly higher in severe MPPs, compared
with those in mild cases. In contrast, the levels of
liver function indicator (ALB and ALP) and hemato-
logical markers (RBC, Plt, Hgb) were significantly
higher in mild MPPs than those in severe subjects

(Figure S4 and Table S6). Our observations are con-
sistent with previous findings in laboratory-confirmed
severe MPP cases where extrapulmonary compli-
cations indicative of serious disease were noted.

To identify metabolites associated with severe dis-
ease, we further examined pathologically relevant
metabolites in severe MPPs compared to mild sub-
jects. A total of 247 metabolites were differently
expressed between severe and mild MPPs (Table S7).
Volcano plots from untargeted metabolomics analyses
highlight the different metabolites that increased (red)
or decreased (blue) in the sera of severe MPPs, as com-
pared with mild subjects (Figure 7A). Interestingly,
KEGG analysis also revealed a significant impact of

Figure 4. Analysis of the metabolomic signatures from patients with MPP. (A) The serum metabolic phenotypes of MPP-positive
patients substantially differed from controls using PLS-DA. (B) The volcano plot derived from a targeted metabolomic analysis
illustrates the top serum metabolites that were increased (shown in red) or decreased (shown in blue) in MPP-positive patients
as compared with HCs. (C) The volcano plot derived from a targeted metabolomic analysis highlights the top serum metabolites
that were increased (shown in blue) or decreased (shown in red) in MPP-positive patients as compared with IDCs. (D) Venn dia-
gram displays the number of differentially expressed metabolites in MPPs compared to HCs and IDCs (|FC| >1.5, P < 0.05, VIP > 1).
(E) Hierarchical clustering analysis revealed a significant impact of MPP on levels of triadylcglycerols, sphingolipids, glycerolipids,
glycerophospholipids, fatty acyls, bile acids/alcohols/ derivatives and amino acids/peptides/ analogues. A vectorial version of this
figure is provided in Table S3.
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severe disease on lipid metabolism, including
glycerophospholipid and sphingolipid metabolism
(Figure 7B).

Association between disease severity-related
metabolites with relevant clinical indices
Next, we evaluated if differentially expressed metab-
olites in disease severity were correlated with relevant
clinical indices. As shown in Figure 7(C), we observed
that many differentially expressed metabolites
displayed significant relationships with indices
related to inflammation. For example, PA(18:0/22:6
(4Z,7Z,10Z,13Z,16Z,19Z)) and PE(22:5(4Z,7Z,10Z,

13Z,16Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), belonging
to the class of glycerophospholipids, were associated
with the number of WBCs. Moreover, some metab-
olites were associated with indices of extrapulmonary
complications. For instance, we observed that the
levels of triacylglycerol (TG) (22:0/24:1(15Z)/24:1
(15Z)) was correlated with several liver function indi-
cators including ALB, AST and ALT, which were also
significantly different between severe MPPs and mild
MPPs (Figure 7C). As reported previously, the liver
function was assessed by lipid metabolism and inflam-
matory reaction induced by helicobacter pylori infec-
tion [30], supporting that the lipids metabolism

Figure 5. Pathway analysis of differentially expressed metabolites. (A) Impact factors of pathways calculated using the KEGG Path-
way Database. (B) Significant changes were seen in the levels of some intermediates of the glycerophospholipid metabolism path-
ways in plasma of MPP samples. (C) Significant changes were seen in the levels of some intermediates of the sphingolipid
metabolism pathways in plasma of MPP samples.

600 J. LI ET AL.



involved in the process of liver damage. Additionally,
the levels of PC(14:1(9Z)/P-18:1(11Z)) were positively
correlated with the levels of HBDH and LDH,
suggesting potential cardiovascular injury induced by
MP infection (Figure 7C). The correlation between
other lipid metabolites with clinical indices are
shown in Table S8. Collectively, this suggests that
lipid metabolites were correlated with extrapulmonary

complications and may be involved in the disease
severity of MPP.

Discussion

Pathogen infection may alter the expression of pro-
teins and metabolites [22, 31]. Traditionally, the pro-
teins and metabolites circulate in the plasma through

Figure 6. Multiscale embedded correlation network analysis illustrates the differential correlation of metabolites in MPPs relative
to controls. (A) Only lipid and amino acids pairs with significant differential correlations (empirical P < 0.05) were included. Nega-
tive correlations are shown in purple and positive correlations are shown in pink. For important pathologically related metabolites,
two modules of biological interest were circled and expanded for better visual clarity. (B) Glycerophospholipids and glycerolipids
pairs with significant differential correlations (empirical P < 0.05) were included. These two classes of lipids created a complex
network, which may play an essential role in MP infection. (C) Module I comprises of Cer (d18:0/18:0), as the hub, connected
to DG (18:4/24:1/0:0), DG (22:2/22:6/0:0), DG (22:1/22:6/0:0) and DG (18:2n6/0:0/22:5n6).
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many different mechanisms such as secretion by
humans after infection, stimulated production by anti-
gen stimulation, or direct secretion by MP. Our pre-
vious study revealed several plasma proteins that
were differentially expressed between MPP patients
and controls [22]. According to the central dogma of
molecular biology, DNA (genes) are transcribed to
mRNA (transcripts) which are translated to proteins,
and their activities result in the formation of small
molecules (metabolites) [19]. As the downstream pro-
duct of proteins, metabolites may be able to dis-
tinguish MPPs from controls, and directly clarify the
pathogenesis of the MP infection.

Although metabolomics has been widely applied in
some infectious and noninfectious diseases [11–18],
little metabolomic information is available on MPP.
LC/MS provides the most advanced technique for

the selection of pathogen-derived metabolites with
high stability and repeatability [32]. In this study, we
used LC/MS metabolomics analysis to select MPP
diagnostic biomarkers and investigate the metabolic
profile of MPP. In clinical practice, MPPs are usually
co-infected with other pathogens in children [33–
35]. Thus HC and IDC are both used as controls in
this study. After comparing MPPs with controls, 357
overlapping metabolites were identified to be associ-
ated with MPP.

Initially, it was difficult to select distinct metabolites
to predict MPP because of the high-dimensional data-
set. Thus we applied a random forest analysis to select
the top metabolites that were differentially expressed
between the three groups. Thirteen metabolites were
identified among the 357 metabolites that had a high
discriminatory value. Among them, 411.3208,

Figure 7. Dysregulated lipid metabolism is associated with disease severity in MPPs. (A) The volcano plot derived from a targeted
metabolomic analysis illustrates the top serum metabolites that were increased (shown in red) or decreased (shown in blue) in
severe MPP patients as compared with mild MPPs. (B) KEGG pathways that were significantly impacted in severe MPP disease. (C)
Correlation analysis of differentially expressed metabolites and clinical indices between severe and mild MPPs. Red and blue rep-
resent positive and negative correlations, respectively. * means correlation P-value <0.05. ** means correlation P-value < 0.01.
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459.3493 and 568.5661 were identified and ROC
analysis showed good sensitivity and specificity in
the training cohort. In the independent testing cohort,
when MPP patients were compared with HC or IDC,
these three metabolites showed good results for AUC,
sensitivity, and specificity.

The changes in the metabolome reflected changes
in the biochemistry of host cells after MP infection.
MP can incorporate certain lipids from their sur-
roundings into its membrane and thereby influence
lipid metabolism [36]. Cer (d18:0/18:0) belongs to
the ceramide class, which is the main structural com-
ponent of sphingolipids and plays a crucial part in
activating cell signaling after pathogen infection [37].
Previous studies indicate that ceramides can cause
alveolar and endothelial cell death, eventually leading
to lung emphysema [38, 39]. Many sphingolipid
species and their components such as ceramide, play
important roles in regulating cellular signals such as
growth, inflammation, and death, so it is not surpris-
ing that altered sphingolipid metabolism may be
related to MP pathogenicity [40, 41]. In this study,
we found that the level of plasma Cer (d18:0/18:0)
was significantly changed in MP-infected patients
compared with HCs and IDCs. Thus, elevated
expression of sphingolipids in MPPs may be associ-
ated with the MP-host interaction during infection
and further studies are required to elucidate its role.

LC/MS-based metabolomics is an untargeted
method to select metabolic markers. The major advan-
tage of using untargeted detection is that many
unknown metabolites may also be discovered. In this
study, we identified two new metabolites, 411.3208
(4a-formyl-5a-cholesta-8,24-dien-3b-ol) and
459.3493, which have potential diagnostic value in dis-
tinguishing MPPs from HCs or IDCs. 411.3208 (4a-
formyl-5a-cholesta-8,24-dien-3b-ol) is closely associ-
ated with lipid transport and metabolism and the
inflammatory response. Further functional analysis
of 411.3208 (4a-formyl-5a-cholesta-8,24-dien-3b-ol)
and 459.3493 were limited in this study and should
be the focus of future analysis.

In addition, evaluation of alterations to metabolic
pathways revealed that glycerophospholipid metab-
olism may be one of the main pathways involved in
the pathogenesis of MP infection. Following MP infec-
tion, the lipid bilayer of cell membranes is susceptible
to biomembrane fusion, and its structure involves the
transcription of specific genes, cytoskeletal changes
and changes in the nucleolus. Membrane fusion can
also cause changes in receptor-identifying sites in the
cell membrane, affecting signal delivery between cells
and the production of cellular factors [29, 42].
Although lipid fusion plays an important role in MP
infection, the specific effects of MP infection on lipid
and downstream pathways remain unclear. In this
study, we observed that glycerophospholipids,

including LPA, LPC, PA, PC, PS and PE were signifi-
cantly altered in plasma from MPP patients. The
identification and implication of glycerophospholipid
and sphingolipid metabolism pathways in MPP
suggest membrane fusion damage induced by MP
infection. Altered glycerophospholipid and sphingoli-
pid metabolism pathways also suggest immune
damage, which is another important factor in MP
pathogenesis. Lipids are also involved in regulating a
variety of biological processes such as immunity and
inflammation [28]. As a novel class of inflammatory
lipids, glycerophospholipids are also involved in sev-
eral immune-mediated diseases, such as allergic air-
way disease and rheumatoid arthritis [43, 44]. This
suggests that high expression of glycerophosholipds
in plasma fromMPPs not only indicates cellular mem-
brane damage but also indicates the activation of
immunity, consistent with several studies [29].

Changes in the metabolome are the ultimate
response of a biological system to stimuli, and so,
these changes may indirectly reflect pulmonary
inflammation and lead to multiple severe extrapul-
monary complications [19]. MP infection seriously
affects host lipid metabolism and this might play an
important role in the progression of MP disease and
the occurrence of extrapulmonary complications.
Here, we observed that several lipid metabolites,
altered in mild and severe cases of MPP, were also sig-
nificantly correlated with relevant clinical indices. In
particular, we observed that TG were associated with
several liver-damage-related indices. It has been
reported that TG was accumulated in the liver during
hepatomegaly [45], supporting our results. The effect
of lipid metabolism on the development of severe
MPP will be the focus of our future research.

It should be noted that this was a single-center pro-
spective study with relatively small sample size and
that missing values, which are common in LC–MS
data, may affect data interpretation in studies with
smaller sample sizes. Therefore, future large-sized
cohort studies using higher sensitivity tests are war-
ranted to confirm the findings in this study. The
addition of asymptomatic MP patients will further
reveal whether the metabolomics profile of asympto-
matic patients can also be differentiated from mild/
severe MPP as well as from HCs and IDCs.

In conclusion, differentially expressed metabolites
in MPP plasma compared to HCs and IDCs were
identified using metabolomics. Three biomarkers,
411.3208 (4a-formyl-5a-cholesta-8,24-dien-3b-ol),
459.3493 and 568.5661 (Cer (d18:0/18:0)) were inde-
pendently verified to show good diagnostic value in
distinguishing betweenMPPs and HCs or IDCs. A sig-
nificant impact of MPP on lipid metabolism, especially
pathways involving glycerophospholipid metabolism
and sphingolipid metabolism, were identified and
may contribute to the pathogenesis of MPP.
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